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Abstract 

A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of 
"classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and 
facilitates finding a solution even closer to the optimal one. O 1999 Elsevier Science B.V. All rights reserved. 

Keybc80rdr: Pattern recogn~tion; Feature selection: Search methods 

1 .  Introduction 

In feature selection, a search problem of finding 
a subset of d features from a given set of D mea- 
surements, d < D, has been of interest for a long 
time. Since the optimal methods (exhaustive search 
or the Branch-and-Bound method which is re- 
stricted to monotonous criteria) are not suitable 
for high-dimensional problems, research has con- 
centrated on suboptimal search methods. Two 
well-known basic approaches to the required fea- 
ture set construction are usually recognized: the 
"bottom up" and "top down" one. 

A number of search methods has been devel- 
oped, starting with .seque~ztial backward selectiorz 
(SBS) and its "bottom up" counterpart known as 
,sec~uentiaI fOr1vc2rd   election (SFS). Both of them 
suffer from the so-called "nesting effect". Attempts 

to prevent the nesting of feature subsets led to the 
development of the Plus-1-Mi~zus-r search method 
by Stearns (1976) and to generalization of SBS, 
SFS and Plus-I-Minus-r algorithms proposed by 
Kittler (1978). 

According to the comparative study made by 
Jain and Zongker (1997), probably the most 
effective known suboptimal methods are currently 
the sequential floating search methods, pro- 
posed by Pudil et al. (1994). In comparison to the 
Plus-I-Minus-u method, the "floating" search 
treats the "nesting problem" even better, since 
there is no need to specify any parameters such as 1 
or r. The number of forward (adding)/backward 
(removing) steps is determined dynamically during 
the method's run so as to maximize the criterion 
function (see Fig. 1). 

2. Preliminaries 
': Electronic Annexes available. See www.elsevier.nl/locatel 

patrec. Pudil et al. (1991, 1994) presented the defini- 
' Corrcsponding author. tions of irzdividuul signEficcznce of a single feature 

0167-8655/99/$ - see front matter 0 1999 Elsevier Science B.V. All rights reserved 
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Fig. 1. Simplified flow chart of SFFS algorithm 
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with respect to the set and in the set. Before dis- 
cussing the adaptive floating search algorithms 
formally, the following generalization of these 
definitions has to be introduced. 

Let Xk = {xi : 1 < i < k ,  xi E Y }  be the set of 
k features from the set Y = {yi : 1 < i < D} of 
D available features. Let To be generally the tuple 
of o features. The value J(T,) of the feature 
selection criterion function if only the 
features ti, i = 1.2, .  . . ,o: ti E To are used will be 
called the individual signijicance So(T,) of the 
jeatuue o-tuple. 

The significance Sk-,(To) of the Jearure o-tuple 
7;, = {ti : 1 < i < o, ti E Xk}  in the set Xk is defined 
by 

4 

SL-o(T,n) = min Sk-,,(Ti) 
l < i < O  

+ J(Xk \ Ton) = max J(Xk \ T ) .  
l < i < O  

(4) 

We shall say that the feature o-tuple Uc; from 
the set Y \ Xk is: 
1. the most signijicant (best) feature o-tuple with 

respect to the set Xk if 

Sk-,,(U;) = m d X  Sk+,(Ui) 
I < i < Y  

* J(Xk U U,') = max J(Xk U U;),  
l < i < Y  

( 5 )  

where Y = is the number of all the pos- 
sible o-tuples from Y \ XL.; 

2. the least signijcant (worst) feature o-tuple with 
respect to the set Xk if 

The signlJicance Sk+,(U,) of the feature o-tuple Sk+,(U:) = I < Z C I  min Sk+,(UA) 

U, = {u, : 1 < i < o, u, E Y \ Xk} from the set 
Y \ Xk with respect to the set Xk is defined by 

sk+o(uu) = J(xk u Uo) - J(xk) .  PI 
Denote by Ti the ith o-tuple belonging to the set 

of all O = ( z )  possible o-tuples from XL, 1 < i < 0. 
We shall say that the feature o-tuple from the 
set Xk is: 
1. the most signficant (best) feature o-tuple in the 

Jet Xk if 

Sk-,(T;) = max Sk-o(Ti) 
1 < 1 4 W  

J J(Xk\ Ton) = min J(Xk\ $); 
l < i < O  

(3) 

2. the least signficant (worst) feature o-tuple in the 
set Xk if 

+ J(Xk U U,') = I min < i <  Y J(Xk u u:). (6) 

Remark. For o = 1 all the terms relating to the 
feature o-tuple significance coincide with the terms 
relating to the individual signglcance of a feature. 

3. Adaptive floating search (AFS) properties 

For the sake of simplicity, let us denote original 
floating search methods (SFFS and SBFS) to- 
gether as "classical floating search" methods and 
denote them by CFS. CFS methods use only single 
feature adding or removing, respectively, in the 
course of the algorithm. 
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Our new search strategy aims to utilize the best 
of both generalized strategies and classical floating 
strategies. The course of search is similar to that of 
CFS, but the individual search steps are general- 
ized. However, the new algorithm is by no means 
just a generalized version of CFS. 

The basic generalization of CFS would be to 
replace the simple SFS or SBS steps inside the CFS 
procedure by their generalized versions GSFS(o) 
or GSBS(o), respectively. Unfortunately for a po- 
tential user, it is generally not known which value 
of o to choose to get the best results. Moreover, if 
the user chooses the value of o too high for his 
particular problem, this leads to useless increase of 
computing time. 

As opposed to the above mentioned generalized 
methods, the AFS method does not need the user- 
specified level of generalization. This level (value 
of o) is determined dynamically in the course of the 
search according to the current situation so as to 
achieve better results. In this sense, AFS brings 
about a similar improvement in comparison with 
the generalized search strategies as the CFS search 
brought about in comparison with simple "non- 
generalized" strategies (CFS introduced dynamical 
"floating" of addinglremoving steps). 

Because of the time-exacting character of 
generalized steps (especially when used in high- 
dimensional problems) we introduced a user 
defined parametric limit r,,,, restricting the 
maximum generalization level which the method 
can use. The current generalization level, which 
changes in the course of search, is denoted by o. 
The AFS is called "adaptive" because of its ability 
to adjust the limit under which the actual 
generalization level can be automatically set. 
Simply said, the nearer the current subset size (k)  is 
to the final one (4, the higher is the generalization 
limit. This characteristic aims to save computing 
time by limiting the generalization levels while the 
current subset is still far from the desired one. 
Therefore, we introduce the variable r representing 
the actual generalization limit for a given 
dimension. 

To summarize, r,,, is a user-specified absolute 
generalization limit, r is the actual generalization 
limit determined adaptively by the algorithm for 
the current subset (r  < r,,,, always holds), o is the 

current generalization level depending on the cur- 
rent situation (o < r always holds). 

Remark. For r,,, = 1 the AFS is identical to 
classical floating search. 

Adaptive determination of r is done as follows: 
at the beginning of every forward or backward 
algorithm phase, respectively: 
1. if l k -d l  < b, letr=r,,, 
2. else if Ik -d l  < h t r  ,,,, let r = r,,, f b -  

lk - dl 
3. else let r = 1 
Here b denotes the neighbourhood of the final 
dimension, where the highest generalization levels 
are allowed. Basically it is possible to set b = 0. 
The adaptive setting of r and the meaning of pa- 
rameter b is shown in Fig. 2. 

Thus, in the generalized course of the AFS al- 
gorithm, o = l is used in usual algorithm stages 
(e.g., in the beginning). Only special algorithm 
stages (when conditional forward, respectively 
backward steps brought no improvement) allow 
increasing of o and, therefore, a more detailed 
search. 

By setting r,,, or h to higher values, the user 
has a possibility to let the algorithm perform a 
more thorough search with better chances to find 
the optimal solution, of course at the expense of 
longer computation time. The setting of these two 
parameters is not so critical as setting the gener- 
alization level in classical GSFS(o), respectively 
GSBS(o) and Plus-1-Minus-r. Increasing r,,, or b 
does not lead to  a different search, but to a more 
detailed search. 

0 d-b d d t h  k 

Fig. 2. The meaning of the user parameters r,,, and b for ad- 
justing the adaptive generalization. 
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Remark. Every AFS algorithm run includes steps 
indentical with CFS ones. Also for this reason we 
expect the AFS algorithm to find equal or better 
solutions than CFS. The computer time needed for 
AFS is expected to be substantially longer (due to 
the generalization) than for CFS. However, if we 
constructed the generalized floating search in the 
simple way, it would consume incomparably more 
time. 

CFS were found to occasionally prefer worse 
working subsets in the course of search. ' To 
describe that case, let us remind the principle of 
CFS (specifically SFFS) first: 
1.  Add the most signijcant Jeature to the current 

subset of size k. Let k = k + 1. 
2. Conditionally remove the least significunt fea- 

ture from the current subset. 
3. If the current subset is the best subset of size 

k - 1 found so far, let k = k - 1 and go to step 
2. Else return the conditionally removed feature 
and go to step 1. 

Note that backward steps are conditional. Only 
backward steps bringing improvement are al- 
lowed. On the other hand, forward steps cannot be 
conditional. If they were, the algorithm could 
theoretically fall into an infinite cycle (repeated by 
conditional adding and removing a feature). Be- 
cause of their unconditionality, the forward steps 
can lead to finding a subset which is worse than the 
best one of a given dimension found so far. A less 
promising "search branch" is thus uselessly 
followed. 

Removal of this problem is simple. If the for- 
ward step found a subset worse than the best one 
known so-far the current one is forgotten and the 
so-far best one becomes the current one. Note that 
this "violent" swapping of current subset cannot 
lead to infinite cycling, as finding of a worse subset 
by the forward step must have been preceded by 
finding a better subset in some lower dimension. 

Now, having defined the notion and discussed 
the included principles we can describe the ASFFS 
and ASBFS algorithms. 

' We are grateful for the critical remarks by our colleague 
Dr. R P W. Duin from the Delft University of Technology. 

4. ASFFS algorithm 

The adaptive sequential forward floating search 
(ASFFS) is basically a "bottom up" procedure. 

The algorithm is initialized by setting k = 0 and 
Xo = 0. In order to keep the algorithm description 
traceable, we did not include all the steps needed 
to ensure its proper functioning, especially when 
the current dimension gets near to 0 or D. Such 
steps serve to avoid the algorithm running outside 
the meaningful dimension boundaries. 

Suppose the so-far best values of criterion 
function J(X . )  are stored as Tax for all 
i = 1,2 , .  . . , D. The corresponding so-far best fea- 
ture subsets X, are also stored. Initial values of Jj""" 
for all i = 1,2,  . . . D should be set to lowest pos- 
sible value. Furthermore, suppose k is the size of 
the current subset. 

A. Forward phase 
Each phase begins with adaptive setting qf r: IJ 

lk -d l  < h, let r = r,,,. Else if Ik - dl < r,,, + b, 
let v = r,,, + b - lk -dl .  Else let r = 1. 

Step I .  Let o = 1. 
Step 2 (Conditionul inclusion). Using the basic 

GSFS(o) method, select the nzost ,sign$cant o-tuple 
Uf from the set of available measurements Y \ Xk 
wit11 respect to the set Xk, then add it to XL to form 
feature set Xk+,. 

Step 3. If J(Xk+,) > Je,", let JE+ = J(Xk+,), let 
k = k + o and go to step 6. (The solfar best subset 
of size k + o was found.) 

Step 4 (Conditional increase of generalization 
step). If o < r ,  let o = o + 1 and go to step 2. (The 
~onditionally included feutures are rcmoued.) 

Step 5 (None of  the suh~ets tested in the forward 
phuse tvere better than the so-far best ones). Forget 
the current subset Xk. Let k = k + 1. Now consider 
the so-far best subset of size k to be the current 
subset Xk. 

Step 6 (Testing the terminating condition). If 
k 3 d + A ,  stop the algorithm. 

B. Backward phase 
Each phase begins with adaptive setting of r: 

lk - dl < b, let r = r,,,. Else i f  Ik - dl < r,,, + b, 
let r = r,,, + b - Ik - dl. Else let r = 1. 

Step 7. Let o =  1. 
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Step 8 (Conditional exclusion). Using the basic 
GSBS(o) method, select the least signlJicant o-tupb 
T,' in the set Xk, then remove it from Xk to form 
feature set XkPo. 

Step 9. If J(Xk-,) > q'y, let Jr," = J(Xk-,), let 
k = k - o and go back to the beginning of Back- 
ward Phase. (The so-far best subset of size k - o 
was found.) 

Step I0 (Conditional increase of generalization 
step). If o < r, let o = o + 1 and go to step 8. (The 
conditionally excluded features are returned) 

Step 11 (None of the subsets tested in the back- 
ward phase were better than the so-far best ones.) 
Go to Forward phase. 

End. {ASm;S) 

A simplified flowchart of the ASFFS algorithm 
is given in Fig. 3. The terminating condition 
k = d + A in the flowchart means that in order to 
fully utilize the potential of the search, we should 
not stop the algorithm immediately after it reaches 
for the first time the dimensionality d. By leaving it 
to float up and down a bit further, the potential of 
the algorithm is better utilized and a subset of di- 
mensionality d outperforming the first one is usu- 
ally found. In practice we can let the algorithm 
either go up to the original dimensionality D, or, if 
D is too large, then the value of A can be deter- 
mined heuristically (e.g., according to the value of 
the maximum number of backtracking steps prior 
to reaching d for the first time). 

5. ASBFS algorithm 

The algorithm is initialized in the same way as 
ASFFS, except k = D and XD = Y. The ASBFS 
(adaptive sequential backward floating search) is 
the "top down" counterpart of the ASFFS pro- 
cedure. Since it is analogous to the forward one, 
due to the lack of space it is not described here. 

Yes 

Cond~eonally exclude 
o featurn Iound 

Return the condlt~onallv 
excluded features back ( 

Let k - k - a  a 

Fig. 3. Simplified flow chart of ASFFS algorithm. 

present the results of ASFFS and SFFS on two 
sets of data (as both concern two-class problems, 

6. Experimental results in both the cases the Bhattacharyya distance was 
used as the criterion function; a PC with Pentium 

The performance of adaptive floating search I1 350 was used): 
has been compared with that of "classical" float- 1. 65-dimensional mammogram data - the dataset 
ing search on a number of real data. Here we just was obtained from the Pattern Recognition and 
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Image Modeling Laboratory (PRIM lab.) at 
University of California, Irvine. 

2. 60-dimensional sonar data - the dataset was 
obtained from the Machine Learning Database 
at University of California, Irvine. 

From the results we can see that ASFFS yielded 
better results than classical SFFS. Alhough in 
these examples the improvement may seem to be 
marginal, we have to  be aware of the fact that 
finding a different feature subset with only a 
marginal increase in the criterion value can cause a 
better performance of the classifier which may 
prove to be crucial in certain applications. 

Furthermore, more essential than the absolute 
value of improvement is the fact that the adaptive 
search is capable of finding a solution closer to the 
optimal one (of course at the expense of longer 
computation time as documented, e.g., on Fig. 4 
for 25 selected features, where ASFFS found a 
better subset than SFFS, due to a more thorough 
search) (see Fig. 5). 

7. Conclusion 

Two new methods of adaptive floating search 
have been presented. Owing to a more thorough 
search than classical floating search, they have a 
potential of finding a solution even closer to the 
optimal one. The trade-off between the quality of 
solutio~l and the computational time can be con- 
trolled by user's setting of certain parameters. 

For further reading, see (Devijver and Kittler, 
1982; Siedlecki and Sklansky, 1988; Ferri et al., 
1994). 

Discussion 

Gimelyurb: I have two questions. The first 
question is: How do you avoid the threat of local 
minima of the criterion function in the search? 
Because in feature selection, the feature that we 
add depends on the feature we start with, and this 
may heavily influence your results. The second 
question is: How can you explain such non-linear 
time behaviour? 

Somol: Let me answer the second question first. 
I think that till a certain point, this method does 
the same kind of search as classical floating search, 
meaning that it adds or removes only single fea- 
tures. And every time it tries to find a better subset, 
increasing the criterion function. But at some 
point it starts using a generalisation step, meaning 
that it tries groups of two, three or more features 
at a time. So eventually, the depth of search may 
reach the generalisation limit, which of course 
would be accompanied by a sharp increase of the 
time. As for the time behaviour, the simple reason 
is that the algorithm is heuristic. However, one 
possible explanation is in the fact that the gener- 
alisation limit is a special function of the dimen- 
sionality. This may be the cause that we get 
different generalisation limits for the same stages 

I 
-- 

65-dlmenslonal mammogram data 1 

t - Adaptive SFFS 
r,,=3, b=3 

I * SFFS / A  

No. of selected features I set I 

65.d1mensional mammogram data / 7000 + 

20 22 24 26 28 30 32 
No. of selected features 1 set 

Fig. 4. Results o f  forward algorithms o n  mammogram data. 
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60-dimensional sonar data 

2.5 
++ Adaplive SFFS 

rm,=4, b=3 

++ SFFS 

2 *- u 

5 
$ c 
m 

1.15 t 

Fig. 5. Results of forward algorithms on  sonar data 

- Adaptive SFFS 

* SFFS 

10 12 14 16 18 20 
No. of selected features 1 set 

of the algorithm, when searching subsets of dif- Pudil: For classical floating search, we used the 
ferent cardinalities. And for the first question: I apparent error rate, because it does not depend on 
would ask my co-author. monotonic criteria like the Branch and Bound 

10 12 14 16 18 20 
No, of selected features 1 set 

Pudil: First, I would like to further comment on 
method for example. So there we used the error rate. 

the time behaviour, which I would call non- 
monotonic, rather than non-linear. Obviously, this Acknowledgements 
is data-dependent; with other data, the behaviour 
may be different and such jumps may happen not 
at all. At a certain moment, the algorithm switches 
to deeper search, because it finds that the gener- 
alised versions start to find better solutions. But 
that is at the expense of longer computational time 
because of the deeper search. And as far as the first 
question is concerned, obviously as we all know, 
the sub-optimal methods are heuristic. The meth- 
od presented here is only an improvement of 
previous versions, but it cannot guarantee to find 
the real optimum. However, in most cases when 
we compared it, for instance with Branch and 
Bound, it yielded practically always the same 
solution. 

Egmont-Petersen: Have you considered using 
assessment criteria other than the statistical dis- 
tance measure you used? With your criterion, you 
do not need a classifier. However, if you would 
use, for instance, the error rate, you would need to 
train a lot of classifiers. 

Somol: I have used various distance measures, 
not only the Bhattacharrya distance, but also the 
Mahalobis distance, and the behaviour of the al- 
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