
Fast Branch & Bound Algorithm in Feature Selection
Petr Somol and Pavel Pudil

Department of Pattern Recognition, Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 182 08 Prague 8, Czech Republic

and

Francesc J. Ferri
Departament d’Inform àtica , Universitat de Val̀encia, Dr Moliner, 50 46100 Burjassot (Val̀encia), Spain

and

Josef Kittler
Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH. UK

ABSTRACT

We introduce a novel algorithm for optimal subset selection. Due to its simple mechanism for predicting criterion values the algorithm
finds optimum usually several times faster than any other known Branch & Bound [5], [7] algorithm. This behavior is expected when the
algorithm is used in conjunction with non-recursive and/or computationally expensive criterion functions.
Keywords: Subset Search, Feature Selection, Search Tree, Optimum Search, Subset Selection.

1. INTRODUCTION TO THE BRANCH & BOUND PRINCIPLE

The problem of optimal feature selection is difficult especially because of its computational complexity. The exhaustive search procedure
is applicable to lower-dimensional problems only. A well known alternative to exhaustive search is the Branch & Bound (BB) algorithm
presented first in 1977 by Narendra and Fukunaga [1]. The BB is a “top-down” algorithm with backtracking. It is based on the assumption that
the adopted criterion function fulfills the monotonicity condition. Let��j be the set of features obtained by removingj featuresy1; y2; � � � ; yj
from the setY of all D features, i.e.

��j = f�ij�i 2 Y; 1 � i � D; �i 6= yk; 8kg (1)
Themonotonicity conditionassumes that for feature subsets��1; ��2; � � � ; ��j , where

��1 � ��2 � � � � � ��j
the criterion functionJ fulfills

J(��1) � J(��2) � � � � � J(��j): (2)
By a straightforward application of this property many feature subset evaluations may be omitted.

For better understanding let us recall the BB principle first. Consider the problem of selectingd = 2 out ofD = 5 features. Figure 1
illustrates the way the BB constructs its search tree. Leaves represent target subsets ofd features, while the root represents the set of all
features,Y . The tree construction is illustrated by the dashed arrows. The digits associated with edges in Figure 1 denote features being
removed from the current “candidate” set while the algorithm tracks the edge down (and being returned back while the algorithm backtracks
up). Nodes in thek-th level represent current subsets ofD � k features. For example, the *- node represents a set containing features
y1; y3; y4; y5 obtained from the previous set by removing featurey2. Every time the algorithm reaches a leaf node, the corresponding
criterion value is used to update thebound(the current maximum). On termination of the algorithm theboundwill contain the optimum
criterion value.

The BB algorithm’s advantage over an exhaustive search derives from the ability to omit the construction of certain search tree branches.
Consider a situation, where the algorithm reaches the *-node in Figure 1. Theboundhas been updated recently according to the target subset
containing featuresy1; y2. There is a chance that the criterion value computed for the current subset (y1; y3; y4; y5) would be lower than the
currentbound. Because of themonotonicity condition(2) nowhere in *-node sub-tree the criterion value may exceed thebound. Therefore
the sub-tree construction is unnecessary (sub-tree would becut-off), thus saving time.

Fig. 1. Branch & Bound search tree.

It is apparent that for a search tree of given topology there exist many different feature orderings (assignments to edges). The assignment
is to be specified whenever the algorithm constructs a consecutive tree level, i.e. selects immediate descendants of current node (the *-node
in Figure 1 has two descendants representing subsetsy1; y4; y5 andy1; y3; y5 obtained by removing featurey3 or y4, respectively). Ordering
the descendants according to their criterion value may result in faster increase in theboundvalue, more sub-tree cut-offs and eventually in
faster algorithm operation (see [2], [5], [6], [3]).

The algorithm could also be modified to construct theminimum search treedescribed by Yuet al. [7] and other improvements as using
approximate monotonicity [4].

2. DRAWBACKS OF THE BRANCH& BOUND ALGORITHM

Let us consider the use of BB algorithm with criterion functions, whose computational complexity is high and at least polynomially
dependent on the current subset size (e.g. non-recursive forms of standard probabilistic distance measures like Bhattacharyya, etc.).

When compared to exhaustive search, every BB algorithm requires additional computations in terms of criterion evaluations. Not only
target subsets ofd features��D�d, but also their supersets��D�d�j, j = 1; 2; � � � ; D � d have to be evaluated. The BB principle does
not guarantee that enough sub-trees will be cut-off to keep the total number of criterion computations lower than their number in exhaustive
search. The worst theoretical case would arise if we defined a criterion functionJ(��k) = j��kj � D � k; the criterion function would be
computed not only in every leaf (the same number of computations as in exhaustive search), but additionally also in every other node inside
the tree.

Weak BB performance in certain situations may result from simple facts that nearer to the root: a) criterion value computation is usually
slower (evaluated feature subsets are larger), b) sub-tree cut-offs are less frequent nearer the root (higher criterion values may be expected
for larger subsets, which reduces the chance of the criterion value to remain under thebound, which is updated in leaves). The BB algorithm
usually spends most of time by tedious, less promising evaluation of tree nodes near the root. This effect is to be expected especially when
d� D. Based on this observation we introduce a novel algorithm, which effectively resolves the above mentioned drawback.

3. FAST BRANCH & BOUND

The Fast Branch & Bound (FBB) algorithm aims to reduce the number of criterion function computations in internal search tree nodes.
The algorithm requires the criterion function to fulfill themonotonicity condition(2) just like the BB algorithm.

The simplified algorithm description would be as follows: the algorithm attempts to utilize the knowledge of criterion value changes after
removal of single features for future prediction of criterion values without the need for their computation. Prediction is allowed under certain
circumstances only, e.g. not in leaves. Both the really computed and predicted criterion values are treated in the same way, i.e. for ordering
of node descendants during the tree construction phase.

If the predicted criterion value remains significantly higher than the currentbound, we may expect that even the actual value would not
be lower and therefore the corresponding sub-tree could not be cut-off. In this situation the algorithm continues to construct the consecutive
tree level. However, if the predicted value comes close to thebound(and therefore there arises a chance that the real value is lower than the
bound), the real criterion value must be computed. Only if real criterion values are lower than the currentbound, sub-trees may be cut-off.
Note that this prediction scheme does not affect the optimality of the obtained results. The course of FBB algorithm remains similar to BB,
possible sub-tree cut-offs are allowed according to real criterion values only. Possible inaccurate predictions may result in nothing worse than
constructing sub-trees, which would have been pruned out by means of classical BB algorithm. However, this situation is usually strongly
outweighed by criterion computation savings in other internal nodes, especially near the root, where the criterion computation tends to be
slower.

The prediction mechanism utilizes the information about the averaged criterion value change caused by removing a particular feature.
Obviously, the following trade-off arises: we want to use prediction as frequently as possible to save time, on the other hand we have to
compute the actual criterion values to precise (or at least to estimate) the information needed for the prediction mechanism. Different features
appear in different search tree construction stages, therefore we need to collect the prediction information separately for every feature.

The FBB Search Tree Construction

First we introduce avector of feature contributions to the criterion valuefor storing the information about the average criterion value
change caused by removing single features from the current subsets. Next we introduce acounter vectorrecording the number of criterion
change evaluations for every individual feature. Before any criterion evaluation the record incounter vectoris checked for the given feature.
If the prediction mechanism has accumulated enough information (the counter value is bigger than a pre-specifiedminimum number of
feature contribution evaluationsconstant, see section 4), the required criterion value will be predicted, otherwise it will be computed.

Since the information about the significance of the criterion value has to be maintained at each internal node, we introduce a vector of
value types for nodes in the current tree level. If the criterion value was predicted, the pertinent type is denoted by “P”. If the criterion value
was actually computed, the type is denoted by “C”. The difference between criterion values computed in current internal node and its parent
node is used to update the information in thevector of feature contributions to the criterion valueonly if both the criterion values have been
really computed (both for the current node and its parent node the “C” is recorded in thevector of value types). Should we attempt to update

Fig. 2. A search tree situation: Criterion value has been computed for nodesy0; y2; y5 and predicted for nodesy1; y3 andy4. The prediction information
in thevector of feature contributionmay be updated according to the difference of criterion values iny0 andy2 only. Criterion values in other nodes are
unusable for updating.

the vector of feature contributions by a difference of values of mixed or predicted types, we would deteriorate the accuracy of prediction
mechanism (by bringing in and multiplying the estimation error). The prediction mechanism is limited by a lack of information in early
phases of the FBB algorithm. We may therefore expect frequent updates of the vector of feature contributions. Later, with the increasing
number of “reliable” features (whose contribution to the criterion value has been evaluated for more than required minimum number of times,
as indicated in thecounter vector) criterion values are obtained by the prediction mechanism instead of actual computation more often and
the updating process becomes less frequent. An example of a search tree situation is illustrated in Figure 2.

The aim of the described prediction mechanism is not only to reduce the number of criterion value computations at the internal nodes
when the algorithm explores the tree down to the leaves, but also to estimate the proper moment (node), when the criterion value decreases
below the currentboundand the possibility to cut-off a sub-tree arises. Let us denote the case when the algorithm stops the prediction too
soon (and the computed values still remain higher than the currentbound) as apessimistic prediction error. Further, we denote the case
when the algorithm utilizes a prediction for too long (misses the real possibility of cutting-off current sub-tree and continues to construct
consecutive tree level) as anoptimistic prediction error. The prediction mechanism behavior may be adjusted by introducing anoptimism
constantin the following way: let every value from thevector of feature contributionbe multiplied by the optimism constant before being
used for prediction. Higher values of theoptimism constantwould protect the algorithm from missing real possibilities to cut-off sub-trees,
but on the other hand the predicted criterion values would decrease faster, reach the currentboundfaster and the prediction mechanism would
stop sooner than necessary.

A simplified flowchart of the FBB algorithm may be found on Figure 3.

4. FAST BRANCH & BOUND ALGORITHM DESCRIPTION

Our algorithm description is based on the notion from book [2]. We will use following symbols:
constants:

D – number of all features,
d – required number of selected features,
Æ � 1 – minimum required number of feature contribution evaluations, this integer constant affects the start of prediction mechanism,

(see section 4),
 � 0 – optimism constant, (see Section 4),

other symbols:
Y – set of allD features,
J(:) – criterion function,
k – tree level (k = 0 denotes the root),
��k = f�j j j = 1; 2; � � � ; D � kg – current “candidate” feature subset ink-th tree level,
qk – number of current node descendants (in consecutive tree level),
Qk = fQk;1; Qk;2; : : : ; Qk;qkg – ordered set of features assigned to edges leading to the current node descendants (note that “candi-

date” subsets��k+1 corresponding to current node descendants are fully determined by featuresQk;i for i = 1; � � � qk),
Jk = [Jk;1; Jk;2; : : : ; Jk;qk]

T – vector of criterion values corresponding to the current node descendants in consecutive tree level
(Jk;i = J(��k n fQk;ig) for i = 1; � � � ; qk),

Tk = [Tk;1; Tk;2; : : : ; Tk;qk]
T; Tk;i 2 f\C

00; \P 00g for i = 1; � � � ; qk – criterion value type vector (records the type of corresponding
Jk;i values),

	 = f j j j = 1; 2; � � � ; rg – control set ofr features being currently available for search-tree construction, i.e. for building consecutive
descendant vectorQk; the	 set serves for maintaining the search tree topology,

Fig. 3. A simplified diagram of the FBB algorithm

X = fxj j j = 1; 2; � � � ; dg – current best subset ofd features,
X� – currentbound(criterion value corresponding toX),
A = [A1; A2; : : : ; AD]

T – vector of feature contributions to the criterion value,
S = [S1; S2; : : : ; SD]

T – counter vector(together withA serves for prediction),
V = [v1; v2; : : : ; vqk]

T – temporary vector for sorting purposes only,

Remark: it is necessary to store all valuesqj , ordered setsQj and vectorsJj andTj for j = 0; � � � ; k during the algorithm run to allow
backtracking.

The algorithm is to be initialized as follows:
k = 0 (starting in the root),
��0 = Y ,
	 = Y , r = D

X� – lowest possible value (computer dependent)
Si = 0 for all i = 1; � � � ; D

Æ = 5 (see section 4)
 = 1:1 (see section 4).

Fast Branch & Bound
Whenever the algorithm removes some featureyi from the current “candidate” subset and computes the corresponding real criterion value
J(��k n fyig) in k-th tree level, and if also the predecessor valueJ(��k) � J(��k�1 n fyjg) (after previous removal of some featureyj) had
been computed (as indicated byTk�1;yj =“C”), then update the information in thevector of feature contributions to the criterion value,A,
as follows:

Ayi =
Ayi � Syi + Jk�1;yj � J(��k n fyig)

Syi + 1
and let

Syi = Syi + 1

Step 1:Select descendants of the current node to form the consecutive tree level:
first set their number toqk = r � (D � d � k � 1). Construct an ordered setQk and vectorsJk andTk specifying the current node
descendants in the following way: for every feature j 2 	; j = 1; � � � ; r if k+1 < D�d (nodes are not leaves) andS j > Æ (prediction
allowed), let

vj = Jk�1;qk�1 �A j
i.e. predict by subtracting the appropriate prediction value based on j feature from the criterion value obtained in the parent node, otherwise
the value must be computed, i.e. let

vj = J(��k n f jg).
After obtaining allvj values sort them in the ascending order

vj1 � vj2 � � � � � vjr
and fori = 1; � � � ; qk let

Qk;i = ji
Jk;i = vji if vji records a computed value
Jk;i = Jk�1;qk�1 � � A ji

if vji records a predicted value
Tk;i =“C” if vji records a computed value
Tk;i =“P” if vji records a predicted value

To avoid future duplicate testing, features ji in Qk cannot be used for the construction of consecutive tree levels, so let	 = 	 n Qk and
r = r � qk

Step 2:Test the right-most descendant node (connected by theQk;qk -edge): if qk = 0, all descendants were tested, go toStep 4(backtracking). If
Tk;qk =“P” and Jk;qk < X�, compute the real valueJk;qk = J(��k n fQk;qkg) and markTk;qk =“C”. If Tk;qk =“C” and Jk;qk < X�,
then go toStep 3. Else let��k+1 = ��k n fQk;qkg. If k+ 1 = D� d, then you have reached a leaf, go toStep 5. Otherwise go to next level:
let k = k + 1 and go toStep 1.

Step 3:Descendant node connected by theQk;qk -edge (and its possible sub-tree) may be cut-off:return featureQk;qk to the set of features available
for tree construction, i.e. let	 = 	 [fQk;qkg andr = r + 1, Qk = Qk n fQk;qkg andqk = qk � 1 and continue with its left neighbor;
go toStep 2.

Step 4:Backtracking:Let k = k � 1. If k = �1, then the complete tree had been searched through; stop the algorithm. Otherwise return feature
Qk;qk to the set of “candidates”: let��k = ��k+1 [fQk;qkg and go toStep 3.

Step 5:Update theboundvalue: LetX� = Jk;qk . Store the currently best feature subsetX = ��k+1 and go toStep 2.

Remark:In Step 1 fork = 0 the termJ�1;q
�1

denotes the criterion value for the set of all features,J(Y).

5. FAST BRANCH & BOUND ALGORITHM PROPERTIES

The algorithm may be expected to be most effective when the individual feature contributions to the criterion value do not change strongly
in relation to different subsets. Practical tests on real data exhibit this property in the majority of cases. The FBB showed to be effective even
in cases, when due to difficult statistical dependencies individual feature contributions failed to remain stable.

When compared to classical BB algorithms the FBB algorithm always spends additional time for maintaining the prediction mechanism.
However, this additional time showed not to be important, especially when compared to time savings arising from the pruned criterion
computations.

Obviously, the prediction mechanism of the FBB algorithm may fail to save computational time under certain circumstances. The FBB
is not suitable for use with recursive criteria, where calculatingJ(��k) value requires the knowledge of previous valueJ(��k�1). The use of
prediction in FBB leads to performing the criterion calculations not level by level but in different stages. This makes it impossible to calculate

successive criterion values recursively. In general, the FBB algorithm shows to be most advantageous when used with computationally
demanding non-recursive criterion functions with higher than linear computational complexity (in terms of the feature set size).

The prediction mechanism may be influenced by altering theÆ (minimum required number of feature contribution evaluations) and
(optimism) constants.

Setting theÆ value greater than 1 may be advantageous for protection against cases, where the first evaluated feature contribution to the
criterion value is not typical and therefore the early start of prediction mechanism based on this information would cause too inaccurate
predictions. On the other hand theÆ value should remain close to 1, because its increase would slow-down the start of the prediction
mechanism. A better estimate of feature contributions resulting from setting highÆ usually cannot outweigh the time lost by prediction start
delay. A practical setting for general use verified to beÆ = 5.

The value affects the “optimism” of the prediction mechanism. Values > 1 reduce the occurrence of optimistic prediction errors.
Values0 < < 1 reduce the occurrence of pessimistic prediction errors. For = 0 the algorithm collects the required prediction
information and then completes the search in a way equivalent to exhaustive search. Increasing the value shifts the algorithm functionality
nearer to classical Branch & Bound. A practical setting for general use proved to be = 1:1. This slightly “pessimistic” value serves as a
protection against too inaccurate prediction which could shift the algorithm functionality to exhaustive search.

6. EXPERIMENTS

The reference BB and FBB algorithms were tested on a number of different data sets. Here we present representative results computed on
30-dimensional mammogram data (2 classes - 357 benign and 212 malignant samples) obtained from the Wisconsin Diagnostic Breast Center
via the UCI repository - ftp.ics.uci.edu. We used the non-recursive Bhattacharyya distance as the criterion function. Different performance
of different methods is illustrated on Figure 4 by (a) graph of total computational time and (b) graph of criterion evaluation number. We did
not include the graph of criterion values, because all methods yield the same optimum values.

We compare all the results especially to the results ofImproved Branch & Bound[5], [2], because this algorithm is supposed to be the
most effective known optimal subset search strategy. Note that we implemented all Branch & Bound algorithms so that they construct the
minimum solution treedescribed by Yu and Yuan [7].

Computational complexity of the exhaustive search is well known, therefore we do not pay much attention to it. Let us note only that in
our example the exhaustive search required ford = 15 approximately140� more criterion evaluations than theImproved Branch & Bound.
Figure 4 illustrates also theBasic Branch & Boundalgorithm [5]. Confirming our expectations its effectiveness is inferior to any other BB
algorithm.

Graphs show a significantly higher effectivity of theFast Branch & Boundwhen compared to any Branch & Bound. Note the slight FBB
graph shift to the right, which follows from the FBB principle; the FBB algorithm is based on saving the criterion computations in internal
search tree nodes, therefore a more significant saving of computations may be expected for deeper search trees (lowerd).

The difference between FBB and Improved BB in (b) is a bit lower. It may be expected that due to prediction errors the FBB constructs its
search tree less effectively (in the sense of feature order specification). Its main advantage is overall reduction in the criterion computations
(especially more tedious computations nearer to search tree root), which caused approximately its3 � 6� faster operation when compared
to the Improved BB in our example (specifically ford � 7 the FBB run20� faster).

From our experience, the FBB algorithm operates significantly faster than any other Branch & Bound algorithm (provided we do not use
recursive criteria). This is apparent even in situations, when classical Branch & Bound fails to operate faster than exhaustive search. The
FBB operates still faster (with exception ofd values near to 0 orD preventing the prediction mechanism to obtain enough information to
start). The algorithm seems to be robust and often operates in a way close to an “ideal” algorithm, where any criterion computation results
in cutting-off some sub-tree, or needs to be computed in leaf nodes only.

It should be noted that we may consider also different prediction mechanisms. The simple overall averaging mechanism does not respect
local context, in which particular feature contributions are evaluated. We experimented with an “exponential forgetting” mechanism to
ensure bigger influence of the most recently computed criterion values. The results of such modified algorithm remained comparable to other
results presented in this paper. The use of a stronger prediction mechanism resulted in minor (at most 5%) occasional time savings only.
Defining other potentially more sophisticated prediction mechanisms is generally possible. However, the practitioner should keep in mind
that maintaining the more sophisticated prediction mechanism would require additional time that may easily outweigh its positive influence.

7. CONCLUSION

Based on a detailed study of the Branch & Bound algorithm principle we developed a novel algorithm for optimal subset selection
which is suitable especially for use with computationally expensive criterion functions. The Fast Branch & Bound algorithm shows to be
significantly more efficient in most practical situations than any other traditional Branch & Bound algorithm (unless used with recursive
criterion functions) due to its prediction mechanism for excluding unnecessary criterion computations.

We describe the algorithm in the context of feature selection, although its usability may be much broader without doubt, similarly to the
known Branch & Bound algorithm.

Fig. 4. Optimal subset search methods results

8. REFERENCES
[1] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset selection.IEEE Transactions on Computers, C-26:917–922,

September 1977.
[2] P. A. Devijver and J. Kittler.Pattern Recognition: A Statistical Approach. Prentice-Hall, 1982.
[3] Y. Hamamoto, S. Uchimura, Y. Matsuura, T. Kanaoka, and S. Tomita. Evaluation of the branch and bound algorithm for feature selection.Pattern

Recognition Letters, 11(7):453–456, July 1990.
[4] I. Foroutan, J. Sklansky. Feature selection for automatic classification of non-gaussian data.IEEE Trans. on SMC, 17:187–198, 1987
[5] K. Fukunaga.Introduction to Statistical Pattern Recognition: 2nd edition. Academic Press, Inc., 1990.
[6] J. Kittler. Feature set search algorithms. InPattern Recognition and Signal Processing, C. H. Chen, Ed., pages 41–60, The Netherlands: Sijthoff and

Noordhoff, 1978.
[7] B. Yu and B. Yuan. A more efficient branch and bound algorithm for feature selection.Pattern Recognition, 26:883–889, 1993.

