
Novel Path Search Algorithm for Image Stitching and
Advanced Texture Tiling

Petr Somol
Dept. of Pattern Recognition

Inst. of Information Theory and Automation
Pod vodárenskou věží 4

 182 08, Prague 8, Czech Republic

somol@utia.cas.cz

Michal Haindl
Dept. of Pattern Recognition

Inst. of Information Theory and Automation
Pod vodárenskou věží 4

 182 08, Prague 8, Czech Republic

haindl@utia.cas.cz

ABSTRACT
We propose a fast and adjustable sub-optimal path search algorithm for finding minimum error boundaries be-
tween overlapping images. The algorithm may serve as an efficient alternative to traditional slow path search
algorithms like the dynamical programming. We use the algorithm in combination with novel adaptive blending
to stitch image regions. The technique is then exploited in a framework for sampling-based texture synthesis
where the learning phase is clearly separated and the synthesis phase is very simple and fast. The approach ex-
ploits the potential of tile-based texturing and produces good and realistic results for a wide range of textures.

Keywords
Path Search, Image Stitching, Image Transfer, Adaptive Blending, Texture Tiling, Texture Synthesis.

1. INTRODUCTION
Physically correct virtual model visualization can not
be accomplished without naturally looking color tex-
tures covering virtual or augmented reality scene
objects. These textures can be either smooth or rough
(also referred to as BTF, see e.g. [MMu03]). The
rough textures do not obey the Lambert law and their
reflectance is illumination- and view-angle-
dependent. Both types of textures occurring in virtual
scene models can be rendered either through digitali-
zation of natural samples or by synthesis from ap-
propriate mathematical models. Exact sample digi-
talization may become prohibitive due to consider-
able memory requirements, particularly in case of
BTFs where each texture is represented by a possibly
high number of illumination and view-angle-
dependent images. Therefore several texture synthe-
sis methods have been defined to reduce the memory
complexity. The related methods may be divided
primarily to either intelligent sampling or model-
based-

Figure 1. The picture is made of rectangular tiles.
Can you guess, what is the tiling grid size and how
many different tiles have been used ? (see Fig.10)

analysis and synthesis. The model-based techniques
(see, e.g., [Bes74], [Kas81], [BK98], [Hai91],
[PJ00], [GH03], [HH00], [HH02]) describe texture
data by means of multidimensional mathematical
models and later use an extremely compact represen-
tation for seamless synthesis of arbitrarily sized tex-
ture images. Intelligent sampling approaches (see,
e.g., [DB97], [EL99], [Efr01], [Hee95], [XGS00],
[CS03], [KS03]) rely on sophisticated sampling from
real texture measurements. Sampling based methods
currently achieve better visual quality at a cost of less
effective compression. Particularly the simpler intel-
ligent-sampling methods have been receiving con-
stant attention for their applicability in graphic hard-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzeň, Czech Republic.
Copyright UNION Agency – Science Press

ware. DeBonet’s method [DB97] constructs the tex-
ture in coarse-to-fine fashion, preserving conditional
distribution of filter outputs over multiple scales,
while another multi-scale method [Hee95] uses his-
tograms of filter responses. The “image quilting”
method [Efr01] by Efros et al. connects rectangular
pieces of the texture sample together while minimiz-
ing the boundary cut error. Similarly the algorithm
by Xu et al.[XGS00] uses regular tiling combined
with a deterministic chaos transformation. Very good
results can be achieved by employing Wang tiles
[CS03] or the so-called graphcut textures [KS03]. All
of these methods implement some sort of source tex-
ture sampling and the best of them often produce
very realistic synthetic textures.

However, no texture synthesis method can be con-
sidered ideal for all potential applications. Either the
performance, universality, visual quality of results or
applicability in current hardware may become the
prohibiting factor.

Our Motivation
Many of the current sampling methods involve image
operations that may result in visible seams, typically
when combining incompatible pieces of texture. A
good way to improve the visual quality in such cases
is to find (possibly irregular) boundaries between the
image pieces to minimize the visual error. In the fol-
lowing we propose a sub-optimal yet highly effective
alternative to traditional slow path-search algorithms.
Taking use of the algorithm we show a method of
developing the texture by visually unrecognizable
image transfers (to be referred to as patching). We
also show how to utilize this technique in a simple
way to obtain groups of mutually connectable tiles
representing the given texture. However, the main
part of the paper concentrates on the path search and
seamless boundary creation problem as we believe
the solution presented here is generally usable in
many different contexts and applications.
The paper is structured as follows: Section 2 dis-
cusses in detail how a virtually invisible transition
between two texture image regions can be created.
Section 2.1 shows a novel sub-optimal algorithm for
path search that can be used instead of slow expo-
nential algorithms like the dynamical programming.
Section 2.2 shows how to improve the visual transi-
tion quality in cases when minimum error path does
not suffice to prevent discontinuities. Section 2.3
extends the stitching technique to enable seamless
transfer of whole image regions (patching). In Sec-
tion 3 we show a trivial yet well-performing way of
seamless tile creation. Assuming one tile has been
created, we show in Section 3.2 how new, visually
different derivatives can be created based on it while
all of the tiles remain mutually connectable. Such tile

sets can then be used to synthesize texture images of
significantly higher quality than it is possible with
simple tiling approaches, as shown in the Experi-
ments Section 4. Section 5 summarizes the advan-
tages and discusses the drawbacks and perspectives
of the proposed methods.

2. IMAGE STITCHING
Consider image stitching a process of creating natu-
ral transitions between two image regions. This task
is simpler for naturally self-similar (e.g. homoge-
nous) textured images. The transition is to be made
as unnoticeable and indistinguishable from the
neighboring image areas as possible. We define the
technique based on the minimum error boundary cut
idea, as used in the “image quilting” algorithm
[Efr01]. Let us assume that each stitch between two
equally sized overlapped image regions R1 and R2 is
oriented. A right-oriented stitch image will consist
mostly of pixels from R1 along its left side and
mostly of pixels from R2 along its right side. Creating
such stitch can be imagined as attaching a cropped
part of R1 (source) to R2 (target) as demonstrated in
Figure 2. The following sections show in detail how
to crop and how to reduce unwanted visual errors for
cases when cropping itself is not sufficient.

ta
rg

et

so
ur

ce

Figure 2. Image stitching (right-oriented case).

The source image is cropped from the right along
the minimum error path and placed over the tar-

get background image.

Minimum Error Path Search
Let us consider a right-oriented stitch creation prob-
lem, as demonstrated in Figure 2. Suppose the source
region R1 is to be placed over target region R2 where
the overlap size is w×h pixels. Width w is considered
a user parameter that determines how relaxedly the
transition between R1 and R2 should be constructed
and thus trades the achievable visible quality for al-
gorithm efficiency. To make the transition as invisi-
ble as possible, R1 is cropped from the right side
along a minimum error path before attaching to R2.
The minimum error path is constructed to lead verti-
cally from the top row to the bottom row of error
map E, which represents the visual difference be-
tween R1 and R2 for each pixel of the overlap region:

where d(., .) is, e.g., the Euclidean distance of two
RGB pixel color values. Note: Error maps in Figures
2, 4, 5 and 6 depict higher error by darker grey lev-

els. We adopt a simplified path representation model,
as shown in Figure 3. Only the pixels lying to the left
of (and on) the path are to be copied from R1 to the
underlying R2.

R
1

R
2

1

1

2

2

h

.

.

.

.

. . w
Figure 3. Simplified path representation model
for the right-oriented stitch. Each row contains
one control point (black dot). Complementary

points (crossed dots) must be added to make the
path continuous.

Each path is represented unambiguously by a se-
quence of control points c, one for each row:

However, the complete path as a vertically oriented,
continuous sequence of pixels in E must include not
only the control points, but also complementary
points (marked by crossed dots in Figure 3). From
several possible complete path definitions we have
adopted the one that suits our oriented-stitch ap-
proach, i.e., where each control point becomes visi-
bly the rightmost point in its row:

where

For each path a criterion can be evaluated to asses
the expected visible transition inconsistency:

Now we can define a sub-optimal minimum path
search algorithm on error map E of w×h pixels. The
basic idea is to develop some initial Pathc in stepwise
manner by conditional shifting of the control points.
New control point position(s) get fixed only if
ε(Pathc) would decrease. This ensures the algorithm
to converge. The algorithm first evaluates single con-
trol point shifts in each step as long as the criterion
value can be decreased. Next it attempts to bypass
larger error areas by shifting small groups of con-
secutive control points forming a vertical line at
once. Whenever such step improves the criterion
value, fine tuning in form of single control point
shifts follows. The only user parameter omax (where 1
≤ omax ≤ h) depicts the maximum number of control
points processed in one step. Higher omax values lead
to better or equal solutions at a cost of longer compu-
tation.

We use this algorithm as a fast alternative to slow
optimal path search procedures like the dynamical
programming. The main reason is computational
speed. The oscillating search has polynomial com-
plexity while optimal search is always exponential.
The oscillating search is a step-wise procedure that
sequentially improves some actual solution and thus
can be stopped at any moment to yield a usable re-
sult. The visible differences between optimal and
suboptimal search results can be considered mar-
ginal, as demonstrated in Figure 4.

Error map dimensions: 512 x 33

Dynamical programming
(optimal, exponential complexity):

O sub-optimal, polynomial complexity)scillating search (:

a) b)

Figure 4. Sub-optimality vs. optimality of path

search.
The suboptimal search as defined here prohibits re-
turning path sections (Figure 4a). Differences, if any,
occur in areas of evenly distributed error (Figure 4b)
and thus remain visually unimportant. In the case
depicted in Figure 4 the sub-optimal search was
faster than dynamical programming by a factor of
5000 (depending on error map dimensions) while the
numerical difference between the sub-optimal and
optimal criterion values was about 10%. Moreover,
experiments show that numerical optimality of found
paths is not crucial for the visual appearance of tran-
sitions. It is more important to ensure that the overlap
image region itself is positioned and sized not to rule
out the existence of low error paths (for example of
such a difficult error map see Figure 5).
Remark: In the context of off-line texture analysis to
be discussed in the following (Section 4) the time
factor is not crucial. However, it is of key importance
in many other applications (see, e.g., [Efr01]).

Adaptive Boundary Blending
The minimum path based stitching often produces
good natural appearance of image transition areas.
However, if no good path exists in the error map,
visible artifacts can not be avoided (as demonstrated
in Figure 5–simple stitch).

targetsource error map
+ minimum
error path

simple
stitch

blend
intensity

map

blend
color
map

adaptively
blended

stitch

seamlessly connected image of a cloud

stitchstitch

Figure 5. Adaptive blending to improve visual

consistency of stitched image areas.
Therefore we have defined the adaptive boundary
blending as an attempt to reduce the visibility of such
unwanted and striking high-error artifacts, should
they emerge during the stitching process. The idea is
to interpolate between overlapped source region R1
and target R2 with a locally adjusted intensity while
utilizing the minimum error path both as a boundary
and as a coloring guideline. Our experiments show
that to prevent unnaturally smoothed appearance it is
better to keep the affected area minimal, just enough
to mask the high error artifacts. In the following we
consider a right-oriented stitch again. This is of im-
portance now, because the blending process we adopt
is targeted to one side (left in this case) of the path
only what helps to better preserve the original image
appearance.
Let us denote S the adaptively blended stitch region
of w×h pixels to be created from R1 overlapping R2.
We assume the minimum error path Pathc and error
map E are known (see the previous Section). The
blending range (maximum distance from the path
where pixels get affected) is to be set as parameter ρ.
The ρ value should be specified with respect to the
properties of the processed source image. Higher
image resolution should be reflected on higher ρ.
However, with ρ being too high the blending effect
can become visually too apparent. On the contrary,
too small ρ may not be sufficient to suppress the
worst visual stitching errors, should they appear. The
stitch is created row-wise, i.e., for each j = 1, . . . ,h:

where

The adaptive blending process can be visualized us-
ing the blend intensity and blend color maps (see
Figure 5). The blend intensity map represents the
weighing information on how R1 contributes to the
blended result in the area left from the path. In Fig-
ure 5 the darker pixels depict lower contribution. R2
contributes to the same area indirectly using the
blend color map that shows how color information is
extracted from R2 path pixels. As seen on examples
(Figures 5, 8 and 11), the boundary can be made al-
most unnoticeable in this way, except of cases when
the transition is made between principally incompati-
ble texture image areas.
Remark 1: We should note that simpler interpolation
algorithms have been tested as well but led to worse
results, usually emphasizing incompatibilities of R1
and R2 image contents alongside the minimum error
path. Remark 2: A little better visual quality can be
achieved if S[i, j] for 1 < i ≤ cj would depend not
only on the single closest on-path pixel (m,n) in
Pathc, but on several close neighboring pixels in
Pathc.

Image Patching
The image stitching method described in the previous
Sections can be extended to transfer general continu-
ous image regions while keeping the transition be-
tween the old and new unnoticeable.

inner
area

left
side
belt

right
side
belt

top side belttop left
corner

top
right

corner

bottom
left

corner

bottom
right

corner

bottom side belt

b)a)

S
T

S
L

S
TL

S
TR

S
BL

S
B

S
BR

S
R

Figure 6. Patch creation. The stitching technique
is used to create sides and corners of the patch;
the inner area is simply copied. White arrows

show stitch orientations (requires optimization).
For the sake of simplicity we define a patch as a part
of image surrounded by a continuous minimum error
path that does not extend out of a given surrounding
rectangle. Our image patching algorithm is illustrated
in Figure 6. The inner area is simply copied from
source position to the target. Side stitches are then
created inside the four side belts of a user-specified
width with obvious orientation (see the white arrows
in Figure 6). Finally the corner stitches are added,

with one additional restriction: the path initial and
final control points must be fixed to remain con-
nected to those of the side stitches to ensure the patch
is surrounded by one continuous path.

3. TEXTURE TILING
Texture tiling is extensively used for various pur-
poses ranging from simple web page design to realis-
tic 3D display of natural surfaces. Creating a single
seamless tile out of some source image is thus a tra-
ditional problem for which numerous algorithms
exist. One of the simplest is probably the “Photoshop
clone tool” approach. The idea is to half-shift the
image and then to use the manual clone tool to blot
out the now apparent horizontal and vertical seams
that have emerged inside the image. From the auto-
mated methods many take use of extensive blending
in not very sophisticated manner, what often results
in too striking visual change of the texture appear-
ance along the tile borders. The image stitching tech-
nique described in previous sections is well suited for
the purpose of seamless tile creation and can be ex-
pected to give considerably better results than simple
blending methods.

Tile Overlap Optimization and Stitching
First, we search for such rectangular region in the
source texture image, where the opposite border ar-
eas are the most visually consistent in both the hori-
zontal and vertical direction.

horizontal overlap error test

v
e
rt

ic
a
l
o
v
e
rl
a
p

e
rr

o
r

te
s
t

R
B

R
B

R
B

R
T

R
T

R
T

R
L

R
L

R
L

R
R

R
R

R
R

Figure 7. Tile template positioning on a source

image.
As depicted in Figure 7, the search procedure mini-
mizes the visual difference among image regions RL
and RR, and among RT and RB, respectively. The
overlap width is to be decided by the user, the width
and height of the candidate region is optimized by
the procedure. The tile (brightened region) is then cut
out and made seamless by overlapping and stitching
image region RR over RL, and RB over RT, respec-
tively. The tile sizing and positioning phase is trivial;
its purpose is mainly to provide for better stitching
results. We use the average RGB Euclidean distance
as a criterion of visual consistency. Remark: From

performance reasons we split the tile positioning and
sizing process to two sub-optimal independent
phases, vertical and horizontal.

Deriving Mutually Connectable Tile Sets
For many textures a single tile is not sufficient to
synthesize naturally looking images. Simple tiling
usually leads to unwanted emphasis of the rectangu-
lar grid, despite the seamlessness of tiles (see the left
image in Figure 8). Moreover, the character of many
textures makes it impossible to create a single tile
that would sufficiently represent all the texture vari-
ability. Our idea is to make tiling more realistic by
employing more than one tile per texture. The posi-
tive effect of increasing the number of tiles is dem-
onstrated in Figure 8.
New tiles can be obtained using the patching tech-
nique described in Section 2.3. New tiles can be cre-
ated by making a copy of the template tile and subse-
quently covering its inner area by patches taken from
different positions in the source texture image. Dif-
ferent algorithms can be defined to accomplish this
task, both deterministic and non-deterministic, with
different properties. It is possible to define sophisti-
cated algorithms aiming to build tile sets of specified
properties, e.g. representing well the variability of
original texture image contents. This algorithm defi-
nition problem can be considered outside the scope
of this paper. Therefore, we suggest here only the
simplest possibility. Each new tile is can be obtained
by applying one patch only, sized little less or equal
to the tile size and taken from a random source posi-
tion. Even if the patch and tile sizes are equal, the
original tile contents remain usually unaffected
alongside its borders (and thus the tile remains con-
nectable), because of the expected irregularity of
minimum error paths. This effect can be seen in
Figure 6b. Remark: The described tile set derivation
procedure is obviously independent on the particular
technique used to obtain the initial template tile.

4. EXPERIMENTS
We have tested the presented techniques on a set of
textures, mostly from VisTex and UTIA databases.
The benefit of using tile sets instead of single tiles is
demonstrated in Figure 8. The picture of pink bloom
over green grass can be considered a difficult texture.
A single tile is clearly insufficient to obtain a natu-
rally looking synthetic image. Adding two tiles im-
proves the result. However, no less than 5 tiles seem
sufficient to suppress the striking visibility of the
regular tiling pattern.
The examples in Figures 1, 8 and 11 have been ob-
tained as follows: the first tile for each texture has
been created automatically (see Section 3) with the
only restriction of some reasonable minimum and

maximum tile size. The overlap width was set to ca.
1/10 of the expected tile size. The first tile was then
used as a template for tile set generation (see Sec-
tion 3.2). 30 patched tiles had been generated per
texture from which the final tile subsets were se-
lected manually. In cases where the results had been
found unsatisfactory, the experiment was repeated
with modified parameters. The stitching region
width, both in the case of the first tile creation (see
Section 3.1) and subsequent tile patching
(see Sections 2.3 and 3.2) has proved to
be important and is therefore marked in
Figures 8 and 11 as wT and wP, respec-
tively. Patch source positions were ob-
tained randomly, but optimized subse-
quently on a small neighborhood of size
n to avoid worst possible visual prob-
lems. For the adaptive blending the parameter ρ had
been set to 3 in all cases, which has shown to be sat-
isfactory in most cases. Note: The synthesized im-
ages in Figs. 8 and 11 are cropped to fit in the page.
Time complexity of all computations is low. Each tile
can be generated typically in seconds on a 2GHz PC.
Once a good set of tiles has been found, texture syn-
thesis is reduced to assembling different tiles to the
grid according to some index matrix. This can be
done directly in the GPU at no additional time cost.
Expectably good results have been obtained with
most of the regular textures (Fig. 11c). Very good
results have been obtained even for some more diffi-
cult textures, where the irregular texture nature
(chocolate, Fig. 11e) could have caused problems.
Some of the most difficult textures displaying natural
objects like tomatoes can be synthesized surprisingly
well (Figs. 11b, 11d). However, with some textures it
showed impossible to prevent unnatural artifacts (see
in detail Fig. 11f, which looks fine at first sight). We
have also experienced problems with textures where
good overlapping regions could not be identified to
create the initial tile, or with textures containing very
distinct particles or structure that has a negative im-

pact on the tile grid visibility (Figure 9). Neverthe-
less, the technique proved to be well capable of syn-
thesizing broad range of natural textures. Some of
the possible visual problems follow from principal
reasons and cannot be avoided; others can be re-
moved or suppressed by repeating the experiments
with modified parameters, in particular with different
stitch widths and patching sources. The quality of
output also depends on the size of the original texture

sample. Too small a source image would
result in too homogenous and regular
results. Small source images usually im-
ply the necessity to create more tiles to
compensate the effect of denser and thus
more apparent tile grid. To capture low
frequency information, larger tiles are
necessary. To prevent the visibility of the

tile grid the tiles in a set must have sufficiently varied
content, i.e., the patching process must affect most of
the tile image surface. No tiling can overcome certain
principal problems like, e.g., the problem of source
texture images containing slightly rotated linear
structures (Figure 9) from which no smoothly con-
nectable tile can be derived. In general, if the texture
exhibits some apparent linear structure then it should
be either vertically or horizontally aligned. Skewed
and rotated linear structures require sufficiently large
samples or are not manageable at all.

tile 1

tile 5

tile 4

tile 8

tile 3

tile 7

tile 2

tile 6
Figure 10. The front page image is composed of 8
different tiles in a 4×4 grid according to the index

matrix: ((7,6,1,5), (3,7,5,8), (5,1,6,2), (4,3,2,3)).
Finally, the answer to the front page Figure 1 ques-
tion is in Figure 10.

synthesised using 1 tile synthesised using 3 tiles synthesised using 5 tiles

wT= 25

wP= 7

n = 20

original

tile 1

1 2 3 2 3 2
3 1 2 3 2 1
1 3 1 2 1 3
2 1 3 1 3 1
3 2 1 3 1 2
2 3 2 1 2 3

tile 3

tile 2

+

+

3 2 1 4 5 4
2 3 4 5 4 3
4 1 5 1 5 2
2 5 3 2 1 5
1 3 4 3 4 2
2 5 2 5 3 1

tile 5

tile 4

+

+

Figure 8. Visual improvement of synthesis results by combining an increasing number of tiles.

Figure 9. Example of a
problem structure in

source texture images.

5. CONCLUSION
We have presented a novel fast path search algorithm
and adaptive blending technique that are suitable for
seamless image transfer, in particular in the context
of texture synthesis. Using these tools we have dem-
onstrated a relatively simple technique that enables
synthesis of naturally looking textures by means of
advanced image tiling. We show how a set of mutu-
ally connectable yet differently looking rectangular
tiles can be obtained for a broad range of source tex-
ture measurements. We show that even very irregular
textures can by represented well using such tile sets.
The main advantage of the presented technique is the
clear separation of the off-line texture analysis, while
the synthesis is reduced to trivial combination of pre-
computed tiles. The visual quality of output is close
or comparable to the best of current techniques as
shown in Figures 8 and 11.
The tiling technique is scalable. The trade-off be-
tween the visual quality and computational complex-
ity can be controlled by changing the number of tiles
in the tile set. For each texture some minimum num-
ber of tiles is usually necessary to ensure sufficient
quality of results. Regular (possibly rectangular) tex-
tures without much detail can be represented by
fewer tiles than highly irregular stochastic textures.
Most of the algorithms presented here are extendable
or modifiable. We have found the technique to be
extendable for BTF modeling (bidirectional texture
fields, see, e.g. [MMu03], [MMe03]) to enable par-
ticularly accurate display of natural surfaces with
respect to view- and illumination- angles.

6. ACKNOWLEDGMENTS
This work has been supported by the EC project IST-
2001-34744 RealReflect, FP6-507752 MUSCLE,
grant No. A2075302 and 1ET400750407 of the
Grant Agency of the Czech Academy of Sciences.
We thank Alexei Efros for permission to reproduce
illustrations from [Efr01] (Figure 12).

7. REFERENCES
[Bes74] Besag J.: Spatial interaction and the statisti-

cal analysis of lattice systems. Journ. of the Royal
Statistical Society, B-36, 2 (1974), 192–236.

[BK98] Bennett J., Khotanzad A.: Multispectral ran-
dom field models for synthesis and analysis of
color images. IEEE Trans. on PAMI 20, 3 (Mar.
1998), 327–332.

[CS03] Cohen M.F., Shade J., Hiller S. and Deussen
O.: Wang Tiles for image and texture generation.
In ACM Transactions on Graphics 22, 3, SIG-
GRAPH 2003, 287-294.

[DB97] De Bonet J.: Multiresolution sampling pro-
cedure for analysis and synthesis of textured im-

ages. In Proc. SIGGRAPH 97 (1997), ACM
Press, 361–368.

[Efr01] Efros A.A., Freeman W.: Image quilting for
texture synthesis and transfer. In SIGGRAPH 01
(2001), Fiume E., (Ed.), ACM Press, 341–346.

[EL99] Efros A. A., Leung T. K.: Texture synthesis
by non-parametric sampling. In Proc. Int. Conf.
on Computer Vision (2) (1999), 1033–1038.

[GH03] Grim J., Haindl M.: Texture modelling by
discrete distribution mixtures. Computational Sta-
tistics & Data Analysis 41, 3-4 (2003), 603– 615.

[Hai01] Haindl M.: Texture synthesis. CWI Quar-
terly 4, 4 (Dec. 1991), 305–331.

[HH00] Haindl M., Havlíček V.: A multiresolution
causal color texture model. In Advances in Pat-
tern Recognition, LNCS 1876. Springer-Verlag,
Berlin, (Aug. 2000), ch. 1, 114–122.

[HH02] Haindl M., Havlíček V.: A multiscale color
texture model. In Proc. 16th Int. Conf. on Pattern
Recognition (2002), Kasturi R., Laurendeau D.,
(Eds.), IEEE Computer Society, 255–258.

[Hee95] Heeger D.J. Bergen J.: Pyramid based tex-
ture analysis/synthesis. In Proc. SIGGRAPH 95
(1995), ACM Press, 229–238.

[Kas81] Kashyap R.: Analysis and synthesis of im-
age patterns by spatial interaction models. In Pro-
gress in Pattern Recognition 1 (North- Holland,
1981), Kanal L., A.Rosenfeld, (Eds.), Elsevier.

[KS03] Kwatra V., Schödl A., Essa I., Turk G., Bo-
bick A.:Graphcut Textures:Image and Video Syn-
thesis Using Graph Cuts. In ACM Transactions
on Graphics 22, 3, SIGGRAPH 2003, 277-286.

[LLX*01] Liang L., Liu C., Xu Y.-Q., Guo B., Shum
H.-Y.: Real-time texture synthesis by patchbased
sampling. ACM Transactions on Graphics (TOG)
20, 3 (2001), 127–150.

[MMu03] Meseth J., Müller G., Sattler M., Klein R.:
BTF Rendering for Virtual Environments. Virtual
Concepts 2003, (2003), 356–363.

[MMe03] Müller G., Meseth J., Klein R.: Compres-
sion and real-time Rendering of measured BTFs
using local PCA. Vision, Modeling, and Visuali-
zation, (2003), 271–280.

[PJ00] Portilla J. S. E.: A parametric texture model
based on joint statistics of complex wavelet coef-
ficients. Int. Journal of Computer Vision 40, 1
(2000), 49–71.

[SP00] Somol P., Pudil P.: Oscillating search algo-
rithms for feature selection. In Proc. 15th Int.
Conf. on Pattern Recognition (2000), vol. 2,
IEEE Computer Society, 406–409.

[Wei01] Wei L. Levoy M.: Texture synthesis over
arbitrary manifold surfaces. In Proc. SIGGRAPH
01 (2001), ACM Press / Addison Wesley.

[XGS00] Xu Y., Guo B., Shum H.: Chaos Mosaic:
Fast and Memory Efficient Texture Synthesis.
Tech. Rep. MSR-TR-2000-32, Redmont, 2000.

original

index matrix

wT= 33 wP= 7

n = 15

3 1 3 4 2 4

2 3 2 5 4 1

4 1 3 2 3 2

5 4 1 5 2 1

4 3 5 2 5 2

1 4 1 5 3 5

synthesised

ti
le

5

ti
le

3
ti
le

4
ti
le

2
ti
le

1

a)

index matrix

wT= 22

wP= 13

n = 35

3 2 3 1 2 1 3 1 2

1 3 2 3 1 2 1 2 3

2 1 3 2 3 1 2 3 1

1 2 1 3 2 3 1 2 3

2 1 2 1 3 1 2 3 1

3 2 1 3 2 3 1 2 1

2 3 2 1 3 2 3 1 3

1 2 3 2 1 3 2 3 2

2 3 1 3 3 2 1 2 3

synthesised

original

tile 1

tile 3

tile 2

c)

original

index matrix

wT= 15 wP= 7

n = 7

5 4 2 3 2 1 4 3

3 2 1 2 5 3 1 5

1 4 5 4 1 5 4 2

3 1 4 2 4 1 2 4

5 4 2 4 2 4 5 3

4 3 5 2 1 2 3 2

5 2 1 4 5 4 5 4

1 3 2 5 4 2 1 2

synthesised

ti
le

5

ti
le

3
ti
le

4
ti
le

2
ti
le

1

e)

original

index matrix

wT= 18 wP= 6

n = 15

1 4 1 2 1 5 3 5

3 5 2 5 3 2 1 3

5 2 4 2 1 3 2 1

1 5 3 4 2 1 4 2

4 1 5 3 5 2 1 4

1 5 3 1 2 4 5 1

4 1 4 5 3 1 2 4

1 2 3 2 5 2 3 5

synthesised

ti
le

5

ti
le

3
ti
le

4
ti
le

2
ti
le

1

b)

index matrix

wT= 33

wP= 13

n = 30

1 3 1 3 2

2 1 3 2 1

3 2 1 3 2

1 3 2 1 3

3 1 3 2 1

synthesised

original

tile 1

tile 3

tile 2

d)

index matrix

wT= 33

wP= 13

n = 30

3 2 3 1 2

1 3 2 3 1

2 1 3 1 3

1 3 1 3 2

2 1 2 1 3

synthesised

original
tile 1

tile 3

tile 2

f)
Figure 11. Examples of tilings obtained with the proposed method.

aQ) bQ) cQ) dQ) fQ)
Figure 12. Image Quilting [Efr01] results for comparison.

