
Oscillating Search Algorithms for Feature Selection

Somol P., Pudil P.
Dep. of Pattern Recognition, Inst. of Information Theory and Automation

Academy of Sciences of the Czech Republic, 182 08 Prague 8, Czech Republic�
somol,pudil � @utia.cas.cz

Abstract

A new sub-optimal subset search method for feature se-
lection is introduced. As opposed to other till now known
subset selection methods the oscillating search is not depen-
dent on pre-specified direction of search (forward or back-
ward). The generality of oscillating search concept allowed
us to define several different algorithms suitable for differ-
ent purposes. We can specify the need to obtain good results
in very short time, or let the algorithm search more thor-
oughly to obtain near-optimum results. In many cases the
oscillating search over-performed all the other tested meth-
ods. The oscillating search may be restricted by a preset
time-limit, what makes it usable in real-time systems.

1. Introduction

In feature selection the search problem of finding a sub-
set ��� of � features from the given set � of � measure-
ments, �	�
� , so as to maximize an adopted criterion, �
��� � ,
has been of interest for a long time. Since the optimal meth-
ods (exhaustive search or the Branch-and-Bound method
which is additionally restricted to monotonous criteria) are
not suitable for high-dimensional problems because of their
exponential nature, research has concentrated on subopti-
mal polynomial search methods.

A number of search methods has been developed, start-
ing with the well-known sequential forward selection (SFS)
and ending with floating search methods [5, 6]. A good
overview of subset search methods may be found in [1].

Note, that most of known suboptimal search strategies
are based on step-wise adding of features to initially empty
feature set, or step-wise removing features from the initial
set of all features, � . One of search directions, forward or
backward, is usually preferred, depending on several fac-
tors [4], the expected difference between the original and
the final required cardinality being the most important one.
Regardless of the direction, it is apparent, that all these al-
gorithms spend a lot of time testing feature subsets having

Figure 1. Graphs demonstrate the course of
search algorithms: a) sequential floating for-
ward selection [5], b) oscillating search.

cardinalities far distant from the required cardinality � .
Before describing the principle of oscillating search, let

us introduce the following notion: the ”worst” feature � -
tuple in ��� should be ideally such a set ���� ��� , that

�
���������� �
� �	����! #"%$'& (�)(*,+ �
�����-��./�0�
The ”best” feature � -tuple for �1� should be ideally such a
set �23� �4�5��� , that

�
�����567�2 �5� �	���8 :9<;="%$'& (8 (*,+ �
�����561>?�0�
In practice we allow also suboptimal finding of the ”worst”
and ”best” � -tuples to save the computational time (see
later).

2. Oscillating Search

Unlike other methods, the oscillating search (OS) is
based on repeated modification of the current subset �@� of �
features. This is achieved by alternating the down- and up-
swings. The down-swing removes � ”worst” features from
the current set �1� to obtain a new set �1�'A + at first, then
adds � ”best” ones to �1�'A + to obtain a new current set �1� .
The up-swing adds � ”good” features to the current set �@�
to obtain a new set �1�CB + at first, then removes � ”bad” ones

from ���CB + to obtain a new current set �1� again. Let us de-
note two successive opposite swings as an oscillation cycle.
Using this notion, the oscillating search consists of repeat-
ing oscillation cycles. The value of � will be denoted oscil-
lation cycle depth and should be set to 1 initially. If the last
oscillation cycle did not find better subset �@� of � features,
the algorithm increases the oscillation cycle depth by let-
ting � � � ��� . Whenever any swing finds better subset �@�
of � features, the depth value � is restored to 1. The algo-
rithm stops, when the value of � exceeds the user-specified
limit � . The course of oscillating search is illustrated on
picture 1.

Every oscillation algorithm assumes the existence of
some initial set of � features. Obtaining such an initial set
will be denoted as an initialization. Oscillating algorithms
may be initialized in different ways; the simplest ways are
random selection or the SFS procedure. From this point of
view the oscillating search may serve as a mechanism for
tuning solutions obtained in another way.

Whenever a feature � -tuple is to be added (or removed)
from the current subset in the till now known methods,
one of two approaches is usually utilized: the generalized
adding (or removing) finds the optimum � -tuple by means
of exhaustive search (e.g. in GSFS, GSBS) or the succes-
sive adding (or removing) single features � -times (e.g. in
basic Plus- � -Minus- �), which may fail to find the optimum� -tuple, but is significantly faster.

In fact, we may consider finding feature � -tuples to be
equivalent to the feature selection problem, though at a
”second level”. Therefore, we may use any search strategy
for finding feature � -tuples. Because of proved effective-
ness of floating search strategies we adopted the floating
search principle as the third approach to adding (or remov-
ing) feature � -tuples in oscillating search. Note that in such
a way one basic idea has resulted in defining a couple of
new algorithms, as shown in the sequel.

For the sake of simplicity, let us denote the adding of
feature � -tuple by ADD(�) and the removing of feature � -
tuple by REMOVE(�). Finally, we introduce three versions
of oscillating algorithm:

1. Sequential oscillating search: ADD(�) represents a se-
quention of � successive SFS steps (see [1]), REMO-
VE(�) represents a sequention of � successive SBS
steps.

2. Floating oscillating search: ADD(�) represents adding
of � features by means of the SFFS procedure (see [5]),
REMOVE(�) represents removing of � features by
means of the SFBS procedure.

3. Generalized oscillating search: ADD(�) represents
adding of � features by means of the GSFS(�) proce-
dure (see [1]), REMOVE(�) represents removing of �
features by means of the GSBS(�) procedure.

Oscillating Search Algorithm

Remark: � serves as a swing counter.

Step 1: Initialization: by means of the SFS procedure (or
otherwise) find the initial set �1� of � features. Let
� �	� . Let � � � .

Step 2: Down-swing: By means of the REMOVE(�) step
remove the ”worst” feature � -tuple from �@� to form
a new set ���'A + . (* If the �
�����'A + � value is not
the so-far best one among subsets having cardinal-
ity ��
 � , stop the down-swing and go to Step 3.*)
By means of the ADD(�) step add the ”best” fea-
ture � -tuple from � �
�1�'A + to ���'A + to form a new
subset � �� . If the �
��� �� � value is the so-far best
one among subsets having required cardinality � ,
let ��� ��� �� , � �	� and � � � and go to Step 4.

Step 3: Last swing did not find better solution:
Let � �
� ��� . If � �
� , then none of previous two
swings has found better solution; extend the search
by letting � � � �	� . If ����� , stop the algorithm,
otherwise let � ��� .

Step 4: Up-swing: By means of the ADD(�) step add the
”best” feature � -tuple from � � �1� to ��� to form
a new set ���CB + . (* If the �
�����CB + � value is not
the so-far best one among subsets having cardinal-
ity � � � , stop the up-swing and go to Step 5.*)
By means of the REMOVE(�) step remove the
”worst” feature � -tuple from �1�CB + to form a new
set � �� . If the �
��� �� � value is the so-far best one
among subsets having required cardinality � , let��� ��� �� , � ��� and � � � and go to Step 2.

Step 5: Last swing did not find better solution:
Let � �
� ��� . If � �
� , then none of previous two
swings has found better solution; extend the search
by letting � � � �	� . If ����� , stop the algorithm,
otherwise let � ��� and go to Step 2.

Remark: Parts of code enclosed in (* and *) brackets may
be omitted to obtain a bit slower, more thorough procedure.

The algorithm is described also by a float chart on pic-
ture 2. The three introduced algorithm versions differ in
their effectiveness and time complexity. The generalized
oscillating search gives the best results, but its use is re-
stricted due to the time complexity of generalized steps (es-
pecially for higher �). The floating oscillating search is
suitable for finding solutions as close to optimum as pos-
sible in a reasonable time even in high-dimensional prob-
lems. The sequential oscillating search is the fastest but
possibly the least effective algorithm version with respect
to approaching the optimal solution.

Figure 2. Simplified OS algorithm flow-chart.

3. Oscillating Search Properties

All oscillating algorithms may be characterized as al-
gorithms independent on the direction of search (neither
bottom-up nor top-down). Every algorithm cycle attempts
to improve the current subset of cardinality � . Therefore
OS algorithms do not loose time by evaluating subsets of
distant cardinalities. All OS versions overcome effectively
the ”nesting problem” which SFS and SBS suffer from.

The fastest improvement of the current subset may be ex-
pected in initial phases of the algorithm, because of the low
initial cycle depth. Later, when the current feature subset
evolves closer to optimum, low-depth cycles fail to improve
the subset and therefore the algorithm increases the depth
(�) value. Though this will increase the chance to get closer
to optimum, the trade-off between finding a better solution
and the computational time clearly exists. It has been found
out that it is often possible to find out very good solution

after a short time corresponding to the first few low-depth
cycles. This algorithm behavior is advantageous, because it
is possible to obtain usually very good solutions after very
short time. The oscillating search principle proves to be
useful for different purposes:
� It may be looked upon as a universal tuning mechanism,

being able to improve solutions obtained in any other
way. In this sense the oscillating search is usable in addi-
tion to any subset search method.

� Let us denote the sequential OS with � � � , initialized
by SFS, the basic oscillating search - BOS. This simple
algorithm is suitable for problems being currently solved
by SFS or SBS methods. Both the time and implemen-
tation complexity of the BOS is comparable to the com-
plexity of these simple methods (see Experiments). How-
ever, the BOS algorithm is much more effective.

� The floating OS finds usually one of the best achiev-
able suboptimal solutions. When used for solving high-
dimensional problems, the floating OS finds usually bet-
ter solutions, than both classical and adaptive floating
strategies [5, 6].

� The randomly initialized sequential OS is a very fast
heuristic, that often finds results not achievable in other
ways. However, because of its randomized nature, we
may not expect it to find good results each time.

� Repeating of oscillation cycles allows to stop the algo-
rithm after specified amount of time and still to obtain a
usable solution. Because of this property the OS is suit-
able also for use in real-time systems.

Sub-optimal search algorithms are often criticized because
of their dependence on user parameters. The OS procedure
assumes user-setting of the oscillation cycle depth � . Set-
ting higher � value should result in more thorough search.
Note, that we may consider the maximum meaningful �
value, which is max

� ���=�
 ��� . Based on the knowledge of
this maximum, we may allow the user to specify � value
relatively, i.e. independently of current problem properties
(� and � values). Maximum performance would be there-
fore achieved by utilizing OS(

� � ���), although lower val-
ues (� � – � ���) are more suitable for most tasks, especially
when computational time is to be restricted.

4. Experiments

The oscillating search methods were tested on a large
number of different problems. We demonstrate their per-
formance on 2-class, 30-dimensional mammogram data
from Wisconsin Diagnostic Breast Center (obtained from
ftp.ics.uci.edu) and 2-class, 65-dimensional mammogram
data from PRIM Lab., University of California, Irvine.

Figure 3. Experimental results: a) simple search strategies; 30-dimensional data (Wisconsin Di-
agnostic Breast Center), b) high-dimensional problem; 65-dimensional data (mammogram, PRIM
lab.,University of California, Irvine), c) classification task; 30-dimensional data (W.D.B.C.).

Graphs on picture 3a compare the basic oscillating
search with simple sequential selection methods. The BOS
algorithm finds better solutions, though its computational
time remains comparable with the SFS. Therefore, we
find the BOS algorithm to be for simple tasks more effi-
cient.Picture 3b demonstrates suitability of the OS search
for solving high-dimensional problems. The floating OS
finds usually the best solutions, but its time requirements
may be rather high. Note the effectiveness of the randomly
initialized sequential OS.Picture 3c also illustrates the po-
tential of randomly initialized search. For classification
purposes, the data set was divided into two equally-sized
halves for training and testing. Because of randomized na-
ture, finding best solutions cannot be always guaranteed.

5. Conclusion

A new feature selection strategy suitable for high-
dimensional problems has been introduced. Based on its
basic idea of oscillating search cycles, several sub-optimal
subset search algorithms have been defined, extending the
battery of available tools for solving feature selection prob-
lems. The new methods may be considered a very good al-
ternative to methods used till now. As a matter of fact it can
be utilized for tuning up the solution found by any of them.
The approach can be used both in cases when the quality of
solution is our priority and in cases when on the other hand
the priority is given to the speed of finding a reasonable

solution. A possibility to restrict the computational time of-
fers the chance of using the method in real time systems.
The ability to find better solutions in comparison with the
floating strategy has been demonstrated on real world data.

Acknowledgement: We thank Helmut Mayer, Univ. of
Salzburg, for parts of the code. The work has been sup-
ported by the grants of Czech Ministry of Education MŠMT
No.VS96063, ME187, Aktion and Grant Agency of the
Czech Rep. No. 402/97/1242.

References

[1] P. A. Devijver and J. Kittler. Pattern Recognition: A Statisti-
cal Approach. Prentice-Hall, 1982.

[2] F.J.Ferri, P.Pudil, M.Hatef, and J.Kittler. Pattern Recognition
in Practice IV., chapter Comparative Study of Techniques for
Large-Scale Feature Selection with Nonmonotonic Criterion
Functions, pages 403–414. Elsevier, 1994.

[3] A. K. Jain and D. Zongker. Feature selection: Evaluation, ap-
plication and small sample performance. IEEE Transactions
on PAMI, 19:153 – 158, 1997.

[4] P. Pudil, J. Novovičová, and S. Bláha. Statistical approach to
pattern recognition: Theory and practical solution by means
of PREDITAS system. Kybernetika, 27:1–78, Suppl., 1991.

[5] P. Pudil, J. Novovičová, and J. Kittler. Floating search
methods in feature selection. Pattern Recognition Letters,
15:1119–1125, November 1994.

[6] P. Somol, P. Pudil, J. Novovičová, and P. Paclík. Adaptive
floating search methods in feature selection. Pattern Recog-
nition Letters, 20(11-13):1157–1163, December 1999.

