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Abstract We present an algorithm that uses two or more
defocused images of the same scene for recovery of scene
structure and simultaneous restoration of sharp image.

Defocusation is modeled by convolution with arbitrary
known spatially-variant mask unlike the vast majority of
published algorithms that used fixed cylindrical or Gaussian
mask shapes. In this way it is able to deal with aberrations
present in real optical systems. The mask can be given ana-
lytically or by a table obtained from physical measurements
or generated by a ray tracing algorithm.

For simplicity, we apply additional constraint that points
of the same depth produce the same mask regardless of their
position in the field of view. This assumption can be never-
theless relaxed at the cost of higher time or memory require-
ments.

Algorithm can be easily parallelized and has a potential
to be used in real time applications.

1 Introduction

Defocusation, as well as many other types of simple degra-
dations, can be described by linear relation

z(x, y) =
∫

Ω

u(x− s, y− t)h(x− s, y− t; s, t)dsdt, (1)

whereu is a sharp image,h is calledpoint-spread function
(PSF) ormaskandz is the blurred image. For real optical
systems, the PSF depends on the distance of object project-
ing to the point(x, y) as well as camera parameters and co-
ordinates(x, y) themselves. If we assume simple Gaussian
optics model and circular aperture, the PSF is a cylinder with
radius directly proportional to the reciprocal of the object
distance and we speak aboutblur circle or circle of confu-
sion. In many cases, the PSF can be better approximated
by two-dimensional Gaussian function with variance again
related to the object distance.

Depth from defocus(DFD) can be defined as the task to
recover the distance of image points from the camera when
we knowz and the relation between the PSFh and the dis-
tance. The opposite problem to find the sharp imageu when
we knowz and possiblyh is calleddeconvolutionor image
restoration. If even the PSF is not known, we speak about
blind deconvolution. Since both problems are mostly too

difficult to solve from just one single image, it is often as-
sumed that we have at least two observations of the same
scene taken with different camera settings and we speak
aboutmultichannel(MC) deconvolution.

Now, we give a short overview of relevant literature for
both DFD and deconvolution problems.

Early DFD methods such as [8, 4] are based on the idea
of sliding-window, meaning that the amount of defocus is
assumed to be constant over some fixed rectangular neigh-
borhood of the given point. Among them, we point out
the method of Subbarao and Surya [12], who assumed the
Gaussian mask shape, approximated image function by3rd-
order polynomial and derived an elegant expression for rel-
ative blur

σ2
2 − σ2

1 = 4
z2 − z1

∇2
(
z1+z2

2

) , (2)

which can be used to estimate distance. Herez1, z2 are de-
focused images,σ2

1 andσ2
2 denote variances of mask shapes

taken as probability distributions of two-dimensional ran-
dom quantities and∇2 denotes Laplacian operator. We
anticipate that in our algorithm we use this extremely fast
method as a reliable initial estimate of the scene structure.

Later, a number of filter-based DFD methods were pro-
posed to achieve better precision [14, 13] or to incorporate
for instance image registration [3].

Now we move our attention to restoration methods. The
restoration from a single image degraded by known shift-
invariant blur can be solved by a multitude of shift-invariant
single channel(SC) deconvolution techniques [1]. Many of
them are formulated as quadratic minimization problems,
some others including important anisotropic regularization
techniques [10, 2] can be reduced to a sequence of quadratic
problems. The vast majority of these techniques can be used
in shift-variant situations as well.

Blind restoration requires more complicated algorithms
as we need to estimate the unknown degradation. In con-
nection with our algorithm we are interested in shift-variant
case, when the PSF can change from point to point.

Just few general results have been reported on this sub-
ject, all of them of very limited application. They mostly
follow the idea of sliding-window [7, 15].

In the case of optical imaging we know much more about
the image formation and the number of unknowns can be
strongly reduced, especially if we assume that PSF is a
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(single-valued) function of distance. Indeed, an obvious ap-
proach to blind restoration is to apply non-blind restoration
on the result of a DFD method.

An alternative approach is to do both, DFD and restora-
tion, simultaneously. Rajagopalan and Chaudhuri [9] pro-
posed a MRF-based approach, which is equivalent to min-
imization of discrepancy between the physical model and
measurements assuming two images and Gaussian mask
shape. To minimize the corresponding cost functional they
used simulated annealing which has a nice property of
global convergence, but is too slow to be used in prac-
tice. Another view of the same minimization problem was
given by Favaro et al. [5] who modeled defocusation as
anisotropic diffusion process and solved the corresponding
PDE. In order to bypass the deblurring phase of minimiza-
tion, Favaro and Soatto [6] derived projection operators that
yield directly the minimum value of cost functional for given
depth map.

Basically, we followed the same approach as the meth-
ods from the previous paragraph [9, 5, 6] and focused on the
design of a system which could be used in practice. As the
PSF of a real lens system significantly differs from Gaussian
or cylindrical shapes, we allowed for arbitrary PSF shape.
Moreover, our optimization procedure works efficiently also
in situations when PSF is not given analytically but for in-
stance by a table. This can be useful as it is easy to get the
PSF of a particular lens system by a raytracing algorithm and
difficult to express it explicitly by an equation. The whole
algorithm consists of a sequence of “shift-variant convolu-
tions” with the consequence that if we have a hardware that
is able to carry out this operation efficiently, the whole al-
gorithm can be accelerated and possibly achieve real time
performance.

2 Optics

As we mentioned in the introduction, in Gaussian optics
model if the aperture is assumed to be circular, the PSF has
a cylindrical shape with radiusr being the function of point
distancel, namely

r = ρζ

(
1
ζ

+
1
l
− 1

f

)
=

1
l
ρζ + ρζ

(
1
ζ
− 1

f

)
, (3)

wheref is the focal length,ρ the aperture radius andζ is the
distance of the image plane from the lens. This formula can
be simply derived from the similarity of triangles.

In the rest of this paper functionr(x, y) denotes the ra-
diusr corresponding to the distance of point(x, y) accord-
ing to (3). We refer to this function asblur mapanalogously
to a similar quantity that maps the real distance and is mostly
calleddepth mapin literature. If we allow for negativer, (3)
gives a one-to-one correspondence betweenr and l values
with the exception ofl = 0 case. Thus, we can user(x, y)
to represent the scene structure instead of the actual distance.

Now, suppose we have another image of the same scene
taken with different camera settings. As the distance is the
same for all pairs of corresponding points, we get

r2(x, y) = αr1(x, y) + β, α, β ∈ R, (4)

whereα andβ can be trivially computed from (3). The pro-
posed algorithm assumesα andβ are known.

3 Algorithm

To simplify notation, we generalize the concept of convolu-
tion to cover the shift-variant case and define two types of
shift-variant convolutionas follows:

u ∗d h [x, y] =
∫

Ω

u(x− s, y − t)h(x− s, y − t; s, t) dsdt,(5)

u ∗g h [x, y] =
∫

Ω

u(x− s, y − t)h(x, y;−s,−t) dsdt. (6)

Obviously, relation (1) can be rewritten asz = u ∗d h.
Note that in the shift-invariant case, whenh(x, y; s, t) =
h(s, t), it is exactly the standard convolution.

As we mentioned in the previous section, if we know
the actual camera settings, the scene structure can be repre-
sented by blur mapr1(x, y) related to the first image, since
according to (4) blur mapsrp related to the other channels
are a known function ofr1. An advantage of this representa-
tion is that we do not have to know actual camera parameters
to carry out restoration. If the images differ just in aperture
setting,β = 0 and the relation between channels is given
by just one numberα. Moreover, the MSE inr is a lens
independent measure of achieved precision. Actually, the
proposed algorithm does not work with the real object dis-
tance at all and if we are interested, we can get it from the
inverse of relation (3).

Consequently, the assumption that mask is given only by
the corresponding distance, can be restated as that it is a
function of r1. The mask in question will be denoted as
hp(rp(x, y)).

Now, we take advantage of the notation introduced in the
previous section and define

ep = u ∗d hp(rp)− zp, (7)

which is essentially nothing else than a matrix of error at
individual points of the imagep.

The proposed algorithm can be described as a minimiza-
tion of functional (8) with respect to imageu and blur map
r1.

E(u, r1) =
1
2

P∑
p=1

‖ep‖2 + λuQ(u) + λrR(r1), (8)

where according to (4)

rp = αpr1 + βp for imagesp > 1. (9)

The firstresidual term, is a measure of difference between
the model, given by an ideal imageu and blur mapr1

(which represents scene structure), and measurements given
by blurred imageszp. The residual can be written asΦ =∑P

p=1 Φp, whereΦp = 1
2‖ep‖2 = 1

2

∫
D e2

p(x, y).
R(r1) is a blur map regularization term which can be

chosen to represent properly the expected scene structure. A
quadratic term such asR2(r) =

∫ ‖∇r‖2 behaves well for
smooth surfaces, while total variationRTV (r) =

∫ ‖∇r‖,
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Michal Šorel and Jan Flusser [←]

proposed by Rudin et al. [10], is more appropriate for scenes
containing abrupt changes in depth. The same applies to the
image regularization termQ(u) and its relation to the ex-
pected image function.

To minimize (8) we will need its gradient, which obvi-
ously equals the sum of the gradients of individual terms.
First, the gradients of regularization terms are

∂R2

∂r
= − div∇r = −∇2r, (10)

∂RTV

∂r
= − div

( ∇r
‖∇r‖

)
, (11)

where the symbol∇2 denotes Laplacian operator anddiv is
the divergence operator. The gradient ofQ(u) we get from
(10) and (11) by simply replacingr with u.

The gradient of the residual termΦ can be expressed as

∂Φ
∂u

=
P∑

p=1

ep ∗g hp(rp) , (12)

∂Φ
∂r1

= u .∗
P∑

p=1

αp

[
ep ∗g

∂hp(rp)
∂rp

]
, (13)

where∂hp(rp)
∂rp

[x, y; s, t] is the derivative of the mask related
to image point(x, y) with respect to the value ofrp(x, y).
The .∗ operator, borrowed from Matlab, denotes simple
point to point multiplication of functions. The proof to ap-
pear in [11].

The minimization of the cost functionalE is a highly
nonlinear problem, especially in the subspace correspond-
ing to variabler1, and as a consequence the right choice of
initial state is essential to prevent the algorithm from trap-
ping in a local minimum. As the initial blur map estimate
we used already mentioned DFD method [12], which can be
described by simple expression (2). It provides noisy and in-
accurate depth estimates, especially if the actual PSF differs
significantly from a Gaussian function but helps to prevent
the algorithm from getting stuck in a local minimum and
speeds up the minimization considerably.

For subsequent minimization we use a sort of alternat-
ing minimization (AM) algorithm, which basically iterates
through minimizations in subspaces corresponding to un-
known matricesu andr1.

Minimization ofE with respect tou is the well examined
problem of non-blind deconvolution [1]. In theQ2 case, the
whole problem is quadratic and we use simple and relatively
fast conjugate gradients method. In case of anisotropicQTV

we have chosen the algorithm [2] reducing the problem to a
sequence of quadratic problems. The idea is as follows.

Let un be the current estimate of the image minimiz-
ing the cost functional (8). We will replace the termQ =
QTV =

∫ ‖∇(u)‖ by quadratic term

1
2

∫

D

1
‖∇un‖‖∇u‖2 + ‖∇un‖. (14)

Obviously, it has the same value asQTV in un and it can be
shown that it has the same gradient as well. The right term
of (14) is constant for now and consequently it does not take

part in actual minimization. We have got a “close” quadratic
problem

un+1 = arg min
u

1
2

P∑
p=1

‖ep‖2 + λu

∫

D

1
2‖∇un‖‖∇u‖2,

(15)
solution of which becomes a new estimateun+1. For nu-
merical reasons we takemax(ε, ‖∇un‖) in place of‖∇un‖
in (15). The minimization is not very sensitive to the choice
of ε and for typical images with values in the interval〈0, 1〉
can be set to something between0.001 and0.01. The proof
of convergence can be found in [2].

In the subspace corresponding to unknown blur mapr1

we use the simple steepest descent algorithm.
To specify the number and order of iterations, we use the

following notation. For example iteration scheme50× (8 +
10) means that in one step of the algorithm we carry out8 it-
erations of CG method overu, then10 iterations of steepest
descent overr1, and the whole process is repeated50 times.
The particular number of iterations8 and10 seems to be a
good choice for wide range of images. We should stress, that
CG method in the image subspace is crucial for success of
the minimization. At the end, the restored image can be even
sharpened by additional say100 iterations of CG minization
over the image subspace and, for the above example, we de-
scribe the whole minimization as50× (8 + 10) + 100.

4 Experiments

To demonstrate the performance of the proposed algorithm
we present a set of three simulated experiments.

First, let us look at the figure of historical map Fig.1(a)
used as the original image for the experiments. It contains
areas of very complex texture but we can also find places of
almost constant image function. Since proposed algorithm
behaves locally in the sense that the solution depends mainly
on points in close neighborhood of the given point (one step
of minimization depends only on the neighborhood of size
corresponding to blur mask support), it enables us to get an
accurate picture of behavior of the algorithm on different
types of scenes.

To represent the scene structure we used depth map
Fig. 1(b). Again, the scene was designed to show behav-
ior of the algorithms on various types of surfaces - there are
areas of constant depth (lower and upper parts of the image),
slanted plane, steep edge and spherical surface.

To simulate how the PSF changes with the distance of
corresponding objects, we assumed that it keeps its shape
and just stretches to have the same support it would have if
it was the cylinder of radius (3). It enabled us to generate
masks of arbitrary size from one prototype Fig.1(c)as

h(r) [x, y; s, t] =
1

r2(x, y)
h(

s

r(x, y)
,

t

r(x, y)
). (16)

For simplicity, we supposed that the prototype PSF is the
same for both images.

We generated two channels (two images) and supposed
they were captured with the same camera settings except of
the aperture, which was considered1.2 times larger for the
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(a) original image,245× 356 pixels
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 0

 5

10

 0

 5

10

0

0.01

0.02

0.03

0.04

0.05

(c) PSF 13x13

Figure 1: Original image, artificial depth map and prototype PSF used for simulated experiments.Z-coordinate of the depth map actually
indicates the radius of related PSF, i. e. approximately half of its support.

second image, i. e.α2 = 1.2, β2 = 0. The result of blurring
can be seen in Fig.2. Note that the most blurred lower part
of the image corresponds to “rear” part of blur map Fig.1(b).

Note that from (16) we can compute the mask gradients
analytically. Instead, we precomputed a table with precision
1/100 of pixel (together600 masks) and in the algorithm we
used linear interpolation to get intermediate values, with the
intention to simulate the situation, when only some discrete
set of masks is available.

The experiment was run at three noise levels – zero (SNR
= ∞), low (40 dB), moderate (20 dB). Results are arranged
in two-column table Fig.3 with each line corresponding to
certain noise level.

Since we know the corresponding ground true Fig.1, all
the figures of reconstructed images and scene structures con-
tain the related value of mean square error (MSE). For im-
ages it is given in grey levels per pixel from256 possible
values. The error of depth estimate is given indirectly as the
error of related blur map in pixels since it has no meaning
to measure directly the error of distance, which depends on
camera settings such as aperture diameter or focal length.

All experiments were run several times for different in-

stances of noise and we give the average MSE. The restored
images were almost visually undistinguishable and therefore
images to present were chosen randomly. We used two chan-
nels, additional channels bring improvement approximately
corresponding to decrease in noise variance we would ob-
tain by averaging of measurements if we had more images
taken with the same camera settings.

5 Conclusion

We have presented an algorithm for simultaneous recovery
of scene structure and reconstruction of sharp image from
two or more defocused images. The PSF was assumed to
be a known function of depth constraining the points of the
same depth to produce the same mask regardless of their
position in the field of view. This assumption can be relaxed
at the cost of higher time or memory requirements.

Experiments have shown that the algorithm is robust to
noise and for up to moderate noise levels (SNR= 20 dB)
gives very satisfactory results. If the noise level is low, the
restored image is almost visually undistinguishable from the
original except of places of abrupt depth changes. Also
the precision of the recovered scene structure approaching
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(a) MSE= 17.21 levels (b) MSE= 19.19 levels

Figure 2: To simulate defocusation, we blurred image Fig.1(a)using depth map Fig.1(b) and PSFs generated from prototype Fig.1(c). The
largest PSF support (in the lower part of the left image) is about11 × 11 pixels. Amount of blur in the second channel (right image) is1.2
times larger than in the first channel (left image), i. e.α2 = 1.2.

0.15 pixels is very satisfying and probably it is not possible
to achieve much better results in principle.

Further research aims at situations of unknown PSF.
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(a) SNR= ∞, MSE= 0.15 pixels (b) SNR= ∞, MSE= 6.12 levels
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(c) SNR= 40 dB, MSE= 0.15 pixels (d) SNR= 40 dB, MSE= 6.42 levels
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(e) SNR= 20 dB, MSE= 0.31 pixels (f) SNR= 20 dB, MSE= 15.42 levels

Figure 3: Recovered scene structure (left column) and corresponding image restoration (right column). Up to moderate noise levels (SNR=
20 dB) gives very good results. Iteration scheme50× (8 + 10) + 100.


