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I. INTRODUCTION

In general, the term fusion means an approach to extraction of information

spontaneously adopted in several domains. The goal of image fusion is to

integrate combinations of complementary multisensor, multitemporal, and

multiview information into one new image containing information of which

the quality could not be achieved otherwise. The term quality depends on the

application requirements.

Image fusion has been used in many application areas. In remote sensing and

in astronomy,1,2 multisensor fusion is used to achieve high spatial and spectral

resolutions by combining images from two sensors, one of which has high spatial
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resolution and the other, high spectral resolution. Numerous fusion applications

have appeared in medical imaging (see Ref. 3 or 4 for instance) such as

simultaneous evaluation of a combination of computer tomography (CT), nuclear

magnetic resonance (NMR), and positron emission tomography (PET) images. In

the case of multiview fusion, a set of images of the same scene taken by the same

sensor but from different viewpoints is fused to obtain an image with higher

resolution than the sensor normally provides, or to recover the three-dimensional

representation of the scene (shape from stereo). The multitemporal approach

recognizes two different aims. Images of the same scene are acquired at different

time instances either to find and evaluate changes in the scene or to obtain a less

degraded image of the scene. The former aim is common in medical imaging,

especially in change detection of organs and tumors, and in remote sensing for

monitoring land or forest exploitation. The acquisition period is usually months

or years. The latter aim requires the different measurements to be much closer to

each other, typically in the scale of seconds, and possibly under different

conditions. Our motivation for this work came from this area.

We assume that several images of the same scene called channels are

available. We further assume all channels were acquired by the same sensor (or

by different sensors of the same type) but under different conditions and

acquisition parameters. Thus, all channels are of the same modality and represent

similar physical properties of the scene.

Since imaging sensors and other devices have their physical limits and

imperfections, the acquired image represents only a degraded version of the

original scene. Two main categories of degradations are recognized: color (or

brightness) degradations and geometric ones. The former degradations are caused

by such factors as incorrect focus, motion of the scene, media turbulence, noise,

and limited spatial and spectral resolution of the sensor; they usually result in a

blurring of the image. The latter degradations originate from the fact that each

image is a two-dimensional projection of a three-dimensional world. They cause

deformations of object shapes and other spatial distortions of the image.

Individual channels are supposed to be degraded in different ways because of

differences in acquisition parameters and imaging conditions (see Figure 14.1 for

multichannel acquisition scheme). There are many sources of corruption and

distortion that we have to cope with. Light rays (or other types of electromagnetic

waves) reflected by objects on the scene travel to measuring sensors through a

transport medium, for example, the atmosphere. Inevitably, each transport

medium modifies the signal in some way. The imaging system is thus subject to

blurring due to the medium’s rapidly changing index of refraction, the finite

broadcast bandwidth and the object motion. The source of corruption and its

characteristics are often difficult to predict. In addition, the signal is corrupted

inside a focusing set after reaching the sensor. This degradation is inherent to

the system and cannot be bypassed, but it can often be measured and accounted

for; typical examples are a range of lens imperfections. Finally, the signal must

be stored on photographic material or first digitized with Charge-Coupled

Devices (CCDs) and then stored. In both cases the recording exhibits a number
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of degradations. Digital imaging systems suffer from low resolution and low

sensitivity to the input signal, which are imposed by a finite number of intensity

levels and a finite storage capacity. In analog systems, resolution artifacts are

caused by the limited size of photographic material grain. Random noise is

another crucial factor that severely affects the quality of image acquisition. In all

real applications, measurements are degraded by noise. By utilizing suitable

measuring techniques and appropriate devices, it can be considerably diminished,

but unfortunately never cancelled.

Analysis and interpretation of degraded images is the key problem in real

applications, because the degradations are, in principle, inevitable. A very

promising approach to image quality enhancement is to fuse several channels

with different degradations together in order to extract as much useful

information as possible.

II. MULTICHANNEL IMAGE ACQUISITION MODELS

Regardless of its particular type, image degradations can be mathematically

described by an operator based on an ideal representation of the scene. More

formally, let uðx; yÞ be an ideal image of the scene and let z1ðx; yÞ;…; zNðx; yÞ be

acquired channels. The relation between each zi and u is expressed as

ziðx; yÞ ¼ Diðuðx; yÞÞ þ niðx; yÞ ð14:1Þ

where Di is an unknown operator describing the image degradations of the ith

channel and ni denotes additive random noise. In the ideal situation, Di would

equal identity and ni would be zero for each i: The major goal of the fusion is to

obtain an image û as a “good estimate” of u; that means û; in some sense, should

be a better representation of the original scene than each individual channel zi:
The fusion methodology depends significantly on the type of degradation

operators Di: In this work we focus on the cases where each operator Di is a

composition of image blurring and of geometric deformations caused by imaging

geometry.

FIGURE 14.1 Multichannel acquisition model: the original scene is captured by N

different channels which are subject to various degradations.
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Under these assumptions, Equation 14.1 becomes

ziðtiðx; yÞÞ ¼
ð

hiðx; y; s; tÞuðs; tÞds dt þ niðx; yÞ ð14:2Þ

where hiðx; y; s; tÞ is called the point spread function (PSF) of the ith imaging

system at location ðx; yÞ and ti stands for the co-ordinate transform, describing

geometric differences between the original scene and the ith channel (in simple

cases, ti is limited to rotation and translation, but in general complex nonlinear

deformations may be present too). Having N channels, Equation 14.2 can be

viewed as a system of N integral equations of the first kind. Even if all his were

known and neither geometric deformations nor noise were present, this

system would not be generally solvable. In the sequel we simplify the model

(2) by additional constraints and we show how to fuse the channels (that is, how

to estimate the original scene) in these particular cases. The constraints are

expressed as some restrictive assumptions on the PSFs and on the geometric

deformations. We review five basic cases covering most situations occurring

in practice.

III. PIECEWISE IDEAL IMAGING

In this simplest model, the PSF of each channel is supposed to be piecewise

space-invariant and every point ðx; yÞ of the scene is assumed to be acquired

undistorted in (at least) one channel. No geometric deformations are assumed.

More precisely, let V ¼
SK

k¼1 Vk be a support of image function uðx; yÞ;
where Vk are its disjunct subsets. Let hk

i be a local PSF acting on the region Vk in

the ith channel. Since every hk
i is supposed to be space-invariant (that is,

hk
i ðx; y; s; tÞ ¼ hk

i ðx 2 s; y 2 tÞ), the imaging model is defined as

ziðx; yÞ ¼ ðu p hk
i Þðx; yÞ , ðx; yÞ [ Vk ð14:3Þ

where p stands for convolution and for each region Vk there exists channel j

such that hk
j ðx 2 s; y 2 tÞ ¼ dðx 2 s; y 2 tÞ:

This model is applicable in so-called multifocus imaging, when we

photograph a static scene with a known piecewise-constant depth and focus

channel-by-channel on each depth level. Image fusion then consists of comparing

the channels in the image domain5,6 or in the wavelet domain,7,8 identifying the

channel in which the pixel (or the region) is depicted undistorted and, finally,

mosaicing the undistorted parts (no deconvolution is performed in this case, see

Figure 14.2). To find the undistorted channel for the given pixel, a local focus

measure is calculated over the pixel neighborhood and the channel which

maximizes the focus measure is chosen. In most cases, the focus measures used

are based on the idea of measuring the quantity of high frequencies of the image.

It corresponds with an intuitive expectation that the blurring suppresses high

frequencies regardless of the particular PSF. Image variance,9 energy of a Fourier

spectrum,10 norm of image gradient,9 norm of image Laplacian,9 image
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moments,11 and energy of high-pass bands of a wavelet transform7,8,12 belong to

the most popular focus measures. Fusion in the image domain is seriously

affected by the size of the neighborhood on which the focus measure is

calculated. On the other hand, fusion in the wavelet domain is very sensitive to

translation changes in the source images.

A. APPLICATION IN CONFOCAL MICROSCOPY

A typical application area where piecewise ideal imaging appears is confocal

microscopy of three-dimensional samples. Since the microscope has a very

narrow depth of field, several images of the sample differing from each other by

the focus distance are taken. Each of them shows in focus only the parts of the

sample that are a certain distance from the lens, while other parts are blurred by

an out-of-focus blur of various extents. These image layers form the so-called

FIGURE 14.2 Two-channel piecewise ideal imaging: in each channel, one book is inQ3

focus while the other one is out of focus. Image fusion is performed by mosaicing the

channel regions which are in focus.
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stack image of the sample. To obtain a focused image of the whole sample is

beyond the scope of the microscope; the only possibility to get it employs a fusion

of the stack image.

If the focal step used in the acquisition process is less than or equal to the

depth of field of the microscope, then the assumptions of piecewise ideal imaging

are fulfilled and fusion by mosaicing the undistorted parts of the individual layers

can be applied.

A crucial question is how to find, for each pixel, the layer in which the given

pixel (together with its neighborhood) depicted is least distorted or undistorted.

Among the focus measures mentioned above, wavelet-based methods gave the

best results. Their common idea is to maximize the energy of high-pass bands.

Most wavelet-based focus measures ignore low-pass band(s), but Kautsky12

pointed out that the energy of low-pass bands also reflects the degree of image

blurring and, that considering both low-pass and high-pass bands increases the

discrimination power of the focus measurement. We adopted and modified the

idea from Ref. 12, and proposed to use a product of energies contained in low-

pass and high-pass bands as a local focus measure

@iðx; yÞ ¼ kwLðziÞk
2kwHðziÞk

2
ð14:4Þ

Both energies are calculated from a certain neighborhood of the point ðx; yÞ; high-

pass band energy kwHðziÞk
2

is calculated as the mean from three high-pass bands

(in this version, we used decomposition to depth one only).

The fusion of the multifocus stack {z1;…; zN} is conducted in the wavelet

domain as follows. First, we calculate the wavelet decomposition of each image

zi: Then a decision map Mðx; yÞ is created in accordance with a max-rule

Mðx; yÞ ¼ arg maxliðx; yÞ: The decision map is the size of the subband, that is, a

quarter of the original image, and it tells us from which image the wavelet

coefficients should be used. The decision map is applied to all four bands and,

finally, the fused image is obtained by inverse wavelet transform.

The performance of this method is shown here in fusion of microscopic

images of a unicellular water organism (see Figure 14.3). The total number of the

stack layers was 20; three of them are depicted. The fused image is shown on the

bottom right.

In several experiments similar to this one we tested various modifications of

the method. The definition 14.4 can be extended for deeper decompositions but it

does not lead to any improvement. We compared the performance of various

wavelets and studied the influence of the wavelet length. Short wavelets are too

sensitive to noise, while long wavelets do not provide enough discrimination

power. Best results on this kind of data were obtained by biorthogonal wavelets.

Another possible modification is to calculate the decision map separately for each

band but this also did not result in noticeable refinement. We also tested the

performance of other fusion techniques. The proposed method always produced a

visually sharp image, assessed by the observers as the best or one of the best.
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We can thus conclude that this method is very suitable for fusion of multifocus

microscope images.

IV. UNIFORMLY BLURRED CHANNELS

An acquisition model with uniformly blurred channels assumes that every PSF hi

is space-invariant within the channel, that is, hiðx; y; s; tÞ ¼ hiðx 2 s; y 2 tÞ:
Equation 14.2 then turns into the form of “traditional” convolution in each

channel with no geometric deformations:

ziðx; yÞ ¼ ðu p hiÞðx; yÞ þ niðx; yÞ ð14:5Þ

This model describes, for instance, photographing a flat static scene with different

(but always wrong) focuses, or repetitively photographing a scene through a

turbulent medium whose optical properties change between the frames (see

Figure 14.4). The image fusion is performed via multichannel blind deconvolu-

tion (MBD). It should be noted that if the PSFs were known, then this task would

turn into the classical problem of image restoration which has been considered in

numerous publications, see Ref. 13 for a survey.

Blind deconvolution in its most general form is an unsolvable problem. All

methods proposed in the literature inevitably make some assumptions about the

PSFs hi and/or the original image uðx; yÞ: Different assumptions give rise to

FIGURE 14.3. Fusion of a multifocus microscope image: three out of 20 layers in the

multifocus stack and the result of the fusion in the wavelet domain (bottom right).
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various deconvolution methods. There are two basic approaches to solving the

MBD problem. The first one is to separately treat each channel by any single-

channel deconvolution method and then to combine the results; the other is to

employ deconvolution methods that are multichannel in their nature.

Numerous single-channel blind deconvolution methods have been

published extensively in the literature in the last two decades (see Ref. 14 or

15 for a basic survey). However, their adaptation to the MBD problem cannot

reach the power of intrinsic multichannel methods and this approach seems to be

a “dead-end”.

The development of intrinsic multichannel methods has begun just recently.

One of the earliest methods16 was designed particularly for images blurred by

atmospheric turbulence. Harikumar and Bresler17,18 proposed indirect algorithms

(EVAM), which first estimate the PSFs and then recover the original image by

standard nonblind methods. Giannakis and Heath19,20 (and at the same time

Harikumar and Bresler21) developed another indirect algorithm based on

Bezout’s identity of coprime polynomials which finds inverse filters and, by

convolving the filters with the observed images, recovers the original image.

Pillai and Liang22 have proposed another intrinsically multichannel method

FIGURE 14.4 Images of a sunspot taken by a ground-based telescope and blurred due to

perturbations of wavefronts in the Earth atmosphere. The perturbations vary in time which

leads to different blurring of the individual frames. The resulting image was fused by the

MBD–AM algorithm described in Section IV.A.

Multi-Sensor Image Fusion and Its Applications430

ARTICLE IN PRESS

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360



based on the greatest common divisor which is, unfortunately, even less

numerically stable than the previous methods. Pai and Bovik23,24 came with two

direct multichannel restoration algorithms that directly estimate the original

image from the null space or from the range of a special matrix. To reach higher

robustness, Šroubek25 proposed an iterative deconvolution method which

employs anisotropic regularization of the image and between-channel regular-

ization of the PSFs.

A. ALTERNATING MINIMIZATION ALGORITHM

In this section, we present an alternating minimization algorithm for

multichannel blind deconvolution (MBD–AM) and we demonstrate that it is a

powerful tool for image fusion in the case of uniformly blurred channels.

Since the blind deconvolution problem is ill posed with respect to both u and

hi; a constrained minimization technique is required to find the solution of

Equation 14.5. Constraints are built on prior knowledge that we have about the

system. Typical assumptions valid for the majority of real acquisition processes

are the following: ni is supposed to have zero mean and the same variance s2 in

each channel, and the PSFs are supposed to preserve the overall brightness (mean

intensity) of the image. The imposed constraints then take the forms

1

lVl

ð
V
ðhi p u 2 ziÞ

2dx ¼ s2 ð14:6Þ

ð
V

hðxÞdx ¼ 1 ð14:7Þ

(To simplify the notation, we drop the two-dimensional co-ordinates ðx; yÞ or, if

required, we only write x:)
Let QðuÞ and RðhÞ denote some regularization functionals of the estimated

original image u and blurs h ; {h1;…; hN}; respectively. The constrained

minimization problem is formulated as minu;hQðuÞ þ gRðhÞ subject to Equation

14.6 and Equation 14.7. The unconstrained optimization problem, obtained by

means of Lagrange multipliers, is to find u and h which minimize the functional

Eðu; hÞ ¼
1

2

XN
i¼1

khi p u 2 zik
2
þ lQðuÞ þ gRðhÞ ð14:8Þ

where l and g are positive parameters which penalize the regularity of the

solutions u and h: The crucial questions are how to construct functionals Q and R

and whether the global minimum can be reached. We propose an alternating

minimization algorithm that iteratively searches for a minimum of Equation 14.8.

Constraint Equation 14.7 was dropped since it will be automatically satisfied inQ1

the algorithm if the initial blurs satisfy the constraint. We now proceed the

discussion with possible choices of QðuÞ and RðhÞ:
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1. Regularization of the Image Q(u)

Regularization of Equation 14.5 with respect to the image function can

adopt various forms. The classical approach of Tichonov chooses QðuÞ ¼Ð
V l7uðxÞl2dx; where 7u denotes the gradient of u: Apart from easy implemen-

tation, this regularization is not suitable, since the L2 norm of the image gradient

penalizes too much the gradients corresponding to edges and an oversmoothing

effect is observed. In real images, object edges create sharp steps that appear as

discontinuities in the intensity function. It is the space of bounded variation (BV)

functions that is widely accepted as a proper setting for real images. Rudin26 first

demonstrated very good anisotropic denoising properties of the total variation

(TV) QTVðuÞ ¼
Ð
l7uðxÞldx: Existence and uniqueness of the minimum of TV is

possible only in the BV-space, in which case 7u denotes the gradient of u in the

distributional sense. The same holds true for a more general case of convex

functions of measures

QfðuÞ ¼
ð
fðl7uðxÞlÞdx

where f is a strictly convex, nondecreasing function that grows at most linearly.

Examples of fðsÞ are sðTVÞ;
ffiffiffiffiffiffiffiffi
1 þ s2

p
2 1 (hyper-surface minimal function) or

logðcoshðsÞÞ: For nonconvex functions nothing can be said about the existence of

the minimum. Nevertheless, nonconvex functions, such as logð1 þ s2Þ; s2=ð1 þ s2Þ

or arctan (s2) (Mumford–Shah functional27), are often used since they provide

better results for segmentation problems.

2. Regularization of the Blurs R(h)

Regularization of the blurs hi’s directly follows from our model, Equation 14.5,

and can be derived from the mutual relations of the channels. The blurs are

assumed to have finite support S of the size ðs1; s2Þ and certain channel disparity is

necessary. The disparity is defined as weak coprimeness of the channel blurs,

which states that the blurs have no common factor except a scalar constant. In

other words, if the channel blurs can be expressed as a convolution of two

subkernels then there is no subkernel that is common to all blurs. An exact

definition of weakly coprime blurs can be found in Ref. 20. The channel

coprimeness is satisfied for many practical cases, since the necessary channel

disparity is mostly guaranteed by the nature of the acquisition scheme and

random processes therein. We refer the reader to Ref. 18 for a relevant discussion.

Under the assumption of channel coprimeness, we can see that any two correct

blurs hi and hj satisfy kzi p hj 2 zj p hik
2
¼ 0 if the noise term in Equation 14.5 is

omitted. We therefore propose to regularize the blurs by

RðhÞ ¼
1

2

X
1#i,j#N

kzi p hj 2 zj p hik
2

ð14:9Þ

This regularization term does not penalize spurious factors, that is, f p hi for any

factor f are all equivalent. We see that the functional RðhÞ is convex but far from
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strictly convex. The dimensionality of the null space of RðĥÞ is proportional to

the degree of size overestimation of ĥi with respect to the size of the original blurs

hi’s. Therefore to use the above regularization, we have to first estimate S of the

original blurs and impose this support constraint in R: The size constraint is

imposed automatically in the discretization of R;which is perfectly plausible since

the calculations are done in the discrete domain anyway. An exact derivation of

the size of the null space is given in Ref. 18.

3. Iterative Minimization Algorithm

We consider the following minimization problem

Eðu;hÞ ¼
1

2

XN
i¼1

khi pu2 zik
2
þ

g

2

X
1#i,j#N

kzi phj 2 zj phik
2

þl
ð
V
fðl7uðxÞlÞdx ð14:10Þ

Eðu;hÞ; as a function of variables u and h; is not convex due to the convolution in

the first term. On the other hand, the energy function is convex with respect to u if

h is fixed and it is convex with respect to h if u is fixed. The minimization

sequence ðun;hnÞ can be thus built by alternating between two minimization

subproblems

un¼arg min
u

Eðu;hn21Þ and hn¼arg min
h

Eðun;hÞ ð14:11ÞQ2

for some initial h0 with the rectangular support S: The advantage of this scheme

lies in its simplicity, since for each subproblem a unique minimum exists that can

be easily calculated. However, we cannot guarantee that the global minimum is

reached this way, but thorough testing indicates good convergence properties of

the algorithm for many real problems.

The solution of the subproblem, Equation 14.10, formally satisfies the Euler–

Lagrange equation

›E

›u
¼
XN
i¼1

h0
i p ðhi pu2 ziÞ2l div

dfðl7ulÞ
dl7ul

7u

l7ul

� �
¼ 0 ð14:12Þ

where the prime means mirror reflection of the function, that is, h0
iðx;yÞ ¼

hið2x;2yÞ: One can prove (see for example Ref. 28) that a unique solution exists

in the BV-space, where the image gradient is a measure. To circumvent the

difficulty connected with implementing the measure and with the nonlinearity of

the divergence term in Equation 14.12, the solution can be found by relaxing f

and following a half-quadratic algorithm originally proposed in Ref. 29 and

generalized for convex functions of measures in Ref. 28.
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The solution of the subproblem, Equation 14.11, formally satisfies the Euler–

Lagrange equations

›E

›hk

¼u0pðuphk2zkÞ2g
X
i¼1
i–k

N

z0ipðziphk2zkphiÞ¼0; k¼1;…;N (14:3Þ

This is a set of linear equations and thus finding h is a straightforward task.

It is important to note that the algorithm runs in the discrete domain and that a

correct estimation of the weighting constants, l, and g, and mainly of the blur

support S is crucial. In addition, the algorithm is iterative and the energy

(Equation 14.9) as a function of the image and blurs does not have one minimum,

so the initial guess g0 plays an important role as well. The positive weighting

constants l and g are proportional to the noise levels s and can be calculated in

theory from the set of Equation 14.6, Equation 14.12 and Equation 14.13 if the

noise variance is known. This is, however, impossible to carry out directly and

techniques such as generalized cross validation must be used instead. Such

techniques are computationally very expensive and we suggested an alternative

approach in Ref. 25 which uses bottom limits of l and g. Estimation of the size of

the blur support S is even more vexatious. Methods proposed in Refs. 18,20

provide a reliable estimate of the blur size only under ideal noise-free conditions.

In the noisy case they suggest a full search, that is, for each discrete rectangular

support S estimate the blurs and compare the results.

4. Experiment with Artificial Data

First, we demonstrate the performance of the MBD–AM algorithm on images

degraded by computer-generated blurring and noise and we compare the results

with two recent methods — Harrikumar’s EVAM and Pai’s method.

For the evaluation, we use the percentage mean-square error of the fused

image û; defined as

PMSEðuÞ ; 100
kû 2 uk
kuk

ð14:14Þ

Although the mean-square error does not always correspond to visual evaluation

of the image quality, it has been commonly used for quantitative evaluation and

comparison.

A test image of size 250 £ 250 in Figure 14.5(a) was first convolved with four

7 £ 7 PSFs in Figure 14.5(b) and then white Gaussian noise at five different levels

(SNR ¼ 50, 40, 30, 20, and 10 dB, respectively) was added. This way, we

simulated four acquisition channels (N ¼ 4) with a variable noise level. The size

of the blurs and the noise level were assumed to be known. All three algorithms

were therefore started with the correct blur size S ¼ ð7; 7Þ: In the case of

MBD–AM, l and g were estimated as described in Ref. 25 and the starting

position h0 was set to the delta functions. The reconstructed images and blurs are
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shown in Figure 14.6 with the percentage mean-square errors summarized in

Table 14.1. Note that Pai’s method reconstructed only the original image and not

the blurs. The performance of the EVAM method quickly decreases as SNR

decreases, since noise is not utilized in the derivation of this method. Pai’s

method shows superior stability but for lower SNR the reconstructed images are

still considerably blurred. Contrary to the previous two methods, the MBD–AM

algorithm is stable and performs well even for lower SNRs (20 dB, 10 dB). One

slight drawback is that the output increasingly resembles a piecewise constant

function which is due to the variational regularization QðuÞ:

5. Experiment with Real Data

The following experiment was conducted to test the applicability of MBD–AM

on real data. Four images of a bookcase were acquired with a standard digital

camera focused to 80 cm (bookcase in focus), 40, 39, and 38 cm distance,

respectively. The acquired data were stored as low resolution 640 £ 480 24 bit

color images and only the central rectangular part of the green band of size

250 £ 200 was used for the fusion. The central part of the first image, which

captures the scene in focus, is shown in Figure 14.7(a). Three remaining images,

Figure 14.7(c), were used as the input for the MBD–AM algorithm. The

parameter l ¼ 1:6 £ 1024 was estimated experimentally by running the

FIGURE 14.5 Synthetic data: (a) original 250 £ 250 image of the Tyn church, (b) four Q3

7 £ 7 PSFs, and (c) four blurred channels.
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algorithm with different l’s and selecting the most visually acceptable results.

The parameter g was calculated as described in Ref. 25. A defocused camera

causes image degradation approximately modeled by cylindrical blurs. A

cepstrum analysis in Ref. 30 was used to estimate diameters of these blurs, which

FIGURE 14.6 Reconstruction of the test image and blurs from four degraded images

using (a) MBD–AM, (b) EVAM, and (c) Pai’s method. The first of the four degradedQ3

channels is in column (d) for comparison. From top to bottom SNR ¼ 50, 40, 30, 20, and

10 dB, respectively.
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were determined to be around eight pixels. Obtained results after ten iterations

are shown in Figure 14.7(b). Further iterations did not produce any visual

enhancement. Simple visual comparison reveals that the letters printed on shelf

backs are more legible in the restored image but still lack the clarity of the

focused image, and that the reconstructed blurs resemble the cylindrical blurs as

was expected. It is remarkable how successful the restoration was, since one

would expect that the similarity of blurs would violate the coprimeness

assumption. It is believed that the algorithm would perform even better if a wider

disparity between blurs was assured.

V. SLIGHTLY MISREGISTERED BLURRED CHANNELS

This is a generalization of the previous model which allows between-channel

shifts (misregistrations) of extent up to a few pixels.

ziðx þ ai; y þ biÞ ¼ ðu p hiÞðx; yÞ þ niðx; yÞ ð14:15Þ

where ai; bi are unknown translation parameters of the ith channel. This model is

applicable in numerous practical tasks when the scene or the camera moves

slightly between consecutive channel acquisitions (see Figure 14.8). Such a

situation typically occurs when the camera is subject to vibrations or in

multitemporal imaging if the scene is not perfectly still. Sometimes a subpixel

between-channel shift is even introduced intentionally in order to enhance spatial

resolution of the fused image (this technique is called superresolution imaging,

see Ref. 31 for a survey and other references).

Images degraded according to this model cannot be fused by the methods

mentioned in Section IV.A. If they were applied, the channel misregistrations

would lead to strong artifacts in the fused image. On the other hand, the

misregistrations considered in this model are too small to be fully removed by

image registration techniques (in case of blurred images, registration methods

TABLE 14.1
Performance of the MBD–AM, the EVAM and the Pai’s Algorithms on the

Data in Figure 14.5

SNR (dB) MBD–AM EVAM Pai

50 0.93 0.99 5.09

40 2.61 2.99 7.87

30 5.17 24.1 10.9

20 10.2 35.7 13.9

10 15.3 38.3 16.4

The table shows percentage mean-square error of the fused image.
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usually can suppress large spatial misalignments but seldom reach subpixel

accuracy).

Fusion of images degraded according to this model requires special blind

deconvolution methods, which can — in addition to the deconvolution itself —

identify and compensate the between-channel misregistration. A successful

method based on a stochastic approach is described below.

A. MAXIMUM A POSTERIORI PROBABILITY ALGORITHM

Equation 14.15 can be expressed into equivalent form

ziðx; yÞ ¼ uðx; yÞ p hiðx 2 ai; y 2 biÞ þ niðx; yÞ ð14:16Þ

which can be further rewritten as

ziðx; yÞ ¼ ðu p giÞðx; yÞ þ niðx; yÞ ð14:17Þ

where gi is a shifted version of the original PSF hi : giðx; yÞ ¼ hiðx 2 ai; y 2 biÞ:
We can therefore work only with gi and use the MBD–AM algorithm (Equation

Q4

14.10 and Equation 14.11). In this case, the estimate of the blur size has to include

FIGURE 14.7 Real bookcase images: (a) 250 £ 250 image acquired with the digital

camera set to the correct focus distance of 80 cm, (b) MBD–AM fused image along

with 10 £ 10 estimated blurs obtained from three images, and (c) image of false focus

distances 40 cm, 39 cm and 38 cm, after 10 iterations and l ¼ 1:6 £ 1024:

FIGURE 14.8 Multiple acquisition of a vibrating text label. Motion blur of various kind

and small spatial misalignments of the individual frames can be observed. The fused imageQ3

was achieved by the MAP algorithm described in Section I.
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also the maximum shift between the channels. Since this is difficult to determine,

standard MBD techniques including MBD–AM in its present form cannot be

applied.

To overcome the difficulties connected with the parameter estimation, we

adopt in Ref. 32 a stochastic approach to the minimization problem. The

restoration can be formulated then as a maximum a posteriori (MAP) estimation.

We assume that the matrices u; g ¼ {g1;…; gN} and z ¼ {z1;…; zN} are random

vector fields with given probability density functions (PDFs) pðuÞ; pðgÞ and pðzÞ;
respectively, and we look for such realizations of u and g which maximize the a

posteriori probability pðu; glzÞ: The MAP estimation is equivalent to minimizing

2logðpðu; glzÞÞ: The only two assumptions that we must make in addition to those

in the energy minimization problem are: u and g are supposed to be statistically

independent and ni is white (that is, uncorrelated) Gaussian noise. Using the

Bayes rule, the relation between a priori densities pðuÞ; pðgÞ and the a posteriori

density is pðu; glzÞ / pðzlu; gÞpðuÞpðgÞ: The conditional PDF pðzlu; gÞ follows

from our model, Equation 14.5, and from our assumption of white noise. The blur

PDF pðgÞ can be derived from the regularization RðgÞ; which is also Gaussian

noise with a covariance matrix that can be easily calculated. If the image PDF

pðuÞ is chosen in such a way that 2logðpðuÞÞ / QðuÞ then the MAP estimation is

almost identical to the minimization problem, Equation 14.9, for l ¼ s2 and

g ¼ lSl=2 and we can use the alternating iterative algorithm. To improve stability

of the algorithm against the overestimation of S and thus handle inaccurate

registration, it suffices to add the constraint of positivity hðxÞ . 0 to Equation

14.7 and perform in Equation 14.11 the minimization subject to the new

constraints.

Setting appropriately initial blurs can help our iterative algorithm to

converge to the global minimum. This issue is especially critical for the case

of overestimated blur size. One can readily see that translated versions of the

correct blurs are all equivalent as long as they fit into our estimated blur size.

We have seen that the regularization of the blurs R is unable to distinguish

between the correct blurs and the correct blurs convolved with an arbitrary

spurious factor. This has a negative impact on the convergence mainly if

channel misalignment occurs, since new local minima appear for blurs that

cope with the misalignment by convolving the correct blurs with an

interpolating kernel. To get closer to the correct solution, we thus propose

to set the initial blurs g0 to delta functions positioned at the centers of gravity

of blurs ĝ ¼ arg min RðgÞ: This technique enables us to compensate for the

channel shifts right from the start of the algorithm and get away from the

incorrect interpolated solutions.

1. Experiment with Misregistered Images

Although the MAP fusion method can also be applied to registered channels, its

main advantageous property, that discriminates it from other methods, is the
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ability to fuse channels which are not accurately registered. This property is

illustrated by the following experiment.

The 230 £ 260 test image in Figure 14.9(a) was degraded with two different

5 £ 5 blurs and noise of SNR ¼ 50 dB. One blurred image was shifted by 5 £ 5

pixels and then both images were cropped to the same size; see Figure 14.9(c).

The MAP algorithm was initialized with the overestimated blur size 12 £ 12. The

fused image and the estimated blur masks are shown in Figure 14.10. Recovered

blurs contain negligible spurious factors and are properly shifted to compensate

for the misregistration. The fused image is, by visual comparison, much sharper

than the input channels and very similar to the original, which demonstrates

excellent performance. This conclusion is supported also by the real experiment

shown in Figure 14.8, where both blurring and shift were introduced by object

vibrations. Unlike the input channels, the text on the fused image is clearly

legible.

VI. HEAVILY MISREGISTERED BLURRED CHANNELS

This model is a further generalization of the previous model. Blurring of each

channel is still uniform and is modeled by a convolution, but significant

misregistrations between the channels are allowed.

ziðtiðx; yÞÞ ¼ ðu p hiÞðx; yÞ þ niðx; yÞ ð14:18Þ

In this model there are almost no restrictions on the extent and the type of ti; it

may have a complex nonlinear form (the only constraint is that the individual

frames must have sufficient overlap in the region of interest). This is a very

realistic model of photographing a flat scene, where the camera moves in three-

dimensional space in an arbitrary manner (see Figure 14.11).

Because of the complex nature of ti; it cannot be compensated for during the

deconvolution step. Thus, fusion of images degraded according to this model is a

two-stage process — it consists of image registration (spatial alignment)

followed by MBD discussed in the previous section. Since all deconvolution

methods require either perfectly aligned channels (which is not realistic) or allow,

at most, small shift differences, the registration is a crucial step of the fusion.

Image registration in general is a process of transforming two or more images

into a geometrically equivalent form. It eliminates the degradation effects caused

by geometric distortion. From a mathematical point of view, it consists of

approximating t21
i and of resampling the image. For images which are not

blurred, the registration has been extensively studied in the recent literature (see

Ref. 33 for a survey). However, blurred images require special registration

techniques. They can, as well as the general-purpose registration methods, be

divided in two groups — global and landmark-based ones. Regardless of the

particular technique, all feature extraction methods, similarity measures, and

matching algorithms used in the registration process must be insensitive to image

blurring.
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FIGURE 14.9 (a) original test image 230 £ 260 pixels, (b) two 5 £ 5 PSFs, and

(c) blurred and shifted images.
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Global methods do not search for particular landmarks in the images. They

try to estimate directly the between-channel translation and rotation. Myles and

Lobo34 proposed an iterative method working well if a good initial estimate of the

transformation parameters is available. Zhang et al.,35,36 proposed to estimate the

registration parameters by bringing the channels into canonical form. Since blur-

invariant moments were used to define the normalization constraints, neither the

type nor the level of the blur influences the parameter estimation. Kubota et al.37

proposed a two-stage registration method based on hierarchical matching, where

the amount of blur is considered as another parameter of the search space. Zhang

and Blum38 proposed an iterative multiscale registration based on optical flow

estimation in each scale, claiming that optical flow estimation is robust to image

blurring. All global methods require considerable (or even complete) spatial

overlap of the channels to yield reliable results, which is their major drawback.

Landmark-based blur-invariant registration methods have appeared very

recently, just after the first paper on the moment-based blur-invariant features.39

Originally, these features could only be used for registration of mutually

FIGURE 14.10 MAP image fusion: (a) fused image and (b) estimated blur masks withQ3

between-channel shift.
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shifted images.40,41 The proposal of their rotational-invariant version42 in

combination with a robust detector of salient points43 led to registration methods

that are able to handle blurred, shifted and rotated images.44,45

Although the above-cited registration methods are very sophisticated and can

be applied to almost all types of images, the result rarely tends to be perfect. The

registration error usually varies from subpixel values to a few pixels, so only

fusion methods sufficiently robust to between-channel misregistration can be

applied to channel fusion.

VII. CHANNELS WITH SPACE-VARIANT BLURRING

This model comprises space-variant blurring of the channels as well as nonrigid

geometric differences between the channels.

ziðtiðx; yÞÞ ¼
ð

hiðx; y; s; tÞuðs; tÞds dt þ niðx; yÞ ð14:19Þ

The substantial difference from the previous models is that image blurring is no

longer uniform in each frame and thus it cannot be modeled as a convolution. Here,

the PSF is a function of spatial co-ordinates ðx; yÞ which makes the channel

degradation variable depending on the location. This situation typically arises

when photographing a three-dimensional scene by a camera with a narrow depth of

field. Differently blurred channels are obtained by changing the focus distance of

FIGURE 14.11. Two satellite images differing from one another by amount of blur due to

different spatial resolution and by shift, rotation, and scaling (left). After the registration

(right), the MAP fusion algorithm from the previous section can be applied on the

overlapping area. The registration of these images was performed in IMARE Toolbox50 by

means of invariant-based method,42 courtesy of Barbara Zitová.
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the camera (see Figure 14.12). Unlike piecewise ideal imaging, the depth of the

scene can vary in a continuous manner and the existence of at least one “ideal”

picture for each location is not guaranteed. Another example is photographing a

dynamic scene where different parts move by different velocity and/or in different

directions (see Figure 14.13).

Space-variant blurring is not a simple extension of the previous models. It

requires qualitatively new approaches and methods. As for the previous model,

the image fusion consists of image registration and multichannel blind deblurring

but there is a significant difference. While the registration methods can be in

principle the same, the techniques used here in the second step must be able to

handle space-variant blurring.

Up until now, no papers have been published on multichannel space-variant

deblurring. There are, however, a few papers on single-channel space-variant

image deblurring, usually originating from space-invariant deconvolution

methods. Guo et al.46 proposed to divide the image into uniformly blurred

regions (if possible) and then to apply a modified expectation-maximization

algorithm in each region. You and Kaveh47 considered parameterized PSF and

used anisotropic regularization for image deblurring. Cristobal and Navarro48

FIGURE 14.12 Space-variant blurring of the channels. Two pictures of a complex three-

dimensional scene taken with a variably focused camera. The camera also changed its

position and viewing angle between the acquisitions which lead to projective geometric

deformation between the channels.
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applied multiscale Gabor filters to the restoration. However, the extension of the

above methods to the multichannel framework is questionable.

No doubt the solution to this problem is a big challenge for image fusion for

the near future. Prospective methods should employ all available a priori

information, such as a depth map or relief model. They may comprise depth-

based, defocus-based or depth- and defocus-based segmentation of the input

channels in order to find regions of the same type of blur. Nevertheless, a general

solution probably does not exist.

VIII. CONCLUSION

In this chapter, we presented an overview of image fusion methods for the

case where the input channels are blurred, noisy, and geometrically different.

One has to face this problem in various application areas where the picture of

the scene is taken under nonideal conditions. Mathematically, this task is ill

posed and cannot be resolved by inverting all degradation factors. The only

solution is multiple acquisition of the scene and consequent fusion of all

acquired channels. It is believed that if the channel degradations are different,

the channels can be fused together in such a way that the information missing

in one channel can be supplemented by the others. The fusion approaches and

methods differ from each other according to the type of assumed degradations

of the channels. Here we classified the possible degradations into five major

groups: piecewise ideal imaging, uniform blurring, slight and heavy channel

misregistration, and space-variant blurring of the channels. For each category,

except the last one, we presented reliable fusion methods whose performance

was experimentally verified.

FIGURE 14.13 Space-variant degradation of the channels due to motion blur.
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