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(a) blurred input (b) blind deconvolution

Fig. 1. Deconvolution of a real photo blurred due to incorrect focus: (a) input out-of-focus image; (b) reconstruction using the
proposed method with estimated blur kernel in the top left corner (4× enlarged).

ABSTRACT
Removing blurs from a single degraded image without any
knowledge of the blur kernel is an ill-posed blind decon-
volution problem. Proper estimators together with correct
image priors play a fundamental role in accurate blind de-
convolution. We demonstrate a superior performance of the
variational Bayesian estimator and discuss suitability of auto-
matic relevance determination distributions as image priors.
Restoration of real photos blurred by out-of-focus and mo-
tion blur, and comparison with a state-of-the-art method is
provided.

Index Terms— blind deconvolution, variational Bayes,
marginalization, automatic relevance determination

1. INTRODUCTION

We will assume a classical acquisition model, in which a
noisy observed image g is a result of convolution between a
latent image u and an unknown kernel h (blur), and corrup-
tion with additive noise n,

g = h ∗ u+ n . (1)

All the variables are 2D random vector fields and they are
characterized by corresponding probability distributions de-
noted as p(h), p(u), and p(n).
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If we have only one observation g and we have no knowl-
edge of the blur h, the problem of finding u is extremely ill-
posed. One way to tackle this problem is to assume a paramet-
ric model of blurs and search in the space of parameters and
not in the full space of blurs. Real blurs always differ slightly
from their parametric models, which prevents the parametric
methods to find an exact solution and we will not consider
them any further.

The Bayesian paradigm dictates that inference of u and h
from the observed image g is done by modeling a posteriori
probability distribution p(u, h|g) ∝ p(g|u, h)p(u)p(h). Here
we assume that prior distributions p(u) and p(h) are indepen-
dent, which is always true in practice.

The conditional distribution p(g|u, h) is given by model
(1). The prior p(u) forces some type of image smoothness.
The prior p(h) can be similar to p(u), but it is rectified to force
positivity. Estimating the pair (û, ĥ) is equivalent to maximiz-
ing the posterior p(u, h|g), which is commonly referred to as
the maximum a posteriori (MAP) approach. The simplest but
also the most common method maximizes the posterior in an
alternative manner with respect to u and h. Unfortunately,
the posterior has very uneven shape with many local peaks
and alternating maximization without any modifications ends
in a local maximum, which is rarely a correct solution.

There has been a considerable effort of the image pro-
cessing community in the last three decades to find a reliable
algorithm for blind deconvolution. Older algorithms were not
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sufficiently general and their performance depended on initial
estimates of blurs [1–3].

Over the last few years, blind deconvolution experiences
a renaissance. The key idea of new algorithms is to address
the ill-posedness of blind deconvolution by characterizing the
prior p(u) using natural image statistics and by a better choice
of estimators. The activity started with the work of Fergus et
al. [4] and Molina et al. [5], who applied Variational Bayes
(VB) to approximate the posterior p(u, h|g) by a simpler dis-
tribution q(u, h) = q(u)q(h). Other authors [6–9] stick to
the “good old” alternating MAP approach, but by using ad
hoc steps, which often lack rigorous explanation, they con-
verge to a correct solution. Levin et al. in [10] proved that a
proper estimator matters more than the shape of priors. They
showed that marginalizing the posterior with respect to the la-
tent image u leads to the correct solution of h. The marginal-
ized probability p(h|g) can be expressed in a closed form only
for simple priors that are, e.g., Gaussian. Otherwise approx-
imation methods such as VB [11] or the Laplace approxima-
tion [12] must be used.

In this paper, we use VB approximation to solve blind
deconvolution and automatically determine all parameters in
image and blur priors including noise variance. We analyze in
detail the category of so-called Automatic Relevance Deter-
mination (ARD) priors [13], compare them with other com-
monly used priors, and explain their superiority. Finally, we
compare ourselves with, to our knowledge, the best working
blind deconvolution algorithm in [9].

2. PROBLEM DEFINITION

Since we are in the discrete domain, convolution is equivalent
to vector-matrix multiplication and we rewrite the model for
every image pixel i as

gi = Hiu+ ni = Uih+ ni , (2)

whereH andU are convolution matrices performing convolu-
tion with the blur and latent image, respectively, and h and u
are now column vectors containing lexicographically ordered
elements of the 2D random vector fields. Subscript i denotes
the i-th element (row) of a vector (matrix).

The noise n is assumed to be i.i.d. with a zero mean and
unknown variance 1/γ, p(ni) ≡ N(ni|0, γ−1). Plugging into
(2) we get the likelihood function

p(g|u, h, γ) =
∏
i

N(gi|Hiu, γ
−1)

∝
∏
i

γ1/2 exp
{
−γ

2
(gi −Hiu)2

}
.

(3)

In blind deconvolution, the image prior plays an essen-
tial role, since it provides necessary constraints that make the
problem better posed. Intensity values have very random dis-
tributions that depend on image content, which is an undesir-
able property. Image features, such as derivatives, are sparse

and their histograms fit well into various heavy-tailed distri-
butions (Laplacian or Gaussian Mixture) irrespective of im-
age content. Therefore various image priors based on image
gradient has been proposed in the literature [4, 14]. It has
been shown that Gaussian priors with variable precision over
pixels (ARD priors) accurately model heavy-tailed distribu-
tions [15]. We will use image derivatives (D) as features and
the Gaussian image prior with variable precision becomes

p(u|λ) = N(Du|0,Λ) =
∏
i

N(Diu|0, λ−1i )

∝
∏
i

λ
1/2
i exp

{
−λi

2
(Diu)2

}
,

(4)

where Di is the first order difference in the i-th pixel1. The
image prior looks very simple as it is a product of normal dis-
tributions of image features (in our case image derivatives).
Its ability to capture sparse features is due to different preci-
sion λi in every pixel, which is unknown and must be deter-
mined from data.

Blur priors play far less important role. A general blind
deconvolution method must work for any type of blur ker-
nel. We thus avoid any sparsity constraints, which were com-
monly applied in blind deconvolution methods in past. The
only constraint we force is positivity. In order to have closed-
form solutions in the VB framework and keep the problem
tractable, we force positivity not directly on h but on blur
prior mean values. The blur prior is simply

p(h|v, β) =
∏
i

N(hi|vi, β−1)

∝
∏
i

β1/2 exp

{
−β

2
(hi − vi)2

} (5)

and the distribution of mean values vi is improper distribution

p(vi) ∝ exp{−ψ(vi)/2}, whereψ(vi) =

{
∞ vi < 0,

0 vi ≥ 0.

(6)
The above distributions are governed by a set of unknown

parameters γ, {λi}, β. Each parameter is a random variable
with a conjugate prior. In our case all the parameters are pre-
cision and the conjugate priors are gamma distributions:

p(γ) = Gam(γ|a, b) ,
p(λi) = Gam(λi|a, b) ,
p(β) = Gam(β|a, b) ,

(7)

where a and b are parameters of the gamma distributions. We
set a close to zero as it forces the corresponding factor to be
influenced only by the data and not by its prior. The gamma
distribution has a finite integral only for a > 0 and thus we
write a→ 0.

1In 2D, D consideres both derivatives in x and y independently.
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Let Z ≡ {u, h, γ, {λi}, v, β} denote unknown random
variables to be estimated. Having all the necessary probability
distributions, the joint distribution is given by

p(g,Z) = p(g|u, h, γ)p(γ)p(u|λ)p(λ)p(h|v, β)p(v)p(β) .
(8)

The VB framework provides an elegant way to approxi-
mate the joint distribution by a variational distribution q(Z)
which factorizes between the variables

q(Z) ≡ q(u)q(h)q(γ)q(λ)q(v)q(β) . (9)

The equation for estimating the factors is as simple as

ln q(Zl) ∝ Ek 6=l[ln p(g,Z)] , (10)

where the expectation Ek 6=l is with respect to all factors q(Zk)
except q(Zl). Since the factors q(·) depend on statistics of
other variables in Z , an iterative VB algorithm is used, which
cycles through the factors and updates each probability distri-
bution using (10).

3. ARD IMAGE PRIOR

To better understand the ARD prior p(u|λ) in (4), we compare
its effect with other priors. In order to do so, we need to
express p(u) not conditioned on λ. This is accomplished by
marginalization,

p(u) =

∫
p(u, λ)dλ =

∫
p(u|λ)p(λ)dλ . (11)

After substituting from (4) and (7), a closed-form solution
exists and for our case of a→ 0 it is of the form

p(u) ∝
∏
i

exp

{
−1

2
ln((Diu)2 + b)

}
. (12)

Note that this prior on the image features resembles Stundet’s-
t distribution.

Remark 1. Let us compare the exponent of the prior− ln p(u) ∝
ln
∑
i((Diu)2 + b) with other commonly used priors, such as

the Laplacian prior or standard Gaussian prior. The exponent
of the Laplacian prior is the L1-norm of image differences,
which is also called Total Variation (TV),

∑
i |Diu|. The ex-

ponent of the simple Gaussian prior is the L2-norm of image
differences,

∑
i(Diu)2. Fig. 2 compares all three priors. One

can see that the ARD prior (12) has a non-convex exponent.
The same non-convex function was e.g. mentioned in [16]
as a regularization term for image segmentation. Many state-
of-the-art blind deconvolution methods [17] started to use
non-convex functions, such as Lp-norms with p < 1, in the
prior exponent to improve performance. However, it was
shown in [10] that these priors favor (give higher probability
to) blurred images over the sharp ones, which goes against
intuition. On contrary, the ARD prior favors sharp images
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Fig. 2. Comparison of priors: The graph shows prior’s expo-
nent,− ln p(u), as a function of image derivatives. The Gaus-
sian prior with variable precision (ARD - solid red line) is
non-convex compare to the priors with L2 or L1 (TV) norms
in the exponent.
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Fig. 3. Comparison of priors: The graph shows prior’s ex-
ponent, − ln p(u), as a function of amount of blurring. The
Gaussian prior with variable precision (ARD - solid red line)
increases with increasing blur whereas the L2 or L1-norm pri-
ors decrease. The value of priors is normalized to give 1 on
sharp images (0 blur size). The curves show mean values cal-
culated on various images (nature, faces, buildings).

as demonstrated in Fig. 3. Our prior belongs to the family
of non-convex functions and in addition favors sharp images,
which are the reasons for its superiority.

Implementing the marginalized image prior (12) in the
VB algorithm is not straightforward [14]. Instead we con-
sider the original conditioned prior (4) and find the solution
of the image factors q(u) and q(λ) according to (10). For the
image factor we get

q(u) = N(u|u, cov(u))

∝ exp
{
−Eh,γ,λ

[
γ‖g −Hu‖2 + uTDTΛDu

]}
,

(13)

where terms independent of u are omitted. We see that the
image factor q(u) is again a normal probability distribution as
the image prior p(u|λ). One can get update equations for the
mean u and covariance cov(u) by taking the first and second
derivatives of ln q(u). For the sake of brevity, we show only
the update equation for the mean, which is the solution of the
linear system

[Eh,γ [γHTH] +DTΛD]u = γHT g , (14)
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where (·) denotes the mean value. Note that to evaluate the
expectation Eh,γ [γHTH] we also need the covariance h,
which is determined from q(h). The mean values of other
variables are determined after solving their corresponding
factors q. Here we are interested in λi’s that form the diago-
nal matrix Λ. The solution of the image prior precision factor
q(λ) is of the gamma form

q(λ) =
∏
i

Gam(λi|ai, bi) (15)

and thus for a→ 0

λi =
ai
bi

=
1

Eu[(Diu)2] + 2b
. (16)

The gamma parameter b plays the role of a relaxation pa-
rameter, since it prevents the discontinuity of derivatives at
Diu = 0.

Remark 2. Let us draw a parallel with another well-established
method for solving complicated constrained least-squares de-
convolution problems. The equivalent optimization problem
that we partially solve in (8) has the form

min
u
γ(gi −Hiu)2 +

1

2
ln((Diu)2 + b) . (17)

The standard method for minimizing such energy functions is
the so-called half-quadratic (HQ) algorithm [18]. If we ignore
expectation in update equations (14) and (16) then these two
equations are exactly the update equations of HQ. Contrary
to HQ, the VB framework estimates also covariances and the
expectation in (16) produces an extra term with cov(u). The
prior precision λi updated in (16) is inversely proportional
to the currently estimated image derivatives, i.e. λ’s align
with edges. Fig. 4 compares the effect of the covariance term,
which clearly helps to emphasize edges.

(a) image (b) without cov(u) (c) with cov(u)

Fig. 4. Visualization of the prior precision λ: (a) sharp im-
age; (b) prior precisions as estimated in every pixel using VB
without covariance and (c) with covariance.

4. EXPERIMENTS

Fig. 1 shows an example of deconvolved real photo (1 Mpixel)
taken by a DSLR camera with wrong focus using the VB al-
gorithm with the ARD image prior. Note that the estimated
blur kernel well matches the shape of the aperture hole.

To evaluate the performance of the proposed VB algo-
rithm, we calculated mean squared error (MSE) of estimated
blurs on the data set in [19] and compared it with arguably the
best working blind deconvolution method in [9]. The results
are summarized in Fig. 5. In total 32 blurred photos were
used; 4 images in (a) photographed 8 times. Blurs in (c) were
estimated by the proposed VB algorithm and they match the
ideal blurs in (b) that were obtained as pictures of bright dots.
The graph in (d) shows that the proposed algorithm outper-
forms in terms of MSE the method of Xu et al. [9] in most of
the cases. The ideal blurs in (b) were taken as ground truth
for the MSE calculation.

(a) four sharp images

(b) eight motion blurs (photos of a bright dot)

(c) blurs estimated from photos of images in (a)
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(d) MSE of estim. blurs; ARD-proposed method vs. [9]

Fig. 5. Blur estimation of the proposed VB algorithm (ARD
prior) on 32 photos with motion blur.

5. CONCLUSIONS

Our goal was to provide better insight to image priors in
blind deconvolution and understanding of superior perfor-
mance of the family of ARD priors. We also show that the
VB udpate procedure for the ARD prior is equivalent to the
half-quadratic algorithm with the additional covariance term,
which further emphasizes edges.
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