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Abstract

The dissertation focuses on the design and verification of a new methodology of quantitative
lymphoscintigraphy of upper limbs. Lymphoscintigraphy seems to be the only clinically and
economically adequate method for diagnostics of latent lymphedema. Even partial statistics from
Czech Republic indicate medical, social and economic need for such a methodology. Its potential
for examination of upper limbs is, however, inhibited by the lack of a reliable, routinely applicable,
quantitative evaluation. It is caused by availability of at most three of scan extremities. This
lack of data follows from patient state, economic and time factors. Use of Bayesian methodology,
that consistently supplements the sparse data by a rich prior knowledge, appears to be the only
viable remedy.

The proposed quantification is based on simplified Bayesian modelling of the radiotracer accu-
mulation dynamics on the pre-specified regions of interest (ROI) on the limb. The patient-specific
cascade model is constructed via estimation of both limb local and common model parameters.
The parametric and predictive inference respecting both types of parameters together with com-
putationally feasible solutions are elaborated.

Bayesian decision theory in conjunction with the model is then employed to make inference
useful to physicians. The whole time activity curve (TAC) — scintigraphic response on ROI
in time — is estimated and estimate uncertainty characterized. TAC forms the quantification
basis and serves for construction of quantitative indicators that are expected to characterize
lymphedema stages. This conjecture will be inspected after collecting sufficient amount of patient
data. At present, the dissertation offers an efficient quantitative comparison of patient limbs so
that suspicion on bad state of one of them can be reliably tested. The comparison uses 3 available
data pairs and thus solves the problem, which would be hopeless without a Bayesian treatment.

The limited number of routine inspections makes influence of measurement times significant.
Their innovative optimization is solved in the thesis, too. It selects the best combination of
sampling times present in experimental set of data.

The proposed methodology is verified from several perspectives on the real scintigraphic data
and its favourably outcomes compared on experimental set of data with conclusions of physicians.
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Абстракт

Тема диссертации предполагает создание и последующую тестирование эффективности
функционирования новой методологии количественной лимфосцинтиграфии верхних ко-
нечностей.

По всей видимости, лимфосцинтиграфия является единственным клинически и эконо-
мически подходящим методом для диагностики скрытой (латентной) формы лимфедемы.
Даже неполные статистические данные по Чешской республике указывают на острую необ-
ходимость подобной методологии, мотивированную медицинскими, социальными и эконо-
мическими причинами.

Однако, потенциальные возможности данного метода исследования верхних конечно-
стей существенно ограничены отсутствием надёжной и удобной в применении методики
качественной оценки. Это обусловлено отсутствием необходимого количества данных, что
связано с состоянием конкретного пациента, а также временными и экономическими фак-
торами. Использование методологии Байеса, позволяющей дополнять разбросанные дан-
ные используя априорную информацию, представляется единственно возможным решением
проблемы. Разработанная количественная оценка основывается на упрощённом байесовском
моделировании динамики аккумулирования радиоэлемента в предварительно заданной об-
ласти (ROI) верхней конечности. Индивидуальная модель пациента конструируется при
помощи совместного оценивания локальных и общих параметров модели. В диссертации
были разработаны численно релизуемые решения для параметрической и предсказываю-
щей моделей, учитывающих оба типа параметров.

Использование теория принятия решений Байеса позволило сделать полученные выво-
ды пригодными для врачей. Проводится оценка всей кривой активности (TAC) — времен-
ной сцинтиграфический отклик в ROI — и характеризуется оценка неопределённости. TAC
создаёт основу для количественной оценки и служит для создания количественных индика-
торов, предположительно характеризующих различные стадии лимфедемы. Данное пред-
положение может быть проверено только при наличии достаточного количества данных. В
диссертации предлагается эффективное количественное сравнение верхих конечностей па-
циента, позволяющее достоверную проверку подозрения о нездоровом состоянии одной из
конечностей. Именно благодаря использованию байесовского подхода, предлагаемый способ
решения даёт достоверную оценку всего на основе сравнения трёх имеющихся в наличии
пар данных.

Ограничение количества возможных измерений у пациента усиляет значимость време-
ни проведения измерений. Усовершенствованная оптимизация, предлагаемая в данной дис-
сертации, производит выбор наилучшей комбинации моментов измерений из имеющегося
набора экспериментальных данных.

Различные аспекты предложенной методологии были проверены на реальных сцинти-
графических данных. Также было проведено сравнение результатов, полученных на экспе-
риментальных данных, с заключениями врачей.
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Chapter 1

Introduction

Lymphoscintigraphy is a sensitive diagnostic technique in nuclear medicine. One of its princi-
pal applications is the investigation of upper limb lymphedema. The potential of quantitative
scintigraphy as the promising tool for the recognition of early stages of lymphedema is however
inhibited by the lack of reliable routinely applicable evaluation. This work concerns with the
decisive part of the project that aims at creating and verifying such methodology of quantitative
lymphoscintigraphy of upper limbs. It is based on the current, routinely performed, morphologi-
cally oriented measurements. The quantification should help to physicians in the assessment of
stages of lymphedema and in evaluation of treatment success.

The methodology of quantitative lymphoscintigraphy is a practically important example of
problems having little data with a vague expert knowledge and necessity to make inference only
on their base. The proposed quantification involves Bayesian modelling of the radiotracer accu-
mulation dynamic in the limb combining information from data, simplified theoretical modelling
and expert knowledge. Bayesian decision theory in conjunction with the model is then employed
to make inferences useful to physicians.

The objective of this Chapter is to give a brief overview of the addressed problem. Still
missing satisfactory solution has motivated the current work and resulted into the formulation
objectives of this thesis.

1.1 Motivation
Lymphedema, swelling caused by defects of the lymphatic system arising mostly after the complex
therapy of breast carcinoma, is still an underestimated indicator. Its late stages can be hardly
cured. They decrease substantially working abilities of the patient and often lead to a complete
disability. Patients are often improperly cured due to the wrong diagnosis that explains problems
as venal insufficiency, various rheumatic disease, allergic swelling, entesopathy etc. Often, they
are not cured at all. This calls for an efficient and reliable diagnostic method that allows us
to recognize safely early stages of lymphedema. Inspection by scintigraphy is potentially the
method search for.

From the surgery viewpoint, diagnostics of early stages of the secondary lymphedema is
of a great importance as the increasing number of solid tumors calls for increasing number of
surgery lymphadectomy and radiotherapy of regional lymph nodes. Consequently, the number
of secondary lymphedema increases. For instance, 42% women after a complex therapy of breast
carcinoma exhibit lymphedema of collateral upper limb [85], often with a many-years delay af-
ter therapy. More than 10% of lymphedema manifest themselves even three years after surgery
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and/or radiotherapy. Treatment of malignant breast tumor concerns yearly 4000 women con-
sidering Czech Republic only. This indicates socio-economic significance of a decrease of the
number of unrecorded and untreated lymphedema of collateral upper limb. Recognition of the
disease during the clinically silent phase, so called latent lymphedema is, however, decisive for
the success of treatment. Early recognition and therapy of latent lymphedema lead with a high
probability to full recovery of the lymphatic system. A substantial decrease of expenses spent
for a difficult treatment of advanced stages of lymphedema with their complications can be ex-
pected. Lymphoscintigraphy, radionuclide based lymphography, seems to be the only clinically
and economically adequate method for the diagnostics of latent stages of lymphedema [10, 32, 87].

Lymphoscintigraphy is non-invasive, sensitive method suitable for judging of the state of lym-
phatic system of upper limbs, in which radionuclides are used to image regional lymph drainage
system. It provides structural data at the injection depot, along the extremity, and over the ax-
illary lymph nodes. Furthermore, it provides functional information on diffusion of radiolabelled
protein or colloid particles within the lymphatic system. Its potential for examination of upper
limbs is, however, inhibited by the lack of a reliable quantitative evaluation when upper limbs
are examined. Reliable routinely applicable quantitative scintigraphic evaluation is still missing.
The main reason is number of measurements limited both by the time-capacity of the gamma
camera and by the ability of a patient to undergo a series of measurement in long time intervals.
Consequently, the number of images taken can hardly be larger than 2–3. This is very limit-
ing condition for making inference even some traditional inferences of important physiological
indicators are completely unreliable.

It is known that modelling and careful data processing is the only way how to counteract lack
of measured data on complex phenomena. Considering the limited amount of data corrupted
by the uncertainties, we rely on Bayesian data processing [5] as the only well established tool
that is able to combine consistently information from data, theoretical modelling and expert
knowledge. The power of the Bayesian paradigm is evident in inference problems based on a
few measurements only. If at least some expert knowledge exists then more information can be
included into the whole model so the uncertainty of the results can be reduced. It is just the
case of quantitative scintigraphy of upper limbs. The amount of available scintigraphic data
is strongly limited. At the same time a team of experienced physicians and physicists, whose
expert knowledge can be incorporated into the model, is accessible. Consequently, modelling of
the accumulation of the radiotracer within the limbs drifted by lymphatic flow at scintigraphic
examination combined together with Bayesian paradigm and decision theory have been proposed
for the scintigraphy quantification.

The scintigraphy quantification is the particular task to be solved. Though, similar prob-
lems with the limited amount of data are often met not only in the medicine branch thus the
development of methodology may show the direction how to solve them.

1.2 State of the Art

Despite the fact that many diagnostic techniques have been proposed, anamnesis and careful
clinical inspection form a natural diagnostic basis for the evaluation of lymphedema. The current
mainstream of investigation is lymphoscintigraphy.

Judging of the lymphedema and therapy effect by measurements of the limb perimeter has a
restricted value only. It provides information on a volume decrease of the liquid in the given region
in the case of clinically advanced lymphedema. The inspection do not, however, provide informa-
tion on presence or absence of functional disorder of the lymphatic system. Imaging techniques
such as ultrasonography, computed tomography and magnetic resonance provide gross anatomic
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information rather than a functional assessment of lymph drainage [13, 17]. Lymphoscintigraphy
even suits much more for diagnostics of lymphedema than also conventional lymphangiography
that provides information on morphology of lymphatic vessels. A lower cost, non-invasiveness,
lower toxicity and lower radiation load are other advantages, comparing to roentgen lymphan-
giography. Thus, both the proper diagnosis of latent lymphedema and evaluation of the therapy
effect require reliable evaluation of diagnostic and post-therapeutic lymphoscintigraphy.

The qualitative lymphoscintigraphy also called static qualitative scintigraphic inspection anal-
yses the scintigrams for visualization of lymph vessels and nodes, dilatation of vessels, existence
of collateral vessels and dermal backflow. It means it allows the characterization lymphatic mor-
phology. The reported sensitivity of the morphologic evaluation is 71% [92]. However it turned
out there, that this evaluation is sufficient for late disease stages but diagnostics for the critical
early latent stage is poorly supported with the results depending enormously on the skill of the
inspecting expert.

Consequently, another lymphoscintigraphic examination is necessary mainly for improving
of diagnostics of lymphedema in its latent stage. Therefore there have been efforts to quantify
scintigraphy. That is to find such quantitative parameters from scans for assessment of the
lymphatic system and the stage of the disease. Both names, quantitative and semi-quantitative
scintigraphy, are used for it in various papers. The reason why some authors use the term semi-
quantitative is to emphasize that the scintigraphy is unable to quantify lymphatic flow rate. By
contrast, the quantitative scintigraphy is used herein to distinguish it from visual qualitative
evaluation. A few works are devoted to lymphoscintigraphy quantification up to now. There
are mainly publications from eighties [11, 12, 29, 50, 92]. Employed methods differ by radio-
pharmaceutical used, locality administration and acquisition times. Majority of them found the
quantitative evaluation more accurate in detection of incipient lymphedema. For instance, the
sensitivity of 91% and specifity of 100% were found for 190 extremities at 115 patients [29] when
the results are evaluated simultaneously morphologically and semi-quantitatively. Though, ma-
jority of them concerns examination of lower limbs. None of them gave the absolutely satisfying
solution for the upper limbs. This is due to the fact that dynamics of drainage rate of upper
limbs differs substantially from that of lower limbs.

An extensive group of studies correlate quantitative parameters acquired directly from a few
scans with clinical findings of the disease stages, specifically the arrival times and late storage
activities in pre-specified regions of the forearm, upper arm and axilla [36, 62, 71, 89, 92]. The
experiments with the arrival times showed the promising results on the lower limbs but the
similar results for upper limbs were not useful [92]. The arrival times alone were discarded by
some authors for the evaluation supposing lymphedema results from decreased flow. The arrival
time is a measure of velocity [62] but a reduced velocity may still be associated with normal (or
even increased) rate of flow. The reason is that the flow rate is also function of the cross-sectional
area and it is known that lymphatic vessels dilate after proximal obstructions. Storage activity
in regional lymph nodes has been shown to be a useful diagnostic tool in cases of unexplained
edema [92] and has been reported to be the most sensitive marker of lymphatic failure in breast
cancer-related lymphedema [46, 59, 88]. In study [30], 100% of patients with arm swelling showed
reduced storage activity in the ipsilateral axilla compared with that in the contralateral axilla at
2 years after surgery. However, patients in the study had between 5 and 35 axillary lymph nodes
removed during surgery and had subsequent irradiation of the area, such that no meaningful
comparison could be made.

The more elaborate examination of upper limbs is addressed e.g. in [38, 89, 91]. Authors
of [91] use so called transport-index based differentiating nine stages of four parameters reflecting
lymphedema. The method is time consuming and potentially strongly biased by subjective errors
of the evaluating medical doctor. Authors of [89] performed dynamic scintigraphy in axilla region
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for 45 minutes; they acquire late images with subsequent quantifications in ROIs of forearm, arm
and liver 5 hours after radiopharmaceutical administration. These procedures, as well as methods
using acquisition time of 120 minutes [92] or performing evaluation on the basis of 4 whole-body
scintigrams in time intervals from 2 minutes to 2 hours after the administration [38], are not
routinely applicable. It motivates search for new ways of diagnostic [70].

Depot clearance studies (e.g. [12, 58, 72]) are the only inspections employing the dynamic
models. They examine the rate at which radiolabelled colloid is cleared from the initial site
of injection. As the tracer clears from depot in exponential fashion it is simple to compute its
removal rate. Least-square method is usually used for it. This parameter has been considered to
be the best parameter for assessing lymphatic flow but many studies found it to be of a little use
in the evaluation of lymphedema [30, 46, 59]. The explanation for this may be recent evidence
suggesting the edema is the result of increased lymph formation rather than decreased flow [84].

In summary, reliable quantitative evaluation applicable under routine conditions of a few
measurements is still missing. Chance for the resolution may be the studying the dynamic
properties of lymphatic system at scintigraphic inspection at the whole limb. If the dynamics at
the injection site seemed as the important feature then similar characteristic from the rest of limb
can bring additional useful information. The dynamics in the injection site is a function only
of the flow rate and local diffusion, but the rest of the limb reflects also other characteristics of
lymphatic system including lymph formation. Dynamics of local tracer accumulation can serve
for more detailed evaluation. It can reveal e.g. the location of tapering or blocking of lymphatic
flow. Hence, it is necessary to exploit data from the whole limb. In this case, the available data
are accumulated activities in predefined regions of interest (ROI). To evaluate the dynamics of
lymphatic system at scintigraphy inspection requires to employ dynamic models describing the
accumulation of the radiotracer.

Surprisingly, to the best author’s knowledge, there has not been yet any published attempt
employing modelling of the accumulation dynamics of the radiotracer in the limb during the
lymphoscintigraphy except the mentioned modelling of depot clearance. The present work is an
attempt to fill the gap believing it can improve the diagnosis of lymphedema.

In general, there are two possible basic methods how to derive such model. The physically
based approach in which model is obtained by application of physical principles and laws. Alter-
natively, the data based approach where the model is obtained directly from experimental data
using system identification [53, 81] and time-series analysis [7, 8].

Detailed modelling using the physically based approach is almost impossible here. The mod-
elling of the liquid systems is rather complicated in general. Moreover, the behaviour on various
limbs is quite variable and the physics of the lymphatic process in the limb is not understood
enough to specify mathematical model of radiotracer diffusion uniquely. Even if such model
would be constructed, that should be a version of partial differential equations, then it would
be very complicated with many unknown parameters. Therefore it could not be practically used
thereafter. The only possibility, then, is to adopt data based approach with a sufficiently flexible
but relatively simple black-box models with a few of unknown parameters [71].

Already at the beginning it is necessary to exclude simple deterministic models as the suit-
able way of description. The reason is that data available for the processing can be “corrupted”
with the uncertainty due to variation of measurement conditions but surely they are corrupted
with uncertainty caused by the physical nature of the measurement process — counting particles
of ionizing radiation in some fixed time interval. Using then the traditional deterministic for-
mulae, the data uncertainties are cumulated in the uncertainty of the results. The uncertainty
of the results obtained in this way is unknown. A systematic way how to incorporate also the
uncertainties into the model, it means to make the whole description consistent, is to employ
stochastic modelling [40, 41, 48].
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Various well-established techniques how to obtain suitable stochastic model from the data has
been already proposed and the research carries on. Publications concerning system identification
and time series analysis is devoted directly to this problem [2, 8, 20, 31, 53, 68, 79, 81]. Though,
majority of techniques assume sufficient amount of data and offer a limited ability how to in-
corporate further information (besides the model structure) into the final model. Consequently,
limited number of data prevents their usage here. The Bayesian processing seems to be the only
viable option.

The main reason to use Bayesian approach is that it allows to collect and handle all available
information while the other techniques give user less freedom to express the prior knowledge and
combine it consistently with data. This is important in the considered inference problem where
the lack of data has to be compensated by careful employment of additional information. Since
the unknown parameters of black-box models are actually not estimated in Bayesian approach
but the whole a posteriori probability distribution for them calculated, problems like biasedness
become mostly irrelevant. It is different from majority estimation methods where mostly point
estimate is obtained and its uncertainty is expressed asymptotically. Such point estimate is not
in many cases representative enough. Besides, in Bayesian framework there are no technical
computational troubles even if the number of data is smaller than the number of unknown
parameters. The next important reason for employing Bayesian approach is that theory of
Bayesian decision making under uncertainty [5, 6, 47, 73] offers a consistent framework for solving
various decision problems over the used model. The model alone is important outcome but its
main aim is to serve as means for real decision making purposes.

This thesis comprises the proposal of quantitative scintigraphy methodology but it is also
practical example demonstrating the strength of Bayesian approach to decision making. It can
be considered as the case study that attempts to solve various partial tasks and problems that
have appeared important or useful within scintigraphy employing the general Bayesian theory.

1.3 Objectives of the Thesis
The general aim of this work is to design methodology of quantitative scintigraphy, which helps
to improve the assessment of lymphedema especially in its critical latent stage. At the same
time, the demands of the methodology on data should stay restricted to be practically realizable,
i.e. to get along with a limited number of measurements.

The emphasis is given on the simplified modelling of the accumulation dynamics of the radio-
tracer in regionally predefined parts. It forms the core of the proposed solution of the problem.
Other important part of the thesis comprises employment of the proposed model for partial de-
cision tasks useful within scintigraphy evaluation. In particular, the work solves the following
specific subtasks:

Modelling of accumulation dynamics of tracer in the ROIs Design of suitable model is
the necessary prerequisite for the success of the whole quantification. Bayesian approach
using available data and expert knowledge is employed here.

Reconstruction of time activity curve on individual ROIs The scintigraphic response of
the lymphatic system on individual ROIs, called time activity curve, has been the initial
principal motivation for the modelling. This whole curve or some points on it form the basis
of quantitative evaluations. Besides it gives further useful visual information. Therefore
the whole response is reconstructed from its few measured points.

Selection of appropriate sampling times The amount of available data is a priori limited
due to the routinely applicable evaluation. Consequently, it is obvious that the used mea-
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surement times have a strong influence on the model estimate and consequently on results
of whole quantification. Since the measurement times are not a priori fixed, their optimiza-
tion is possible. A suitable manner of optimization is searched for.

Comparison of patient’s limbs One of general objectives of quantitative scintigraphy is to
compare the patient’s limbs and decide if they differ or not. It is a very useful diagnostic
aid, since, often it is known that one limb is healthy and it can act as a control one for
evaluation of the other limb. The way how to treat this decision problem is proposed.

Computation of promising quantitative parameters It is expected that some quantita-
tive parameter or a combination of them are suitable for the disease assessment. Employing
the proposed model various quantities can be computed. It will be demonstrated on some
quantities traditionally used in other nuclear medicine problems.

Verification In order to evaluate the proposed methodology, it has to be verified on the real
scitigraphic data and compared with the clinical findings and qualitative scintigraphy where
it is possible.

1.4 Layout of the Thesis

This thesis is divided in 8 Chapters and organized as follows.
The Chapter 1, you are just reading, gives a general introduction to problem treated in this

thesis. It provides an overview of the current state of the art in the field scintigraphy quantifica-
tion, it shows what is missing and stresses what has motivated this work. The direction of the
proposed solution employing Bayesian framework together with specification of the objectives of
the thesis follows.

In order to understand the function of the lymphatic system, complication of lymphedema
and its evaluation, the Chapter 2 gives their description. It contains the specification of scinti-
graphic data available for the designed methodology of scintigraphy quantification. Also, other
techniques of investigation of lymphatic system used for the verification of the proposed scinti-
graphic methodology are described.

The Chapter 3 provides basic ideas, statements and relations from the theory of Bayesian
decision making under uncertainty. It contains only those parts of the global theory that are
directly employed in the thesis.

The Chapters 4, 5, 6 and 7 present main contribution of the thesis. Chapter 4 is focused on
the proposal probabilistic model that describes scintigraphic visualization of lymphatic system
behaviour on the limbs of the patients. It contains general decomposition of the global observation
model along the limbs of patients through suitable parametrisation together with the design of
concrete models describing scintigraphic response on individual ROIs.

The parametric and predictive inference for all the considered models are expressed in the
Chapter 5. It treats the partial difficulties with the computation of those inferences important
to our purposes.

The Chapter 6 is focused on solution of all partial subtasks connected with scintigraphy
quantification.

In Chapter 7 the proposed methodology is verified on the set of various experiments over the
real scintigraphic data and the results compared with the conclusions of physicians.

Chapter 8 summarises the results of the thesis and points out to the open problems which
have to be solved in the near future.
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1.5 Methods
The approach is based on a systematic employment of the Bayesian theory [5, 6, 47, 73]. It
is not used only for the determination of the model but the general theoretical framework is
used for solving various decision problems. The whole work can be considered as the case study
demonstrating the applicability of Bayesian theory to particular real-life problem.

A good numerical practice, standard and tailored approximation methods are used. The
resulting algorithms are coded in MATLAB.
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Chapter 2

Lymphedema and
Lymphoscintigraphy

The aim of this Chapter is to give a description of medical and physiological background of
lymphedema and its scintigraphic evaluation. This should help to understand the essence of the
addressed diagnostic problem.

The basic information about the structure and function of the lymphatic system together
with complication of lymphedema are outlined in the Section 2.1. The medical terms used
should serve as technicians introduction into specialized language of medical articles. It covers
also classification for lymphedema and its clinical evaluation.

The Section 2.2 is devoted to the scintigraphic inspection. The standard imaging procedure at
the Clinics of Nuclear Medicine of the Faculty Hospital Motol is described together with its recent
morphologic semi-quantitative evaluation used. At the end, the specification of scintigraphic data
available for Bayesian analysis is made.

2.1 Upper Limb Lymphedema
In 1908, Handley described morbidity associated with a brawny swelling of the arm in patients
with carcinoma of the breast [34]. Halsted, in 1921, described the same condition as a compli-
cation of radical mastectomy [33]. Lymphedema has been described as “a progressive pathologic
state or condition characterized by chronic inflammatory fibromatosis and hypertrophy of the
hypodermal and dermal connective tissues” [54]. Although now rarely seen in untreated breast
carcinoma, it remains a common complication of breast cancer treatment (see Figure 2.1). Those
affected have uncomfortable, unsightly and sometimes functionally impaired arm prone to re-
peated episodes of superficial infection. There exists the extremely rare but potentially fatal
possibility of secondary lymphangiosarcoma [?].

Lymphedema is defined as the accumulation of an interstitial fluid in abnormally large
amounts [22]. There are main two categories of lymphedema — primary and secondary. Primary
lymphedema sometimes called “idiopathic” (of an unknown origin) is a genetic abnormality caus-
ing an insufficiency in lymphatic drainage. It can be present at birth, or more commonly occur
at puberty or later in life. Secondary lymphedema is due to an external influence which reduces
the drainage of the once normal lymphatics. Secondary lymphedema most often affects limbs.
Lymphedema decreases mobility, causes embarrassment, can lead to depression, and causes a
general worsening of the patient’s life and health. If the lymphedema is severe, especially if more
than one limb is involved, the patient is excessively heavy.

9
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Figure 2.1: Lymphedema affected limbs.

2.1.1 Aetiology and Associated Factors
Underlying pathophysiology of breast-cancer-related-lymphedema (BCRL)is still not clearly un-
derstood. BCRL has long be considered a result of reduced lymph flow. The accepted aetiology
for this condition is that dissection of the axilla interrupts the lymphatic drainage pathways
from the arm, thus reducing the capacity for lymph drainage. The resulting inability to clear
protein from the interstitial fluid leads to an increased protein concentration, with a reduction
in the colloid osmotic pressure gradient, which acts against capillary filtration. The volume of
fluid leaving the capillaries therefore increases, with edema developing until the increased hy-
drostatic pressure in the interstitium creates a new equilibrium, a “high protein” edema. The
increased level of protein both attracts fluid into the tissues and also provokes inflammation
and fibrosis within them [1]. Gradually it leads to the characteristic appearance of the brawny
limb. The circulation of cellular elements such as lymphocytes and macrophages is hindered and
their function may be suppressed [74]. Evidence supporting this comes from lymphangiography
experiments, where radioactive tracers injected into peripheral lymphatics takes longer to reach
the axilla in the swollen arm than in the normal arm. It also follows from lymphoscintigraphy
studies, where removal rate of radioactive tracers from lymphedematous tissue is significantly
reduced compared to the normal, contralateral arm.

Recent research indicates that the pathophysiology is more complex than a simple axillary
lymphatic obstruction as a result of the cancer treatment. Stanton et al. [83] have shown that,
although the clearance rate of radioactive substances from the swollen tissue in the affected arm
is significantly lower than of the contralateral arm, in the non-swollen areas of the affected limb
the drainage of fluid is faster than in the normal arm. One explanation for this finding is that
the lymphatics in the swollen area are unable to cope with the increased resistance to flow and
have become failing vessels. Consequently, a higher interstitial pressure is needed to drive the
fluid along the lymphatic vessels. Fluid formation appears to be increased in the non-swollen
parts of the affected arm.

Many risk factors have been cited leading to lymphedema following treatment of breast cancer.
Types of treatment, both surgery and radiotherapy, are the most consistent correlates as they
alter lymphatic pathways by clearance or damage of lymphatic nodes. Postoperative trauma and
infection has often been put forward as a major correlative factor [60].
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2.1.2 Lymphatic Physiology and Anatomy
The lymphatic system has two basic roles within the body. First, lymphoid tissue is involved
in the production of cells and antibodies, destruction of red cells and other immunological
tasks. Second, there is circulation of lymph, which serves to carry away from the tissues protein
molecules and other large structures including particulate matter [49].

Lymphatic vessels drain the interstitial fluid, which is itself derived from the filtration and
diffusion of water and molecules from blood capillaries. The forces acting upon water in this
exchange are the hydrostatic pressure gradient from capillary to interstitium, and the colloid
osmotic pressure gradient exerted by the plasma proteins in the other direction [69]. Two com-
ponents contribute to the net flow rate in the lymphatics — lymph formation and lymph propul-
sion. The first describes fluid transport from the interstitium into the initial lymphatics, while
the second refers to the systematic forces, which drive lymph from the initial capillaries into the
collecting vessels, through the nodes and ducts, and eventually back to the blood. These two
components are coupled.

Lymphatic capillaries in the connective tissue form a dense anastomosis plexus, draining into
lymph-collecting vessels. These initially rely on external compression, principally secondary to
striated muscle contraction, to generate flow, multiple valves ensuring unidirectional movement of
lymph. In the larger, more proximal vessels, intrinsic smooth muscle within the vessel generates
intermittent rhythmic contraction of the walls of the lymph vessels, the magnitude of which is
apparently determined by the supply of lymph, behaviour akin to the chronotropic and ionotropic
actions of the heart [56]. Superficial and deep systems are divided by the fascial layer, with a little
communication between them. All collecting vessels pass through lymph nodules and nodes. The
nodes receive lymph from valved afferent vessels. The lymph is then filtered through the node
and passes out through a single efferent vessel, which also contains valves to prevent backflow.
The nodes produce and contain lymphocytes and macrophages to phagocytose irregular cells.
The trunks are the largest vessels that drain lymph from the final set of nodes into the ducts.
Lymph fluid moves through the lymphatics ducts as a result of inspiration — as the diaphragm
descends, the intra-abdominal pressure increases as the intra-thoracic pressure decreases. This
creates gradient in the thoracic duct and encourages the lymph flow upwards. The lymph then
flows back into the main circulation via the left and right subclavian veins.

In the arm, superficial drainage lymphatics from the hand and forearm converge to form
radial, median and ulnar bundles. These come together above the elbow to create medial upper
arm bundle, which also receives drainage from the medial part of the upper arm. This bundle, in
the form of three or four proximal trunks, pierces the clavipectoral fascia to enter the axilla. The
lateral part of the upper arm drains via the smaller lateral upper arm bundle, while the deep
system, carrying lymph from the muscular compartments, follows the brachial artery to the axilla.
The deep lymphatic vessels and medial upper arm bundle drain into the central and axillary vein
groups, with efferent vessels then passing to the subclavicular group. From here, the subclavian
lymphatic trunk emerges to drain into the venous system at the jugulosubclavian confluence.
The lateral upper arm bundle runs in the deltopectoral groove before draining directly into the
subclavicular node group [69].

2.1.3 Clinical Symptoms and Classification for Lymphedema
The typical clinical symptoms of the lymphedema are the swelling of the affected extremity,
edema in the late stage, normal or pale skin colour, positive Stemmer’s sign (skin over toes can
barely be lifted), mounds of swelling on dorsum of foot or hand, toes swollen like sausages. A
degree of arm swelling in the early postoperative period is commonly observed and tends to settle
spontaneously within a matter of weeks [57]. Lymphedema may, however, develop months or
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years later. Onset may be gradual, or rapid. Patients occasionally identify a precipitating factor,
such as a minor infection following cut or graze, or a greater than usual degree of exercise involving
the arm [93]. The swelling is initially soft, pits on pressure and may reduce with elevation. With
time and recurrent superficial infection the characteristic changes of the “brawny” arm are seen;
the edema is now non-pitting and accompanied by skin changes. Occasionally, this situation
progresses to unmistakable “elephantiasis” [21].

Two classifications for grading of upper limb lymphedema exist. Three grades classification
produced by International Society for Lymphology [69] and newer Schmidtke classification [63]
preferred in this work:

Grade I: stasis without clinical symptoms of edema, only non-specific indications (sensed pres-
sure, tension, increased fatigue of limb) are observed;

Grade II: reversible (localized) edema with evening effusion of the limb;

Grade III: tough irreversible lymphedema restricting motility and thickening the skin;

Grade IV: elephantiasis with secondary skin changes.

Unfortunately clinical staging is based on subjective criteria and is therefore subject to significant
observer biases.

It is known that the swelling tends to be non-uniform along the limb. The proximal forearm
and distal upper arm are commonly affected, but the hand is frequently spared, or may swell
only if certain physical tasks are performed. This is the reason why the employed clinical staging
evaluates the parts of the limb separately.

2.1.4 Treatment
Primary lymphedema and grades III and IV of secondary lymphedema are largely incurable. In
the absence of a cure, precautions and prevention are emphasized. The treatment of established
lymphedema varies from doing nothing at all to pursuing a host of aggressive surgical procedures,
as was particularly the case in the past.

At present, conservative measures form the mainstream of management, with surgery re-
served for resistant cases. The principles of conservative treatment are hygiene, elastic compres-
sion hosiery in combination with a gentle centripetal massage, exercise, the use of pneumatic
compression devices and elevation. They are covered in the program of complex decongestive
physiotherapy (CDP) [39]. The place of pharmacological therapy is still unclear. The use of drugs
centres on attempts to encourage the breakdown of protein deposited within a limb. Though the
employment of a suitable benzopyrone group of agents has serious side-effects. The used surgery
techniques for the cases resistant to CDP include the debulking procedures and liposuction.

2.2 Lymphoscintigraphy
Indirect lymphoscintigraphy provides non-invasive, cost effective, highly sensitive method which
is able to assess functional and morphological abnormalities of the lymphatic system on the
peripherals, consequently upper limb lymphedema as well.

Technique is very simple, requiring the subcutaneous injection of a small volume of the radio-
pharmaceutical with external scintillation detection. The patient does not need to be hospital-
ized, besides there are unlimited possibilities for repetition. It readily demonstrates the location
of major nodal groups and lymphatic drainage patterns at a low price and with low toxicity and
radiation exposure to the patient. It provides adequate information to confirm the diagnosis of
lymphedema.
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An inherent limitation of lymphoscintigraphy is its poor visualization of the deep lymphatic
system. Although the obtained images are poorer than those obtained by direct lymphangiog-
raphy the indirect method has several advantages. The lymphangiography with oily contrast
medium is technically more difficult and is uncomfortable for patient. It has been shown to
damage the lymphatic vessels further and it is no longer in a common use. Besides scintigraphy
provides functional information on movement of labelled protein within the lymphatic system.

Nuclear assessment of lymphatic flow can be traced back to the early 1950’s. The original
studies utilized Gold-198 colloid as the radiopharmaceutical. At present, 99mTc labelled colloidal
particles are used. In order to make this method efficient, it is necessary to use solution with the
particles of the diameter less then 50 nm for which the permeability of lymphatics is maximal.
Then colloids are carried by lymphatic flow from the interstitial space through the limb and,
finally, to the liver. Larger particles remain mostly at the injection site. The scintigraphic
images visualize the accumulation and flow of solutions with colloids through the lymphatic
system of the limbs. Its time evolution reflects the state of a patient’s lymphatic system.

The scintigraphic inspections vary little bit in different centres. They differ by radiophar-
maceutical used, locality of administration and acquisition parameters. Standard examination
method applied at the Clinics of Nuclear Medicine of the Faculty Hospital Motol, the source of
our data, is described bellow.

2.2.1 Scintigraphic Imaging

In a standardized inspection, 20 MBq of 99mTc-labelled sulphur colloid (Lymphoscint) in the
smallest manageable volume (0.1–0.2 ml) is injected subcutaneously to the 1st and 4th digital
web space of both hands. The aim is to follow lymphatic drainage of medial and lateral bun-
dles of surface lymphatic system of upper limbs. The subcutaneous injection is preferred to
intracutaneous one as it has been found better for lymphedema evaluation [71].

Images are obtained with the large-field-of-view gamma camera Sopha DXT with a low energy
high resolution collimator LEHR (peak 140 keV, W 20%). Each image is accumulated over
one minute in the acquisition matrix 64x64. Immediately after the injection, the initial image
positioned to the site of injection is acquired. Then the muscular exercise commences to stimulate
lymphatic flow (flexion and extension in the wrist are performed for 30 minutes). Next images
of the whole arm are acquired in semi-flexion with a led shielding on hand and wrist, 30 and 180
minutes after administration (see Figure 2.2). In some cases, the examination is complemented by
additional images. Markers on all images indicate elbows, wrist and shoulders. For the purpose
of quantitative evaluation experiments, the number of acquired images has been increased. The
majority patient data in experimental set includes 3–4 images besides the initial scan.

2.2.2 Qualitative Evaluation

For the healthy limb early images should demonstrate the expected major lymphatic vessels.
Several axillary nodes are visualised later. Sometimes the accumulation in 1 to 3 cubit nodules
is observed. Rarely, nodules at supra-clavicular region appear and a manifestation of pectoral
nodule has been also referred.

Abnormal findings include dermal backflow, absent or faintly visualized regional lymph nodes,
presence of collateral lymphatic vessels and no or barely and delayed visualized lymphatic ves-
sels [38]. No axillary lymph nodes visualisation and retention of the radiopharmaceutical in the
locality of the administration correlates with severe lymphedema in clinical grading and poor re-
sults of CDP. For patients without axilla externation and radiotherapy, the missing visualization
of lymphatic nodules indicates the serious lymphedema. A few lymph nodes revealed in the axilla
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Figure 2.2: Typical scintigraphic images of upper arm with definition of ROIs. The left part is
the initial image obtained over the injection sites of both limbs. The right one is the image of
the whole arm where also the individual ROIs are defined.

with marked outflow to the subclavicular lymph nodes and delayed transport of the radioactive
material correlates with moderate lymphedema in clinical grading and slightly better effects of
CDP. Direct although delayed lymph outflow to the supraclavicular lymph nodes shows patients
with clinically mild lymphedema achieving the best results in CDP. At the mild and latent forms,
discrete dermal backflow can occur, mostly at the distal part of the forearm. Rarely, increased
repletion of lymphatic vessels or collaterals is visualized.

Due to the discrete character of the findings the employed qualitative evaluation is done for
the parts of the limb separately.

2.2.3 Arrangement for Quantitative Evaluation
The reliable quantitative evaluation is still missing in spite of many attempts done. Their
overview is given in the Section 1.2. The arrangement of scintigraphic data used for the de-
signed methodology follows.

The raw (non-reduced) images present the maximal information that can be gained from the
scintigraphic imaging. For the purpose of proposed quantitative evaluation, the information from
the whole images is reduced into the integral counts reflecting the accumulated activity on the
pre-specified regions of interest (ROI).

The ROIs are drown around the axillary region and around the the forearm and upper arm (see
Figure 2.2). The accumulated activities on the ROIs are aggregated as the total integral counts
over each ROI corrected for physical decay of radionuclide (the physical half-life of Technetium
is Tp = 6.023 hours). Also the total counts from the initial image reflecting administered activity
are stored. It allows us to calibrate the data to the injected amount.

The available data for the Bayesian data analysis are the sequences of the counts reflecting
the accumulated activities on the ROIs of axilla, upper arm and forearm in several times and the
the initial “injected” activity count from the injection site. For the verification of the proposed
methodology the clinical findings, Section 2.1.3, and outcomes of the qualitative scintigraphic
evaluation, Section 2.2.2, are also available.



Chapter 3

Bayesian Decision Making

Theory of statistical decision-making under uncertainty [5, 90] provides a unified logical structure
which can be used for solving various problems ranging from parameter estimation, prediction,
pattern recognition, learning, testing of hypothesis etc. up to feedback control. At a general level,
the theory helps the decision maker to select one (optimal) of the available options (decisions),
when the uncertainty has to be taken into account. These options relate to a part of the real
world, to a system, which is to be described or influenced.

The Chapter starts with formal introduction of a decision making under uncertainty problem
in the Section 3.1. The Section 3.2 is then devoted to the used Bayesian solution called Bayesian
theory. Its aim is not to give full overview of the theory (it can be found e.g. in [6]) but to extract
the basic principles, statements and relations needed. The technical mathematical background
is suppressed for clarity reasons.

3.1 Decision Making Under Uncertainty

We spend a considerable proportion of our lives in a state of uncertainty. This uncertainty may
relate the past situations, where direct knowledge or evidence is not available, or to present or
future developments which are not yet completed. Whatever the circumstances, all states may be
described in the same way: namely, as an individual feeling of incomplete knowledge in relation
to a considered situation.

Many feelings of uncertainty are rather insubstantial and we do not seek to analyse them.
On the other hand, we all regularly encounter uncertain situations in which we at least aspire to
behave “rationally” in some sense. This might be because we face the direct practical problem
of choosing from among a set of possible actions, where each involves a range of uncertain
consequences and we are concerned to avoid making an “illogical” choice. Alternatively, we
might be called upon to summarise our beliefs about uncertain aspects of the situation, bearing
in mind it will be used subsequently as the basis for choosing an action. More specifically, we
might regard the summary itself, i.e. the choice of particular mode of representing beliefs, as
being a form of action to which certain criteria of “rationality” might be directly applied.

To choose the best among a set of actions would, in principle, be immediate if we had perfect
information about the consequences to which they would lead. The presented theory solves the
decision problems for which such information is not available, and we must take uncertainty into
account as a major feature of the problem.

15
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Figure 3.1: Decision tree.

The general structure of decision problem over real system involving choices under uncertainty
is determined by five basic elements:

(i) decision ξ ∈ ξ∗ which is directly selected by the decision maker from the set of available
actions (options);

(ii) (decision) experience Pξ ∈ P∗
ξ contains knowledge available to the decision maker for the

decision ξ;

(iii) (decision) ignorance Fξ ∈ F∗
ξ specifies knowledge unavailable to the the decision maker for

the decision ξ, i.e. the uncertainty expressing both incomplete knowledge and randomness.
F∗

ξ contains uncertain events describing uncertain outcomes for each pair (Pξ, ξ).

(iv) consequences C(Pξ, ξ, Fξ) corresponding to each realisation Q = (Pξ, ξ, Fξ) of system
behaviour Q∗;

(v) the relation ≤, which expresses the decision maker’s preferences between pairs of actions,
so that ξ1 ≤ ξ2 signifies that ξ1 is no preferred to ξ2

The idea is as follows. Suppose we choose an action ξ having available information Pξ; then one
and only one of the set of uncertain events F∗

ξ occurs and leads to the consequence C(Pξ, ξ, Fξ).
The decision problem can be presented schematically by means of a decision tree as shown in

Figure 3.1. The square represents a decision node, where the choice of an action is required. The
circle represents an uncertainty node, where the outcome is beyond our (total) control. Following
the experience available, choice of an action and the occurrence of particular event the branch
leads to the corresponding consequence.

The described problem presents general static decision task where the single decision is done.
Of course, many practical problems involve sequential considerations but, as shown in [6], they
reduce, essentially, to repeated analysis based on the above structure (through backward induc-
tion). Besides this work gets along with the framework of static decision task.

An individual’s perception of the state of uncertainty resulting from the choice of any par-
ticular ξ is very much dependent on the information currently available Pξ. The representation
in Figure 3.1 only captures the structure of the decision problem as perceived at a particular
point in time. Preferences (v) about the uncertain scenarios resulting from the choice of actions
depend on attitudes to the consequences involved and assessment of the uncertainties attached to
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the corresponding events. While the former are independent of the state of information concern-
ing relevant events (consequences are defined on the space Q = (Pξ, ξ, Fξ)), the latter are clearly
subject to change as the new information is acquired and it may well change overall preferences
among the various courses of action.

3.2 Bayesian Approach
The Bayesian theory of decision making under uncertainty is derived on the axiomatic basis, with
intuitive operational appeal, applied over the general structure of decision problem described in
the Section 3.1 (see e.g. [6]). It uses the dual concept of probability , providing the quantita-
tive numerical measure of the uncertainty attached to each event, and utility (loss) , providing
numerical measure of value for consequences.

The probability in Bayesian view is not interpreted in terms of limits of relative frequencies
but more generally as a subjective degree of belief of a rationally and consistently reasoning
person (designer) which is used to describe quantitatively considered uncertainty.

Full description of the general static decision making in the Bayesian framework is given
hereafter in the Section 3.2.2 followed in Section 3.2.3 by the description of Bayesian learning —
technique which modifies the degrees of belief attached to the uncertain events according the new
acquired information. The important preliminaries precede them in Section 3.2.1. Section 3.2.4
summarizes elements occurring in the decision tasks with practical instances from problem of
lymphoscintigraphy quantification. The particular decision tasks employing the general frame-
work are listed in the Section 3.2.5 employing the general framework of static decision task.
At the end, the advantages and disadvantages of Bayesian methodology are pointed out in the
Section 3.2.6 and the used particular probability distributions are listed in the Section 3.2.7.

3.2.1 Preliminaries
In Bayesian view random means uncertain. Any quantity and event are therefore random and
uncertainty has a probability structure. This Section presents basic conventions and rules of the
probability calculus for the random quantities respected in the whole work.

Quantity is a mapping with a numerical range.

Realization is a value of the quantity. The quantity and its realization are not distinguish, as
usual. The proper meaning is determined by the context.

f is letter reserved for both probability functions (pf ) of discrete quantities and probability
density functions (pdf ) of quantities of continuous type. The meaning of the p(d)f is given
through the identifier of its argument. Implicitly all the general relations are defined for
the quantities of the continuous type. One has only to keep in mind that the integration
has to be replaced by regular summation whenever the argument is discrete.

Calculus with pdf s For generic possibly multivariate random quantities (α, β, γ) ∈ (α, β, γ)∗

and arbitrary function Z(α, β, γ) it holds:

Non-negativity f (α, β| γ) , f (α|β, γ) , f (β|α, γ) , f (β| γ) ,≥ 0.

Normalization
∫

α,β∗
f (α, β| γ) dαdβ =

∫
α∗
f (α|β, γ) dα =

∫
β∗
f (β|α, γ) dβ = 1.

Chain rule f (α, β| γ) = f (α|β, γ) f (β| γ) = f (β|α, γ) f (α| γ).
Marginalization f (β| γ) =

∫
α∗
f (α, β| γ) dα, f (α| γ) =

∫
β∗
f (α, β| γ) dβ.
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Bayes rule

f (β|α, γ) =
f (α|β, γ) f (β| γ)

f (α| γ)
∝ f (α|β, γ) f (β| γ) . (3.1)

The proportionality sign, ∝ means that the factor independent of β and uniquely
determined by the normalization is not explicitly written in the equality represented.

Conditional independence of quantities α and β under the condition γ

f (α, β| γ) = f (α| γ) f (β| γ) ⇔ f (α|β, γ) = f (α| γ) or f (β|α, γ) = f (β| γ) (3.2)

Expectation of function Z(α, β, γ) under the condition γ

E [Z(α, β, γ)| γ] =
∫

α,β∗
Z(α, β, γ)f (α, β| γ) dαdβ (3.3)

Pdf of transformed quantity β ≡ T (α) If T is bijection (one-to-one mapping) of mul-
tivariate quantity α, T : α∗ → β∗ ≡ T (α∗), with finite continuous partial derivatives
on α∗, Jij(α) ≡ ∂Ti(α)/∂αj , then

f (T (α)) |J(α)| = f (α) (3.4)

where | · | denotes determinant .

3.2.2 Static Decision Task
The static decision making deals with the design and use of a single decision rule R . The
optimal one from the group of admissible decision rules is searched for. Under term admissible
it is understood that such rules are causal, i.e. R : P∗

ξ → ξ∗, and meet the “technological”
restrictions.

The selection is based on the principle that the consequences C(Q) can be quantified, i.e. that
the degree of the achievement of the designer’s aim can be expressed numerically. Utility function
U : Q∗ → < (alternatively loss function Z : Q∗ → <) measures the quality of consequences
C(Q). The greater the value of U(Q) (alternatively smaller value of Z(Q)) the better. They give
the preferences among the consequences, though they are insufficient for ordering of decision
rules (options).

The overall numerical measure of value has to be attached to decision rule (option), which
depends both on uncertain events and consequences to which these events lead in order to select
the optimal rule. The only decision criterion compatible with the axiom system says [6]: The
optimal decision rule Ro

Ro(Pξ) ≡ ξo(Pξ), ∀Pξ ∈ P∗
ξ

is such admissible decision rule R which minimises the expected loss function

ξo(Pξ) ∈ arg min
ξ∈ξ∗

E [Z (Pξ, ξ, Fξ) | Pξ, ξ] . (3.5)

Such decision rule is constructed value-wise by assigning to each Pξ ∈ P∗
ξ a minimising argu-

ment ξo(Pξ) in (3.5). If there is more absolutely minimising arguments ξo(Pξ) (3.5) implies no
preferences. If the utility function is used instead of the loss function then the expected utility
is maximised.

As the uncertainty has probability structure in the Bayesian view, the loss is considered as a
“random quantity”, contingent on the occurrence of uncertain events. Then the expectation (3.5)
is identical with mathematical expectation (3.3).
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All the particular static decision tasks can be solved within this general framework. The
specific instances differ only in:

• Decomposition of the behaviour Q = (Pξ, ξ, Fξ) ≡(experience, decision,ignorance).

• decision rules R ∈ R∗ determined by the domain P∗
ξ and range ξ∗

• loss function Z : Q∗ ≡ (Pξ, ξ, Fξ)
∗ → <

These elements determine the outer probabilistic model f (Fξ| Pξ, ξ) needed for the minimisation
(3.5) where the minimised expectation is computed according (3.3) as

E [Z (Pξ, ξ, Fξ) | Pξ, ξ] ≡
∫
F∗

ξ

Z (Pξ, ξ, Fξ) f (Fξ| Pξ, ξ) dFξ. (3.6)

The pdf f (Fξ| Pξ, ξ) represents a model in the form suitable for the design of decision rule by
which the designer describes the real system with all the considered uncertainties. Construction
of such model is designer’s business.

Adopted natural conditions of decision making

In general, the ignorance part Fξ in the outer model necessary for minimization 3.6 depends on
the potential decision rule expressed by pdf f (Fξ| Pξ, ξ). It means that it is influenced by it.
However, there exist variety of decision tasks, where the designed decision rule has no influence
on considered ignorance. Thus decision ξ is superfluous in the conditioning, i.e.

f (Fξ| Pξ, ξ) = f (Fξ| Pξ) . (3.7)

It catches the adopted version of natural conditions of decision making [47]. Although the
decision is not present in condition of outer model (3.7) its optimization is needed as it is still
included in the loss function Z (Pξ, ξ, Fξ).

3.2.3 Learning

The previous Section 3.2.2 concerns the design of the decision rule in particular point of time
where the fixed experience (information) Pξ is at disposal. This Section deals with the question,
how the decision task changes if the new information is acquired and how the overall model is
modified by it. It corresponds to the case where the designer needs to revise his decision in
the light of new information. Such information is mostly relevant piece of evidence or data Y
obtained on the real system.

New data Y causes that the old decomposition of the behaviour, Q = (Pξ, ξ, Fξ), is naturally
modified to the new one, Q = (P̃ξ, ξ, F̃ξ), where

P̃ξ = (Pξ, Y ), F̃ξ = Fξ \ Y.

Data Y originally included in the ignorance Fξ moves to the experience P̃ξ of the new decom-
position. It is the only change in the framework of the static decision task which implies that
the expectation E

[
Z
(
P̃ξ, ξ, F̃ξ

)
|Y, Pξ, ξ

]
is minimised, so the outer model f

(
F̃ξ|Y,Pξ, ξ

)
is

needed.
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Update of the old model f (Fξ| Pξ, ξ) to the new version f
(
F̃ξ|Y,Pξ, ξ

)
captures the learning

through the new data Y . Bayes’ theorem (3.1) offers the straight way how to realize this learning
process:

f
(
F̃ξ|Y,Pξ, ξ

)
=
f
(
F̃ξ, Y | Pξ, ξ

)
f (Y | Pξ, ξ)

=
f
(
Y | F̃ξ,Pξ, ξ

)
f
(
F̃ξ| Pξ, ξ

)
f (Y | Pξ, ξ)

. (3.8)

The pdf f
(
F̃ξ| Pξ, ξ

)
represents prior (to data) model of unknown part F̃ξ, that allows us to

introduce information based on an expert knowledge. In order to make the Bayesian learning
about the part F̃ξ possible, a model that relates it with the observed data Y , f

(
Y | F̃ξ,Pξ, ξ

)
has to be determined. The pdf f (Y | Pξ, ξ) is the relevant outer model of the observed quantities
from the Bayesian viewpoint. The considered ignorance part F̃ξ contains those ignorance of our
interest. Generally, it can contain quantities that are never observed directly and, in spite of
this, we want to describe them. In summary, the Bayesian learning combines three information
sources: (i) prior model of the ignorance F̃ξ, f

(
F̃ξ| Pξ, ξ

)
, (ii) observed data Y , and (iii) model

that relates observations with ignorance part, f
(
Y | F̃ξ,Pξ, ξ

)
. In other words it corrects (i) the

prior model of the ignorance part, by means of (ii) data and (iii) model relating the ignorance
and data into the posterior model of ignorance.

In order to avoid cumbersome notation, explicit notational reference to the initial state of
experience Pξ is commonly omitted, e.g. f

(
F̃ξ| Pξ, ξ

)
≡ f

(
F̃ξ| ξ

)
.

Parametric modelling

The pdf f (Y | Pξ, ξ) is an important outer model describing the observed quantities Y on the
real system, that is always needed. Though, its exact construction in this form for non-trivial
cases is not realizable. The common and popular way how to overcome this problem is to employ
parametric modelling.

If a suitable parametrised model is constructed

f (Y |Θ,Pξ, ξ)

that is known up to unknown parameters Θ, then the outer model f (Y | Pξ, ξ) can be simply
gained as:

f (Y | Pξ, ξ) =
∫

Θ∗
f (Y |Θ,Pξ, ξ) f (Θ| Pξ, ξ) dΘ, (3.9)

where f (Θ| Pξ, ξ) is prior pdf of the parameter Θ, that allows us to introduce prior informa-
tion what is known in advance about parameters by analysis or experience. Thus, the joint-
distribution model f (Y,Θ| Pξ, ξ) (and consequently f (Y | Pξ, ξ) too) is determined by the pair
of of parametrised model f (Y | Pξ, ξ) and prior model of the parameter Θ, f (Θ| Pξ, ξ).

Parameter Θ is a part of ignorance, i.e. Θ ∈ F̃ξ, as it is not directly observable. So the
parametrised model f (Y |Θ,Pξ, ξ) belongs to the group of models f

(
Y | F̃ξ,Pξ, ξ

)
and prior pdf

f (Θ| Pξ, ξ) to f
(
F̃ξ| Pξ, ξ

)
. Consequently, according (3.8) the Bayesian generalized estimate of

parameter Θ is
f (Θ|Y,Pξ, ξ) ∝ f (Y |Θ,Pξ, ξ) f (Θ| Pξ, ξ) .

If the posterior pdf f (Θ|Y,Pξ, ξ) has the same functional form as the posterior pdf f (Θ| Pξ, ξ),
then the prior pdf is called conjugate or self-reproducing with respect to model f (Y |Θ,Pξ, ξ),
see e.g. [5].
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3.2.4 Construction Elements

The aim of this Section is to summarize elements occurring in all decision tasks. Their choice
and use represent typically specific decision subtasks that have to be harmonised with the final
aim considered. All the elements are commented and supplemented by the information from the
concrete problem of quantitative lymphoscintigraphy.

Data

Data Y connect the artificial world of evaluations with reality. Their information content is
crucial for the success of the decision making that use them. They belong to the decision
experience Y ⊂ Pξ. If the designer has an opportunity to influence the information content of
data he should do that by a proper experimental design [6, 47].

Generally the observable data can be split into two groups by definition of system influence.
System input is understood as directly manipulable “decision” that influences the system be-
haviour while the system output is an observable quantity that informs the decision maker about
the behaviour of the system. This decomposition is relative according the solved problem.

By the definition, the injection of radiotracer to the limb is the only system input, but it
is not directly measured here. All the scintigraphic data belongs to system output, even the
initial image measuring the injected amount of radiotracer. The scintigraphic imaging is already
standardized procedure, so there are not many possibilities to change any conditions. The only
possibility how to influence the information content of measured data is to select and change
their measurements times.

The obtained data can realize aspects that are a priori uninteresting for the problem at
hands. Thus, a wise and commonly used practice is to suppress uninteresting details in data
before further data processing [66, 64] . Such pre-processing makes pre-projection to a simplified
world. However, it influences the quality of the final decision, so it should be done carefully.

Aggregation of counts from the pixels of scintigraphic images within the ROIs expresses the
overall activity in the individual ROIs. Remotion of radionuclide decay is done to suppress its
role in the accumulation dynamics. The normalization of the scintigraphic data with respect
to injected amount has an important role, as it makes the data from various limbs directly
comparable.

Decision

At the beginning of solving decision making tasks there is a formulation of the addressed problem.
The major role has the definition what should be decided. It means to name all elements of the
decision ξ. The restrictions arising from various considerations (e.g. economic or safety, but also
causality restrictions) have to be considered in the design.

Within the designed scintigraphy quantification, the final major decisions are assessment of
the disease stages and quantitative comparison of limbs. Reconstruction of time activity curves,
optimization of sampling times, etc. are partial minor but important decision tasks to make the
scintigraphy quantification maximally useful.

Model

Generally, model f (Fξ| Pξ, ξ) in (3.6) is necessary for the design of the decision rule, see Sec-
tion 3.2.2. To make learning from data Y possible, i.e. to revise model necessary for decision
according the new data, it is replaced by the pair of models f

(
F̃ξ| Pξ, ξ

)
and f

(
Y | F̃ξ,Pξ, ξ

)
which have to be determined, see Section 3.2.3.
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In the case, where the outer model of observed quantities is constructed by means of para-
metric modelling (3.9), the considered parameters Θ belong to ignorance part F̃ξ and the pair
of models f (Y |Θ,Pξ, ξ) and f (Θ| Pξ, ξ) is necessary. The former defines traditionally used
parametrised model of data Y if the parameters of model are known while the latter allows to
express further information about the unknown parameters (it is dissimilarity from other tech-
niques). If other considered elements besides the parameters Θ belong to ignorance part F̃ξ they
have to appear in these models besides the parameters.

Lymphoscintigraphy quantification is based on modelling of scintigraphic response on the
limbs. Parametrised model describes this response by few parameters while the prior distribution
of parameters narrows the group of considered models according the expert knowledge.

Loss function

The loss function Z (Pξ, ξ, Fξ) quantifies the consequences of Q = (Pξ, ξ, Fξ), i.e. the degree
of the achievement of the designer’s aim. It should express these wishes as precisely as possible.
The choice of the loss function should be also harmonised with the model adopted. If it is
violated then design provides non-acceptable decision rule.

The reconstructed time activity curve and other quantifiers of interest are presented for
simplicity by means of point estimate — expected value, that is a consequence of used popular
quadratic loss, see Remark(s) 3.2.1. Other decision tasks employs the loss functions constructed
with respect to models employed.

3.2.5 Specific Cases of Static Decision Task
The specific well-known instances of employment of general static decision task, Section 3.2.2,
used in this work are listed bellow.

Point estimation

Point estimation can be cast in the considered framework as follows:

• Q = (Y, Θ̂,Θ) ≡(data at disposal, point estimate, unknown parameter)

• Admissible rules are of the form R : Y ∗ → Θ̂∗,Θ∗ ⊂ Θ̂∗

• Loss function Z measures a distance of Θ̂ and Θ. This distance may generally depend on
data Y , too.

The ignorance FΘ̂ coincides with the unknown parameter Θ. Thus, the outer model of the
system needed for decision making is f

(
Θ|Y, Θ̂

)
. The adopted natural conditions of decision

making (3.7) imply that the decision Θ̂ is superfluous in the conditioning. Thus, the needed
model coincides with the generalized Bayesian estimate f (Θ|Y ). For given Y , the optimal point
estimate is

Θ̂ ∈ arg min
Θ̂∈Θ̂∗

∫
Θ∗
Z
(
Y, Θ̂,Θ

)
f (Θ|Y ) dΘ.

Remark(s) 3.2.1

(i) The Bayes point estimate with respect to the specific popular quadratic form of the loss
function Z

(
Y, Θ̂,Θ

)
= (Θ−Θ̂)T M(Θ−Θ̂) is the mean of f (Θ|Y ), Θ̂ = E [Θ|Y ], if M−1

exists.
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(ii) The point estimate can be done for any part of multidimensional parameter Θ or its some
function. Task of parameter point estimation can be similarly adapted for point prediction
of potentially observable data that are part of ignorance set.

Testing of hypothesis

Hypothesis testing, a selection of the best variant among several alternatives, can be put within
our framework as follows.

• Q = (Y, ĥ, {Hh}h∈h∗) ≡(data at disposal, estimate ĥ ∈ h∗ ≡ {1, . . . , h̊ < ∞} of h, {hy-
pothesis list})

• Admissible rules are of the form R : Y ∗ → h∗

• Loss function Z is (̊h, h̊)-table with non-negative entries Z
(
Y, ĥ, h

)
, usually with zero

diagonal as no penalty is paid when ĥ = h.

Outer model needed is f
(
h|Y, ĥ

)
. The adopted natural conditions of decision making (3.7)

imply that the decision ĥ is superfluous in conditioning. Thus, we need f (h|Y ). For a given Y ,
the optimal decision in hypothesis testing is

ĥ ∈ arg min
ĥ∈ĥ∗

∑
h∈h∗

Z
(
Y, ĥ, h

)
f (h|Y ) .

Remark(s) 3.2.2

(i) Unlike in classical hypothesis testing [75], the testing is performed within a completely
specified set of alternatives.

(ii) If a pair of hypotheses is compared, h̊ = 2, the decision rule constructed according the
described methodology coincides with the celebrated Neymann-Pearson lemma [15].

In this case, off diagonal elements of Z
(
ĥ, h

)
penalise the classical errors of the 1st and

2nd kind [75].

(iii) Selection of the best model from the set of considered alternative models can be treated in
this framework.

Reporting beliefs as the decision problem

It can seem that problems of reporting inferences do not fall within the framework of decision
tasks, however, converse can be simply demonstrated [6].

Let’s consider the decision task which aim is to select from the list of various inference
statements f̂ (Θ|Y ) about unknown parameter Θ to be the best alternative for reporting beliefs
about Θ. The reason why the inference statement is selected from f̂∗ is that computation of
actual belief f (Θ|Y ) may be difficult. Then the tractable approximation f̂ (Θ|Y ) in f̂∗ is sought,
which is in some sense “close” to f (Θ|Y ). Then it can be cast in the considered framework as
follows.

• Q = (Y, f̂ ,Θ) ≡(data at disposal, reported inference f̂ about parameter Θ, unknown
parameter)
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• Admissible rules are of the form R : Y ∗ → f̂∗, f̂ (Θ|Y ) ≥ 0,
∫
Θ∗ f̂ (Θ|Y ) dΘ = 1,

(f̂ (Θ|Y )) is pdf

• Loss function Z
(
Y, f̂ ,Θ

)
measures the quality of inference report f̂ about Θ.

The outer model needed is f
(
Θ|Y, f̂

)
. The adopted natural conditions of decision making (3.7)

imply that the chosen report f̂ is superfluous in conditioning. Thus, the needed model coincides
with the generalized Bayesian estimate f (Θ|Y ). For given Y , the optimal inference reported is

f̂ ∈ arg min
f̂∈f̂∗

∫
Θ∗
Z
(
Y, f̂ ,Θ

)
f (Θ|Y ) dΘ. (3.10)

The considered proper loss function Z in (3.10) should respect here, that the best action is
to state one’s actual belief, i.e. f (Θ|Y ). The utility functions U (i.e. the negative loss function
Z) for this problem is often called score functions . For the problem of reporting pure inference
statements, it is natural to restrict to the class of local loss functions, Z

(
Y, f̂ ,Θ

)
≡ Z

(
f̂ (Θ|Y )

)
.

The local loss functions assess the value of distribution, f̂ , according the probability it assigns to
the “actual” outcome Θ. The only one existing smooth proper local loss function is of the form
(for more details see [6]):

Zlog

(
f̂ (Θ|Y )

)
= −A log f̂ (Θ|Y )−B(Θ), A > 0, (3.11)

i.e. it holds for (3.11)

E
[
Zlog

(
f̂ (Θ|Y )

)
|Y
]
≥ E [Zlog (f (Θ|Y )) |Y ] .

Consequently, if preferences are described by a logarithmic loss function (3.11), the expected
loss of reporting f̂ (Θ|Y ) rather then f (Θ|Y ) representing actual beliefs, is given by

D
(
f̂ (Θ|Y ) || f (Θ|Y )

)
= E

[
Zlog

(
f̂ (Θ|Y )

)
|Y
]
− E [Zlog (f (Θ|Y )) |Y ]

= A

∫
Θ∗
f (Θ|Y ) log

f (Θ|Y )

f̂ (Θ|Y )
dΘ, A > 0, (3.12)

Moreover, D (·|| ·) is non-negative and is zero, if and only if, f̂ (Θ|Y ) = f (Θ|Y ).

Remark(s) 3.2.3

(i) The measure (3.12) is natural general measure of discrepancy between a distribution and
its approximation (for simplicity, A = 1).

(ii) The quantity D
(
f̂ || f

)
, which arises here as a difference between two expected losses, was

introduced by Kullback and Leibler [51] as an ad hoc measure of directed divergence between
two pdfs. This the reason of the name Kullback-Leibler distance.
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3.2.6 Advantages and Disadvantages of Bayesian Approach

Summary of the advantages and disadvantages closes this Chapter concerning the Bayesian
decision making under uncertainty.

Choice of Bayesian methodology is determined especially by the following reasons:

• It combines in consistent way all accessible information sources, specifically theoretical
description of the given system, measured data and expert knowledge and experience.

• It does not rely on an asymptotic behaviour of estimates.

• It yields the information about uncertainty of the estimate and employs it also for the
decision tasks.

• It follows from previous items that this methodology is suitable to be used in cases of small
and uncertain data.

• Learning and decision making phases are bound up in consistent way.

On the other hand, groups of analytical and numerical disadvantages occur with using Bayesian
methodology. Among them belong:

• Impossibility to integrate pdf s analytically. This problem causes difficulties to normalize
the posterior pdf (see e.g. (3.8)) and also prevents to integrate-out redundant quantities
analytically [?, 86].

• Advantage of prior information is sometimes considered as the disadvantage, due to the
problems how to treat it.

• “Curse of dimensionality” — problem of task dimension growing with increasing amount of
data [77].

• Computational obstacles to evaluate non-normalized function (see Section A.1).

3.2.7 Particular Distributions Used

In this Section, particular univariate and multivariate distributions used in the thesis are listed.
The books [43, 44, 45] provides a mass of detail on these and others distributions.

These distributions provide the building blocks for statistical models and are defined in terms
of ”parameters”. Even in many cases these “parameters” coincide with considered parameters
Θ appearing in parametric modelling, see Section 3.2.3, for the present, “parameters” should be
simply regarded as “labels” of the various mathematical functions we shall be considering.

The Poisson distribution

A discrete random quantity x has a Poisson distribution with parameter λ (λ > 0) if its
pf Pn(x|λ) is

Pn(x|λ) = exp(−λ)
λx

x!
, x = 0, 1, 2, . . . (3.13)

The mean and variance are given by E [x] = V [x] = λ.
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The continuous uniform distribution

A continuous random quantity x has a continuous uniform distribution with parameters (α, β)
if its pdf Un(x|α, β) is

Un(x|α, β) = (β − alpha)−1, α < x < β (3.14)

It has mean E [x] = (α+ β)/2 and variance V [x] = (β − α)2/12.

The gamma distribution

A continuous random quantity x has a gamma distribution with parameters (α, β) (α > 0, β > 0)
if its pdf Ga(x|α, β) is

Ga(x|α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0, (3.15)

where Γ(x) =
∫∞
0
tx−1 exp(−t) is Euler gamma function. Its moments are E [x] = α/β and

V [x] = α/β2. If α = 1, x is said to have an exponential distribution.

The Poisson-gamma distribution

A discrete random quantity x has a Poisson-gamma distribution with parameters (α, β, n) (α >
0, β > 0, n = 1, 2, . . .) if its pf Pg(x|α, β, n) is

Pg(x|α, β, n) =
βα

Γ(α)
Γ(α+ x)nx

x! (β + n)α+x
, x = 0, 1, 2, . . . . (3.16)

The distribution is generated by the mixture

Pg(x|α, β, n) =
∫ ∞

0

Pn(x|nλ)Ga(λ|α, β)dλ.

The mean is E [x] = nα/β, and the variance is V [x] = nα(β + n)/β2.

The normal distribution

A continuous random vector X of dimension k has a multivariate normal Gaussian distribution,
with parameters (M,Λ) (M ∈ <k, Λ is k × k symmetric positive-definite matrix) if its pdf
N(X|M,Λ) is

N(X|M,Λ) =
|Λ|1/2

(2π)k/2
exp

(
−1

2
(X −M)T Λ(X −M)

)
, X ∈ <k, (3.17)

where | · | denotes determinant. The distribution is symmetrical about X = M . Its mean is
E [X] = M and the covariance matrix is Cov [X] = Λ−1, so that Λ here represents the precision
matrix (inversion of covariance matrix) of the distribution.

If k = 1, so that M and Λ are scalars µ and λ, N(X|M,Λ) reduces to univariate normal pdf
N(x|µ, λ).
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The Student distribution

A continuous random vector X of dimension k has a multivariate Student distribution, with
parameters (M,Λ, α) (M ∈ <k, Λ is k × k symmetric positive-definite matrix, α > 0) if its pdf
St(X|M,Λ, α) is

St(X|M,Λ, α) =
Γ((α+ k)/2)|Λ|1/2

Γ(α/2)(απ)k/2

[
1 +

1
α

(X −M)T Λ(X −M)
]−(α+k)/2

, X ∈ <k. (3.18)

If k = 1, so that M and Λ are scalars µ and λ, then it reduces to univariate Student (t) pdf
St(x|µ, λ, α). The distribution is symmetrical about X = M . Its mean is E [X] = M and the
covariance matrix is Cov [X] = Λ−1(α/(α− 2)).

The marginal pdf of vector X, constructed from joint distribution of (X, y) having the pdf of
normal-gamma distribution, has Student distribution:

St(X|M,αβ−1Λ, 2α) =
∫ ∞

0

N(X|M,Λy) Ga(y|α, β)dy.
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Chapter 4

Modelling of Scintigraphy Response
of Lymphatic System

The objective of this Chapter is to introduce the outer probabilistic model that describes scinti-
graphic visualization of the lymphatic system behaviour on the limbs of the patients involved
in the study. Such model should serve for the description of responses of the lymphatic system
on individual limbs during the scintigraphy only, giving up modelling of lymphatic system in
general. The assumption is that the state of the lymphatic system influencing its behaviour
manifests itself in the scintigraphic response, see Section 1.2.

The available scintigraphic data directly used in models are introduced in the Section 4.1.
The Section 4.2 deals with the definition of the general outer probabilistic model of observed
quantities describing the solved problem. Since the parametric modelling is employed, each
from the pair, parametrised model and prior distribution about its parameters are naturally
decomposed along the limbs. The simplification of limb structured global model to the set of
parallel models on individual ROIs is defined at the end of the Section. Finally, the Section 4.3
is devoted to the choice of particular ROI model(s) employing the introduced general structuring
and decomposition.

4.1 Data as a Link to Reality

The choice of theoretically available data (records of observable quantities) for the task of the
Bayesian inference and decision making plays a key role on the result obtained. The basic
informations about the scintigraphic data at disposal were given in Section 2.2.3 but till this
occasion no formal notation has been given about the data employed in evaluation. Here is the
right place to do that.

The raw 2-D data of scintigrams reduced to summarized scalar integral counts over ROIs and
initial counts over the injection site are the raw data obtained for the analysis. For our purpose,
two versions of used data will be considered. The former are the original raw data. The latter
are normalized data, i.e. the relative activities on ROIs normalized with respect to that at initial
injection site.

Raw Data Let t be the number of minutes since the administration time at t = 0. Then, for
each limb l, set of sequences of non-negative integer counts RY l,r reflecting activities at the ROIs
r = 1, 2, 3 (forearm, upper arm, axilla) together with the initial non-negative integer “injected”

29
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activity count Ryl,I at the injection site represent all the raw data observed on the limb:

RYl =
(
RY l,r=1,

RY l,r=2,
RY l,r=3,

Ryl,I

)
.

The superscript R denotes here the raw data while subscripts r and l refer to limb and ROI. The
sequences of ROIs counts RY l,r = (Ryl,r;tl,1 ,

R yl,r;tl,2 , . . . ,
R yl,r;tl,nl

) are recorded at the same
sampling times Tl = (tl,1, tl,2, . . . , tl,nl

) for all ROIs. Their number nl, is small, typically two or
three.

Normalized data are derived from the raw data. They include only the sequences of rela-
tive activities NY l,r (superscript N denotes the normalized) on the individual ROIs defined as
absolute sequences RY l,r normalized by initial count Ryl,I at the injection site:

NYl =
(
NY l,r=1,

NY l,r=2,
NY l,r=3

)
, where NYl,r = RY l,r/

Ryl,I .

Superscript N distinguishes here the normalized data. Such relative activities are real non-
negative numbers. In this case, the information about the initial activity Ryl,I is superfluous and
it is not included into observed data.

The reason why to normalize the data is to filter out the differences of injected amount among
limbs and patients beforehand. We can focus then immediately on “standardized” responses
on limbs that are appropriate for evaluation of the lymphatic system and avoid uninteresting
amplification caused by injection.

For the sake of simplicity, the observable quantities on limbs in next general text are marked
Yl for both cases of considered data. The different marking RYl vs NYl for raw and normalized
data is used again whenever we need to distinguish these versions.

4.2 Global Observation Probabilistic Model

Model, in general, is a suitable description of the real system. Mathematical model can be com-
prehended as a form of the relation between the quantities (both observable and non-observable
on the system). Since all the quantities are understood as random in Bayesian context, the
relation is defined in probabilistic terms too.

Observable quantities — their observations form data — have the major role as link between
the reality and theoretical modelling. For that reason, the probability measure of observable
quantities is the suitable model, which mathematically specifies subjectivist’s degree of belief
about them. Thinking in the whole context, the global observation model spans over all patients
whose at least one limb is included in the scintigraphic study. Having the observable quantities
Yl on l̊ individual limbs defined in Section 4.1 the global joint model over limbs has the form:

f
(
Y1, Y2, . . . , Y̊l

)
. (4.1)

The specification of the predictive probability (4.1) is the task of the actual problem modelling.
The most general way how to determine it is to employ nonparametric models of empirical

distribution functions and to assess their belief over function space [6]. But the assessing and
representing such belief distribution over the set of all possible distribution functions is by no
means straightforward, since such distribution functions are, effectively, an infinite-dimensional
objects. In what follows, it is convenient to restrict attention to those cases where a correspond-
ing representation holds in terms of density functions, labelled by a finite-dimensional parameter.
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Conventionally, the representations in the finite-dimensional case are referred as parametric mod-
els, see Section 3.2.3. Let Θ be the finite-dimensional parameter, then using basic probability
calculus the model (4.1) can be gained by marginalization of a model extended on Θ:

f
(
Y1, Y2, . . . , Y̊l

)
=
∫

Θ∗
f
(
Y1, Y2, . . . , Y̊l|Θ

)
f (Θ) dΘ. (4.2)

Consequently the model (4.1) is determined by the parametrised model f
(
Y1, Y2, . . . , Y̊l|Θ

)
and

by the prior distribution f (Θ) on its parameter Θ according (4.2).

4.2.1 Limb Structured Parametrised Model

The use of specific parametrised models can often be given by a motivation or justification as the
coherent representation of certain forms of belief. In this case the general parametrised model
f
(
Y1, Y2, . . . , Y̊l|Θ

)
can be naturally structured along the limbs. Incorporating the individual

limb related parameters Θl ⊂ Θ together with supposed conditional independence (3.2) of ob-
served quantities Yl given these parameters, the global parametrised model can be expressed as
a product of individual limb parametrised models

f
(
Y1, Y2, . . . , Y̊l|Θ

)
=

l̊∏
l=1

f (Yl|Θ) =
l̊∏

l=1

f (Yl|Θl, l) =
l̊∏

l=1

f (Yl|Θl) . (4.3)

The same structural forms are used for all limbs in the study, i.e. f (Yl|Θl, l) = f (Yl|Θl), since it
is supposed that the limb parametrised model is rich enough to cover almost all possible variants
of scintigraphy responses of limb lymphatic system.

The definition of the limb related parameters Θl is general and does not try to describe
any relations between them. However their specification is also one part of modelling. For our
purpose we further distinguish two simple versions. Nevertheless, other versions are also possible.

Strictly limb local parameters It is the case where all the parameters are considered to be
local for limbs. No part of the parameters describes common quality. In this case, the global
parameter Θ is the Cartesian product of the local parameters Θl,

Θ = (Θ1,Θ2, . . . ,Θl̊). (4.4)

Limb local parameters with a common part [c]Θ Sometimes it is useful to consider one
part of parameters to be common for all limbs. It can represent e.g. the condition of standardized
investigation, which is the same for all limbs. Then, employing a decomposition of the limb
parameters Θl to the part common for all limbs [c]Θ and the part strictly individual [i]Θl,
i.e. Θl = ([c]Θ,[i] Θl), the global parameter consists of

Θ =
(

[c]Θ,[i] Θ1,
[i] Θ2, . . . ,

[i] Θl̊

)
. (4.5)

4.2.2 Limb Structured Prior Distribution

To make the probability model (4.2) complete, prior distribution f (Θ) about unknown param-
eters Θ has be determined. The decompositions (4.4) and (4.5) of the global parameter space
simplify this task.
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Strictly limb local parameters The specification is simpler for the parameter space of
strictly limb local parameters (4.4). Supposed sufficient separation of peripheral lymphatic sys-
tem of limbs enables us to define even the limb parameters to be mutually independent, see 3.2.
Thus, the prior distribution about Θ is the product of the limb local priors of the same structural
form,

f (Θ) =
l̊∏

l=1

f (Θl) , (4.6)

where the more detailed specification of the limb local prior f (Θl) depends on a selection of
specific model and its parameters.

Limb local parameters with common part [c]Θ For the second case (4.5) similar idea can
be applied. The most general way is to define:

f (Θ) =
l̊∏

l=1

f
(

[i]Θl| [c]Θ
)
f
(

[c]Θ
)
. (4.7)

4.2.3 ROI Separated Models
The pair of limb structured parametrised model (4.3) and prior distribution (4.6) alterna-
tively (4.7) defines the observation probabilistic model on the data of whole limbs. It means
all ROIs are covered together in the limb model. It is the most general description. Though the
considered utilization of whole modelling by doctors together with the obstacle of missing data
on some ROIs for some limbs force us to simplify such a model and decompose it to local models
on individual ROIs.

The advantage of such simplified description is that for single-ROI model only its data are
necessary, not those of other ROIs. It reflects the opinion of doctors: If one ROI proves to be
significant in evaluation of lymphedema, it is possible to reduce scintigraphic measurements only
on this ROI. On the other hand, such a decomposition does not allow to express directly the
spatial relations and interdependence among the ROIs.

The single ROI models are studied in this thesis only. The ROIs are evaluated in parallel
without any mutual relations. The global model decomposition along limbs is assumed to stay
valid. It only concerns individual ROIs. The alternatives of parametrised model on one ROI for
two versions of data follow. The subscript r at parameters and data denoting the ROI can be
omitted as model belongs to a single ROI.

Parametrised model on a single ROI and limb for raw data

f (Yl|Θl) = f
(
RYl,r,

R yl,I |Θl

)
Parametrised model on a single ROI and limb for normalized data

f (Yl|Θl) = f
(
NYl,r|Θl

)
The structuring of prior distribution f (Θ) along limbs remains the same as in the Section 4.2.2,
but it concerns a single ROI.

Remark(s) 4.2.1
Let’s notice that even the parametrised models for raw data are constructed independently on

individual ROIs, all they contain common injected activity count Ryl,I .
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Figure 4.1: Cascade model whose impulse response models the lymphoscintigraphy time activity
curves (q−1 is the backward shift operator, i.e. q−1xt = xt−1).

4.3 ROI Model Choice

The discussion about probabilistic model has been held in the general way, up to now, concerning
only its decomposition along limbs. This Section contains a description of the proposed particular
model on the ROI and limb inserted into general decomposition.

The structure of the involved observation model is considered common for all ROIs. To
distinguish ROIs, various settings of prior distributions are used. Both observation parametrised
models for two versions of data include the common inner part describing the relative response
of lymphatic system, see Section 4.3.1, while the outer parts, described in Section 4.3.2, differ
according to the consideration of noisy samples for the versions of data. The Section 4.3.3 then
summarizes all available information about established parameters together with the specification
of suitable prior distributions.

4.3.1 Relative Lymphatic System Response

The model of the relative lymphatic system response is the main model, that attempts to describe
a behaviour (i.e. response) of the lymphatic system on individual ROI during scintigraphy. It
employs input-output discrete-time dynamic modelling verified from the system theory [16, 66].
To simplify notation, the subscripts labelling the limb and region are omitted as the same model
for all ROIs and limbs is considered.

The image sampling is the natural reason to use discrete-time description. Let t be the
number of minutes since the administration time at t = 0. Hence, real time is τ(t) = t∆, ∆ = 1
(min). The injected tracer is a known input into the lymphatic limb system up to its absolute
amount. The relative amount of the injected tracer is a unit impulse, i.e. ut = δt where δ0 = 1
and δt = 0, for t > 0. The discrete-time scalar impulse response, xt, of the lymphatic system at
the chosen ROI, known as a time activity curve, is the relative amount of the tracer in the ROI
at time τ(t). Causality implies that xt = 0 for t < 0.

The dynamic model relating the sequences ut and xt (see Figure 4.1) is chosen as a cascade of
first-order linear models, with a common parameter a for each of the d sections, and with a single
lumped gain parameter b. It is chosen as a compromise between the complex distributed nature
of the lymphatic system and the need for a model with a few of unknown parameters. This
cascading of simple sections describes the gradual penetration of tracer through the limb. To
avoid misunderstanding it is necessary to stress, that the cascading of sections is in no dependence
with physical ROI partition. It expresses only the abstract space partition.

Binomial expansion of the system denominator leads to the difference equation:

xt = −
d∑

i=1

(
d

i

)
(−a)ixt−i + but.
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Figure 4.2: Typical time activity curves for modelling the time evolution of the lymphatic system
at a particular ROI (b is normalized so that curve maximum is 1 for all cases).

For ut = δ(t), xt models the impulse response of the lymphatic system observed at times t at
the particular ROI. Its closed form solution [65] is:

xt = b

(
t+ d− 1

t

)
at, t ≥ 0. (4.8)

A rich signal ensemble is generated by the proposed parametrised model. It successfully cap-
tures with only three free parameters the stable, slowly-decaying, non-oscillatory nature of the
lymphatic system responses at a particular ROI. In particular, the order parameter, d, allows a
rich set of candidate curves to be explored. Typical curves are illustrated in Figure 4.2, for b
normalized so the maximum of all curves is 1.

The complete time activity curve is X = (x0, x1, . . . , xt, . . .)T , where T denotes transposition,

X = bÃΞ, xt = bÃΞ,t+1, ÃΞ,t+1 =
(
t+d−1

t

)
at, t = 0, 1, . . . , Ξ ≡ (a, d). (4.9)

The points of the time activity curve in observation (sampling) times are gathered into the
n-vector Xo = bAΞ for the subset of times τ(t), t ∈ T (AΞ = ÃΞ(T )).

4.3.2 Observation Parametrised Model
The inner hidden response of the lymphatic system, i.e. the amount of tracer on the ROI, is
measured indirectly from the outside by means of scintigraphy counts. The noisy samples of the
“absolute” time activity curve together with initial injection amount are observed in the raw image
data. The individual counts on image pixels can be described by the the Poisson distribution [4],
see Section 3.2.7. The raw source data available for the analysis are then obtained by summation
of pixel noisy counts over ROIs.

The sequel considerations about the suitable observation model differ on the version of data
and employ different degree of approximation.

Poisson observation model for raw data If the pixel counts have Poisson distribution
then also the aggregated counts over pixels on the ROI can be well described by the Poisson
distribution (the sum of independent quantities with Poisson distribution keeps at least the
distribution type). Then the noisy sample of the initial injection amount can be described by
Poisson distribution with the single parameter gl representing its expectation. Parameter gl
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defines the degree of lymphatic system excitation, i.e. the actual amount of injected tracer.
Similarly, the observations of individual points of absolute time activity curve at times tl,i ∈ Tl

can be described by means of Poisson distribution. Their expectations are given as the product of
corresponding points xtl,i

of relative time activity curve and initial gain parameter gl, i.e. glxtl,i
.

Long inter-sample intervals imply that observations are approximately conditionally independent.
Thus, the parametrised model for the (nl + 1)-series of observations Yl = (RYl,

R yl,I) is pf :

f (Yl|Θl) = f
(
RYl,

R yl,I |Θl

)
= Pn(Ryl,I | gl)

nl∏
i=1

Pn(Ryl;tl,i
| glblAΞl,i), (4.10)

where Pn(y|λ) pf (3.13) of the Poisson distribution of a discrete quantity y determined by the
common mean and variance parameter λ and AΞl,i

is i-th element of vector AΞl
. This observation

model is parametrised by the quadruple Θl = (al, dl, bl, gl) = (Ξl, bl, gl), (Ξl ≡ (al, dl)).
Briefly, the observation model (4.10) relates the observations Yl to the parameters (Ξl, bl)

describing relative individual accumulation dynamics on the ROI (4.9) and to the input gain
parameter gl characterizing injected amount and influencing only the scale of the absolute accu-
mulation dynamics.

The similar idea of the Poisson model for the normalized data has no sense as the normalized
data are real values derived as the ratio of two non-negative integer counts.

Normal observation model for normalized data If we consider again that the absolute
measured aggregated counts on ROI and injection site have Poisson distributions then the rel-
ative normalized counts are proportion of two quantities having Poisson distributions. It is not
reasonable to employ it exactly here, therefore suitable approximation is in demand.

Since the Poisson distribution with the large value of its expectation parameter is close to
Gaussian distribution, the aggregation and normalization of great number of counts permits
the overall noise process to be approximated well by additive, zero-mean, normal noise el;tl,i

,
i.e. Nyl;tl,i

= xl;tl,i
+ el;tl,i

. The precision sl of el;tl,i
can be assumed (approximately) constant.

Again, long inter-sample intervals imply that etl,i
, tl,i ∈ Tl, are approximately conditionally

independent. Thus, the probability density function (pdf ) for the nl-vector of observations
Yl = NY l is:

f (Yl|Θl) = f
(
NYl|Θl

)
= N(NYl| blAΞl

, slInl
) =

( sl

2π

)nl
2

exp
(
−sl

2
||NYl − blAΞl

||2
)
. (4.11)

N(Y |M,Λ) stands for pdf (3.17) of normal distribution of continuous vector Y determined by its
mean M and precision matrix Λ. Inl

denotes identity matrix of dimension nl and || · || the Eu-
clidean norm. The observation model is parametrised here by the quadruple Θl = (al, dl, bl, sl) =
(Ξl, bl, sl).

In summary, the observation model (4.11) relates the available observations Yl to the pa-
rameters (Ξl, bl) describing individual accumulation dynamics (4.9) and the common precision
parameter sl characterizing measurement process. It is necessary to note here, that this
model based on the noise approximation is simplification as it permits existence of the negative
activities, i.e. it assigns the nonzero probability also to negative values that in the reality can
not exist. Though, high signal to noise ratio makes influence of this approximation negligible.

The Gaussian distribution models the absolute error in data. Therefore it is reasonable to
employ the proposed approximative normal model only on the normalized data. It is unsuitable
for the absolute raw data due to generally different injected activities for individual limbs resulting
in different data levels.
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Θ entry Prior ranges

dl = Ξl,2 1 = d ≤ dl ≤ d
al = Ξl,1 adl

< al < adl
(⇐ tmax < tmax < tmax)

bl bΞl
≤ bl ≤ bΞl

(⇐ rmax ≤ rmax,l ≤ rmax)
s s > 0 (s < s < s)
gl g < gl < g

Table 4.1: Prior ranges of unknown parameters.

4.3.3 Prior Distribution

The parameters Θl in the limb observation models are unknown. To make the probability model
complete, it requires the prior distribution about these parameters f (Θl) to be elicited.

The precision parameter, sl, in model for normalized data (4.11) reflects only the measure-
ment process, neither the property of the patient, limb nor the particular ROI. Thus, it can
be considered to be common parameter for all limbs, i.e. s = s1 = s2 = . . . = s̊l, and for
its estimation, data from various limbs can be used. The parameter gl in model for raw data
(4.10) seems in the first view as common for all limbs too. It describes the injected amount of
tracer, which should be same or similar in the standardized examination. However, in many
cases it is not possible to inject the whole amount of the prepared radiotracer in syringe due
to various difficulties Therefore this parameter is considered strictly limb local. The remaining
three parameters, (al, dl, bl) = (Ξl, bl), common for both models are strictly local to the limb
of the patient, describing local accumulation dynamics. This triple is of our main interest for
lymphedema evaluation. They have to be estimated using two or three local patient-specific mea-
surements. This is impossible without prior information, which is rich in this case. This is the
key advantage of the Bayesian paradigm in the inference of diagnostically significant quantities
from the sparse data. The prior information is expressed through intervals of a priori possible
Θl, given formally in Table 4.1, commented and specified hereafter.

Model order dl The parameter describes the penetration rate through the limb and modifies
the shape of time activity curve. The upper bound d was chosen in accordance with the
supposed curve shape comparing it with model responses for various orders dl. d = 5 was
selected as the conservative upper bound. For higher orders of model the shape of the
curve becomes less suitable. The model order dl = 1 is also permitted (i.e. d = 1) even
the first order model is standardly used for the description of depot clearance at the place
of injection and the ROI is shifted from the depot. Thus for distant ROIs from injection
site the higher orders should be employed. However for the near ROIs it is still suitable.
There is one special case where the first order model is just suitable, even for more distant
ROIs. It is case where the response is very low (about under 1% relative response). Then
the higher orders cannot grasp the quick relative increase of response with respect to its
maximum but slow to absolute values.

Partial time constant al The inspected responses for this parameter in the range 0 < al < 1
are stable and non-oscillatory. It catches the basic assumption, that the response during
scintigraphy subsides in time, i.e. the tracer is washed out from limb. The oscillations can
exist in general, but they are caused by changing mode of limb movement. If they are
eliminated, the interval can been shrunk to reflect practically observed slow accumulation
dynamics. There emerges query how to set relatively simply this range if also the model
order dl significantly influence the response. Therefore information about the supposed
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time interval of the maximum of the response, tmax < tmax < tmax(min), is employed for
the setting of intervals of parameter al. The maximum of the response for model with
parameters Ξl = (al, dl) is reached at time

tmax = arg max
t
xt = floor

(
dlal − 1
1− al

)
+ 1, (4.12)

so the time interval can be simply transformed to the interval on al for individual orders
dl. The exception is the model of the first order, dl = 1, where the maximum is ∀ al at
time t = 0. Then the time interval is related to the points where the response descents to
the half of its maximum. Different setting of time ranges is used for individual ROIs. Time
ranges were chosen 25 < tmax < 250 for forearm ROI, 60 < tmax < 300 for upper arm ROI
and 100 < tmax < 360 for axilla ROI.

Lumped gain bl The response is non-negative and cannot exceed the applied input u0 = 1.
This condition can be transformed to the upper bound bΞl

using tmax from (4.12):

bΞl
=
[(
tmax + dl − 1

t

)
atmax

l

]−1

. (4.13)

The necessary physical maximum is correct but the practical experience have shown that
the response maximum is smaller. Therefore the upper bound of the response maximum
rmax, consequently bΞl

, can be cautiously decreased. The harmless upper bound for all
the ROIs has been selected so the maximum of the response cannot exceed 20% of the
applied input, i.e. rmax = 20%. Similarly to the upper bound, the positive lower bound
rmax = 0.01% (consequently bΞl

) is determined. It expresses the distinguished nonzero
relative activity.

Noise precision s Precision has to be non-negative. The initial prior range of the absolute
precision has been chosen according the normalized supposed highest level of noise in the
original raw data described by Poisson model. The exact values of the range is 1e5 < s <
1e8. This range can be gradually refined by processing of many sets of ROI data. The
common precision is a priori independent of other parameters.

Injection gain gl The injected amount of tracer has to be positive and of a sufficient value in
order to make scintigraphic imaging practicable and to distinguish it from the background
radiation. The upper bound g is given by the standardized preparation of solution into
syringe. The injected amount into limb is whole amount of syringe in ideal conditions.
If some difficulties appears it is smaller. The independence to other parameters follows
from it. The common interval g < gl < g has been selected conservatively to the range
1e5 < gl < 4e5.

The mixed-type prior distribution f (Θl) can be written as a product of conditional distribu-
tions in accordance with the described relationships above.

Prior distribution for Poisson model on raw data

f (Θl) = f (Ξl, bl, gl) = f (bl| al, dl) f (al| dl) f (dl) f (gl) (4.14)

Prior distribution for normal model on normalized data

f (Θl) = f (Ξl, bl, s) = f (bl| al, dl) f (al| dl) f (dl) f (s) (4.15)

Individual factors in (4.14) and (4.15) are discussed bellow.
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The ranges of all the parameters listed is useful information, but the strict adherence to such
parameter intervals in prior distributions would make the technical difficulties for the model
analysis. The reason is that the included finite integrals cannot be evaluated analytically.

In general, numerical methods are often necessary to analyse models with constrained pa-
rameters; see [28, 86] for employed discretization or for the use of MC sampling in this context.
Fortunately, the prior ranges of all the parameters do not have the same significance. The
parameters of accumulation dynamics (Ξl, bl) are those significant and their ranges are well spec-
ified. The priors for the remaining parameters gl and s can be replaced by the appropriate
unconstrained distributions.

Since further detailed information is unavailable, the (conditional) distributions on the a
priori expected ranges of parameters al, bl, dl in (4.14) and (4.15) have been chosen uniform,
see (3.14), justified via the principle of insufficient reason [41]. To get a feasible solution, the
continuous parameters al, bl have been discretized. Hence, the pdf s f (al| dl) and f (bl| al, dl) are
replaced by pf s on a discrete grids.

Besides, the alternative prior distribution on the a priori expected ranges of parameters
al, bl, dl have been chosen which is based on a little different idea. Let’s notice that the pa-
rameter al enters observation model in a nonlinear way (4.8). Is then reasonable to use the
uniform distribution on this parameter? This is commonly discussed question in applications of
Bayesian theory how to choose the so called non-informative prior distribution [73]. Choosing
the “non-informative” uniform distribution on the model parameter its uniform characteristic is
not preserved, according to (3.2.1), for another parameter which is a non-linear function of the
former one but they are both alternatives for the model definition.

Herein the idea is based on the assumption that the global characteristics of the accumulation
dynamics are of our interest. Such proper global characteristic is the area under the time activity
curve. Accordingly, the uniform non-informative distribution should be defined on it. Yet, the
area under the time activity curve has to be positive. So the uniform distribution of its logarithm
seems to be better. It has the advantage that with decreasing area the “sensitivity” of the
distribution is increasing. The logarithm of the area under the time activity can be expressed as
log(bl) − dl log(1 − al). Consequently the uniform distribution is chosen for dl but the uniform
distribution together with discretization for the remaining parameters al, bl is chosen on the
scales log(bl) and log(1− al).

The remaining pdf s on continuous-valued gl for raw data case and s for model on normalized
data are expressed in conjugate form, see Section 3.2.3 (details can be found in [5]). This
flexible choice simplifies evaluations. In both cases the conjugate form of prior pdf is gamma
distribution (3.15),

f (gl) = Ga(gl|αg, βg) =
β

αg
g

Γ(αg)
gl

αg−1 exp(−βggl), gl > 0 (4.16)

f (s) = Ga(s|αs, βs), s > 0 (4.17)

determined by pairs of nonnegative hyper-parameters (αg, βg) and (αs, βs). It has the mean
E [•] = α•/β• and variance V [•] = α•/β

2
• . Use of the Gaussian approximations for individual

pdf s and the physical confidence intervals with half-width equal to one standard deviation and
centered around the mean, give the choice

α• =
(
•l + •l

•l − •l

)2

, β• =
2(•l + •l)
(•l − •l)2

, • = g or s. (4.18)

A more resolved choice is unnecessary as the intervals serve only as a conservative guess for
specification of the prior pdf s. The injection gain gl is considered as an auxiliary parameter
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to relate time activity curve to raw data, so this setting of relatively flat prior distribution is
sufficient. For the parameter s, it initializes the estimation of common s, which can be improved
with each patients’ limb.

Besides, instead of usage of uniform distribution on bl and log(bl) for the model on the
normalized data the conjugate alternative is considered too [5]. It will decrease the dimension
of space where the numerical technique is necessary to apply. However, it forces us to modify
the prior distribution (4.14) and to loose the exact boundaries on a priori possible values. The
conjugate prior pdf for the parameter bl in normal observation model on normalized data (4.11)
is the normal pdf (eq:normal) in the form:

f (bl|Ξl, s) = N(bl| b̂Ξl
, ωΞl

s) =
(ωΞl

s

2π

) 1
2

exp
(
−ωΞl

s

2
||bl − b̂Ξl

||2
)
, (4.19)

where hyper-parameters ωΞl
> 0 and b̂Ξl

determine this prior. That is, to make the original
conditional distribution f (bl| al, dl) = f (bl|Ξl) conjugate, its condition has to be extended by
precision parameter s,

f (bl|Ξl)
conjugate form→ f (bl|Ξl, s) .

The expected range of bl given in Table 4.1, together with neglecting the lower bound bΞl
,

i.e. bΞl
= 0, gives the rough setting of hyper-parameters of distribution (4.19)

b̂Ξl
=
bΞl

2
, ωΞl

=
4

ŝb
2

l,Ξl

, (4.20)

where ŝ is a conservative estimate of the measurement precision s, leading to a relatively flat
prior pdf. The adopted choice corresponds to one standard deviation on both sides of the mean
again. It is necessary to note here that this setting is good for the initial basic physical bound
bΞl

. However this setting has poor consequences if the upper bound bΞl
is decreased. It will be

demonstrated in the Section 5.1 in Remark(s) 5.1.2 and preventive solution proposed too.
All the considered probabilistic models as the combinations of parametrised models and prior

distributions are summarized in Table 4.2.

Remark(s) 4.3.1
Let’s notice that the common bounds for the local parameters in the Table 4.1, e.g. those for

model order (d, d) or for the maximum gain of the response (rmax, rmax), alternatively common
hyper-parameters of prior distribution, e.g. (αg, βg) for distribution f (gl) (4.16), can be under-
stood as the common collective hyper-parameters. They can be considered in general as further
common unknown parameter that can be “learned” from the set of data similarly to common
parameter s. Though, only the parameter s has straight physical ground. On that account the full
“correct” Bayesian learning is done only for this common parameter herein, while the other com-
mon parameters are fixed. If it would be necessary to tune-up their values, they could be roughly
selected by means of maximum likelihood (or maximum a posteriori) point estimates (see [6],
discussion on hierarchical models and empirical Bayes).

4.3.4 Discussion

Limitations on the used model The selection of the suitable probabilistic model for the
scintigraphy observation of the lymphatic system response was limited already from the beginning
by the need to employ only the limited number of data. On that account only simple classes of
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Parametrised model f (Yl|Θl) Prior distribution f (Θl)

Models for raw data (RYl,
R yl,I)

P1: Pn(Ryl,I | gl)
∏nl

i=1Pn(Ryl,tl,i
| glblAΞl,i

) Un(bl| al, dl)Unal
(al| dl)Un(dl)Ga(gl)

P2: · · · Unlog(bl)(bl|al, dl)Unlog(1−al)(al|dl)Un(dl)Ga(gl)

Models for normalized data NYl

N1: N(NYl| blAΞl
, sInl

) Un(bl| al, dl)Unal
(al| dl)Un(dl)Ga(s)

N2: Unlog(bl)(bl|al, dl)Unlog(1−al)(al|dl)Un(dl)Ga(s)
N3: · · · N(bl| al, dl, s)Unal

(al| dl)Un(dl)Ga(s)
N4: N(bl| al, dl, s)Unlog(1−al)(al| dl)Un(dl)Ga(s)

Table 4.2: List of considered ROI probabilistic models.

parametrised models with limited number of parameters were considered to be applicable for our
purpose. Consequently we have faced a problem how to design a model, which would capture
relatively rich signal ensemble of lymphatic system responses with their observation, having yet
only a few parameters.

Inner cascade model The choice of proposed inner cascade model was inspired by the sim-
plified modelling of the complex systems with the distributed parameters [9] and compartmental
models often used in medicine [14, 52, 67]. In contrast to these compartmental models the in-
dividual sections (i.e. compartments) are not bound up with the physical spatial partition here.
Therefore the model order dl is not fixed and is taken as unknown too. Since the models describe
the responses on individual ROIs independently we do not consider even any relations between
compartments on these ROIs. It would come in useful within the global model on the whole
limb.

Ways of probabilistic modelling The models for two versions of data can be understood as
different ways of probabilistic modelling. While for the case of normalized data only the output
is described in probabilistic way and the “input” is considered deterministic, also the measured
injection amount “input” is described probabilistically in model for the raw data.

The proposed models describe the lymphatic system as deterministic one having noisy mea-
surements. The version of model for normalized data (4.11) is often called output error (OE)
model while the version for raw data (4.10) errors-in-variables model, see e.g. [81]. Experimental
results, see Chapter 7, indicate that description of the real system is sufficient under the given
condition of a few measurements. It is however only approximation. We should consider that
also the inner process of accumulation of radiotracer is stochastic process in general. There is
a lot of factors (primarily unobservable) that can influence the actual amount of radiotracer so
it cannot be well described deterministically. The ARX model popular in many fields for its
“nice” properties is unsuitable for description of both the measurement and process noises. Its
applicability is limited by lacking of freedom in describing the properties of the disturbance term
since it only considers uncorrelated process noise. The more general ARMAX model satisfies
integration of both process and measurement noises. The additional flexibility of this model is
achieved by describing the error term as moving-average of white noise. The advantage of this
more general description is however counterbalanced by difficulty of its parameter estimation. In
the case of complete measurement, the system should be described by the last named model. The
reason for using the different one is again through over-parametrisation related to the amount
of data. In order to minimize the influence of the stochastic nature of inner process the whole
inspection procedure is standardized.
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Possible improvements of introduced model Some improvements of the basic model are
possible and during the extensive use they can be found useful. For instance, the model can be
enriched by a fixed time delay bridging the guaranteed lower bound on real time delays. This
bound is several minutes for axilla and the need to cover it by the current model may harm its
quality. This time delay can be in general defined also as the unknown parameter but it will
increase the number of unknown parameters, that complicates estimation from few data. In this
occasion the lower bounds on real time delays are not determined yet. Therefore the fixed delays
are not incorporated into the models. We hope that omitting the delay has negligible influence
on the final decision making that cares about slow dynamics primarily.

Also some alternatives of observation part of the model can be found appropriate. For
instance, the log-normal version of model could be used on the normalized data, using the log-
normal distribution instead of normal distribution. It would solve the problem of normal model
permitting the negative relative activities. This version of model seems promising, but it does
not appear here. It is one of possible items of future work.

4.4 Summary
All this Chapter was devoted to the probabilistic modelling of the solved scintigraphy problem.
Its main outcomes are:

• general structure of the global observation probabilistic model necessary for the task solved
on the set of patients’ scintigraphic data;

• particular models for the description of the scintigraphy response of the limb lymphatic
system on individual ROIs. They consist of:

– common inner cascade parametrised model describing the relative response of lym-
phatic system during scintigraphic inspection defined only by triple of parameters

– two versions of observation parametrised models for two version of data considered,
that are build up on the common inner part

– relatively rich prior information about the ranges of the model parameters transformed
to various tested prior distributions

All the models are treated as candidates for practical application.
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Chapter 5

Parametric and Predictive Inference

The Chapter 4 was devoted to the specification of outer observation probabilistic model by means
of couple parametrised model and prior distribution about its parameters. This Chapter gets on
and expresses the parametric and predictive inference for all the considered models that are the
basic building elements for the addressed tasks. The Section 5.1 concerns the local inference on
individual limbs while the Section 5.2 deals with the global inference on the group of limbs.

5.1 Limb Related Inference

The main aim of the common routine inspection is the evaluation of the state of individual limbs.
It is done for each limb separately except for the special tasks where both limbs of patient are
directly compared. Therefore the local limb inference plays here the key role. Besides, the local
limb inference can be employed properly in the global inference defined on the group of patients.

Having parametrised model f (Yl|Θl) together with the prior distribution f (Θl) and data Yl

for the ROI of one limb both limb related predictive and parametric inference are

f (Θl|Yl) =
f (Yl|Θl) f (Θl)

f (Yl)
∝ f (Yl|Θl) f (Θl)

f (Yl) =
∫

Θ∗
l

f (Yl|Θl) f (Θl) dΘl.

They are computed below for all the models summarized in the Table 4.2. Except these formulas
other useful marginal and conditional posterior distributions of model parameters are expressed
too, hereafter we will refer to them repeatedly. Employed notation from the global list at the
beginning of thesis is repeated:

Γ(·) Euler gamma function
Ga(·|α, β) pdf of gamma distribution with parameters (α, β)
N (·|µ, λ) pdf of Gaussian normal distribution with parameters (µ, λ)
St (·|µ, λ, α) pdf of Student (t) distribution with parameters (µ, λ, α)
|| · || Euclidean norm
·! factorial

Further information about the probability distributions can be found in the Section 3.2.7.

43



44 CHAPTER 5. PARAMETRIC AND PREDICTIVE INFERENCE

Inference for Poisson models P1 and P2 on raw data Yl = (RYl,
R yl,I)

f (Ξl, bl|Yl) ∝ wΞl,bl
= χ−χ1

2

nl∏
i=1

(blAΞl,i)
Ryl,tl,i (5.1)

f (gl|Ξl, bl, Yl) = Ga(gl|χ1, χ2) =
χχ1

2 gχ1−1
l exp(−glχ2)

Γ(χ1)
(5.2)

f (Ξl, bl, gl|Yl) ∝ wΞl,bl
f (gl|Ξl, bl, Yl) (5.3)

f (Yl) =
Γ(χ1)β

αg
g f (Ξl, bl)

Γ(αg)Ryl,I !
∏nl

i=1
Ryl,tl,i

!

∑
Ξ∗

l
,b∗

l

wΞl,bl
, (5.4)

where

χ1 = Ryl,I +
nl∑

i=1

Ryl,tl,i
+ αg

χ2 = 1 + βg +
nl∑

i=1

blAΞl,i

Inference for normal models N1 and N2 on normalized data Yl = NY l

f (Ξl, bl|Yl) ∝ wΞl,bl
= χ−χ1

2 (5.5)

f (s|Ξl, bl, Yl) = Ga(s|χ1, χ2) =
χχ1

2 sχ1−1 exp(−sχ2)
Γ(χ1)

(5.6)

f (Ξl, bl, s|Yl) ∝ wΞl,bl
f (s|Ξl, bl, Yl) (5.7)

f (s|Yl) ∝
∑
Ξ∗

l
,b∗

l

wΞl,bl
Ga(s|χ1, χ2) (5.8)

f (Yl) =
Γ(χ1)βαs

s f (Ξl, bl)

Γ(αs)(2π)
nl
2

∑
Ξ∗

l
,b∗

l

wΞl,bl
, (5.9)

where

χ1 =
nl + 2αs

2

χ2 = βs +
1
2
||NY l − blAΞl

||2

Inference for normal models N3 and N4 on normalized data Yl = NY l

f (Ξl|Yl) ∝ wΞl
= χ

−1/2
2 χ−χ1

4 (5.10)

f (s|Ξl, Yl) = Ga
(
s|χ1,

χ4

2

)
=
χχ1

4 sχ1−1 exp(−sχ4
2 )

2χ1Γ(χ1)
(5.11)

f (bl|Ξl, s, Yl) = N
(
bl|
χ3

χ2
, sωΞl

χ2

)
=
(ωΞl

sχ2

2π

) 1
2

exp
(
−ωΞl

sχ2

2
||b− χ3

χ2
||2
)

(5.12)

f (Ξl, bl, s|Yl) ∝ wΞl
f (bl|Ξl, s, Yl) f (s|Ξl, Yl) (5.13)

f (bl|Ξl, Yl) = St
(
bl|
χ3

χ2
,
2ωΞl

χ1χ2

χ4
, 2χ1

)
∝
[
1 +

ωΞl
χ2

χ4
(bl −

χ3

χ2
)
]− 2χ1+1

2

(5.14)
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f (s|Yl) ∝
∑
Ξ∗

l

wΞl
Ga
(
s|χ1,

χ4

2

)
(5.15)

f (Yl) =
Γ(χ1)(2βs)αsf (Ξl)

Γ(αs)π
nl
2

∑
Ξ∗

l

w′
Ξl

(5.16)

where

χ1 =
nl + 2αs

2
χ2 = 1 + ω−1

Ξl
||AΞl

||2

χ3 = b̂Ξl
+ ω−1

Ξl

NY
T

l AΞl

χ4 = ||NY l||2 + 2βs + ωΞl

(
b̂2Ξl

− χ2
3

χ2

)
The common formulas can be always given for the pairs of considered models because they

only differ in the discretization of the same parameter that has no influence on these formulas.
It is only necessary to keep in mind this difference in the discretization. The non-normalized
weights w• force us to use the proportion sign ∝ in equations for the posterior probabilities. In
order to be able to substitute it by equality these weights have to be replaced by their normalized
versions, ẅ• = w•/

∑nl

i=1 w•.

Remark(s) 5.1.1

(i) The conditioning and marginalization allows to express the joint posterior distributions of
parameters for individual models as the product of posterior pf of all discrete/discretized
parameters and posterior pdfs of the continuous parameters. The joint distribution (5.3)
for models P• is a product of (5.1) and (5.2), for example.

(ii) Due to the discrete/discretized parameters used, the predictive and some marginal paramet-
ric inferences are computed by the summation over these parameters, see e.g. predictive
inferences (5.4), (5.9) and (5.16) for all the considered models.

(iii) The equations (5.2) for models P•, (5.6) for N1 and N2 and (5.11), (5.12) for N3 and N4

demonstrate that the corresponding prior pdfs (4.16), (4.17) and (4.19) are conjugate.

Remark(s) 5.1.2
Here is the proper point to demonstrate the adverse influence od decrease of upper bound

bΞl
together with the setting (4.20) of the Gaussian prior distribution f (bl|Ξl, s) for models N3,

N4, forewarn in the Section 4.3.3. If we employ (4.20) then for smaller upper bound bΞl
the

distribution f (bl|Ξl, s) narrows. Consequently, the data-based information is suppressed overly.
It is clear when evaluating the expectation of the conditional posterior distributions f (bl|Ξl, Yl),
(5.14), of the parameter bl

E [bl|Ξl, Y ] =
b̂Ξl

+ ω−1
Ξl

NY
T
l AΞl

1 + ω−1
Ξl
||AΞl

||2
.

If the upper gain is decreased to 1/r of the original upper gain, i.e. nbΞl
= bΞl

/r, then the new
precision parameter nωΞl

set according (4.20) is nωΞl
= r2ωΞl

. Consequently, the influence of
the data to the posterior mean is suppressed by the square of r. With increasing r the parameter
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of prior expectation dominates in the posterior expectation. The proposed solution how to prevent
it is to decrease only the mean b̂Ξl

of the normal distribution f (bl|Ξl, s) (4.19) with decreasing
upper bound bΞl

while the precision parameter ωΞl
to set according the original physical bound.

Then prior distribution will be sufficiently flat on the a priori possible interval. Though also the
values outside the interval will have non-negligible probability. The information loss about the
gain parameter does not seem critical for the estimation.

5.2 Global Inference
While the Section 5.1 deals with the local inference on individual limbs necessary for their
evaluation this Section is devoted to the global inference defined on the group of patients’ limbs.
Such inference comes in useful for the special tasks solved over the whole “experimental” group
of limbs but it is also necessary for all the task done on more than one limb.

This Section is divided into parts according to two considered structures of global parameter Θ
described in the Section 4.2.1. The Section 5.2.1 deals with the simpler case of global parametric
and predictive inference for the model with strictly limb local parameters. The Section 5.2.2
concerns model with limb local parameters containing a common part for all limbs. The general
notation from the Section 4.2 is preserved here. The membership of the considered models from
the Table 4.2 into these two cases is repeated only. The concrete forms can be obtained then
by the substitution of terms from Section 5.1 to the general forms. The approximations of the
global estimate of the common parameter s and of the global predictive and parametric inference
for models N• whose exact computation is difficultly realizable are proposed at the end of the
Section 5.2.2.

5.2.1 Inference for Models with Strictly Limb Specific Parameters
In the list of the considered models only the Poisson models P• for the raw data have strictly
limb local parameters. The total separation (4.6) of limb parameters Θl in the global parameter
Θ = (Θ1,Θ2, . . . ,Θl̊), see Section, makes both global parametric and predictive inference clear:

f
(
Θ|Y1, Y2, . . . , Y̊l

)
=

l̊∏
l=1

f (Θl|Yl) (5.17)

f
(
Y1, Y2, . . . , Y̊l

)
=

l̊∏
l=1

f (Yl) . (5.18)

Terms (5.3) and (5.4) can be simply used for their evaluation.

5.2.2 Inference for Models with Limb Local Parameters Containing
Common Part [c]Θ

The considered normal models N• for the normalized data contain the measurement noise preci-
sion parameter s which is defined to be common for all limbs, i.e. [c]Θ = s in the global parameter
Θ = ([c]Θ,[i] Θ1,

[i] Θ2, . . . ,
[i] Θl̊). This common part together with the decomposition (4.7) causes

the global parametric and predictive inference to be more complicated:

f
(
Θ|Y1, Y2, . . . , Y̊l

)
∝

 l̊∏
l=lp+1

f
(
Yl| [c]Θ, [i]Θl

)
f
(

[i]Θl| [c]Θ
)× . . .
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. . .× f
(

[c]Θ, [i]Θ1,
[i]Θ2, . . . ,

[i]Θlp |Y1, Y2, . . . , Ylp

)
(5.19)

f
(

[c]Θ|Y1, Y2, . . . , Y̊l

)
∝

 l̊∏
l=1

f
(
Yl| [c]Θ

) f ([c]Θ
)
∝

∝

 l̊∏
l=lp+1

f
(
Yl| [c]Θ

) f ([c]Θ|Y1, Y2, . . . , Ylp

)
(5.20)

f
(
Y1, Y2, . . . , Y̊l

)
=

∫
[c]Θ∗

 l̊∏
l=1

f
(
Yl| [c]Θ

) f ([c]Θ
)
d[c]Θ =

=
∫

[c]Θ∗

 l̊∏
l=lp+1

f
(
Yl| [c]Θ

) f ([c]Θ|Y1, Y2, . . . , Ylp

)
d[c]Θ× . . .

. . .× f
(
Y1, Y2, . . . , Ylp

)
(5.21)

where
f
(
Yl| [c]Θ

)
=
∫

[i]Θ∗
l

f
(
Yl| [c]Θ, [i]Θl

)
f
(

[i]Θl| [c]Θ
)
d[i]Θl.

These general forms are theoretically valid however their precise computation causes technical
difficulties. Consequently some approximation is necessary to be established. The description of
the proposed solution for all the inferences (5.19), (5.20), (5.21) follows.

Estimate of the common parameter [c]Θ = s

The posterior estimate of the common parameter s is one of the important results. Its prior
range and corresponding pdf described in the Section 4.3.3 has been chosen roughly considering
it can be refined by processing of sets of ROI data. Inference (5.20) is the right instrument for
this refinement.

The prior pdf for the noise precision parameter s has been chosen to be conjugate gamma
distribution (4.17) in the model specification, Section 4.3.3. Recursive estimate of l-th limb
needs as its “temporary prior” distribution estimate done on the first (l − 1) limbs, see (5.20).
Thus, the estimate done on one limb for the proposed normal models N• results in a sum of n̊
weighted gamma distributions, see (5.8) for models N1, N2 and (5.15) for models N3, N4, where
n̊ is the number of “grid points” of the discrete or discretized parameters. Proceeding with the
computation on the second limb the estimate consists of n̊2 weighted gamma distributions. In
summary, the resulting estimate on l̊ limbs consists of n̊l̊ weighted gamma distributions so their
number increases in the exponential manner. Though it is not possible to realize its computation.

The proposed formal solution how to overcome this problem is to approximate the posterior
sum of n̊ weighted gamma distributions in each step of recursion through the limbs l by a single
gamma distribution:

f (s|Y1, Y2, . . . , Yl) =
n̊∑

n=1

wnGa(s|αn, βn)
approx.→ Ga(s| α̂, β̂) = f̂ (s|Y1, Y2, . . . , Yl) , (5.22)

and employ it as “temporary prior” distribution in next step of the recursion. Let’s stress here,
that

∑n̊
n=1 wn = 1. The poor property of this recursive approximation is, that its result depends

on the order in which the limbs are processed. The possibility how to suppress this influence
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is to make repetitive evaluations for different random permutations of limbs. Thereafter these
partial results can be summarized into a single gamma distribution in a similar way as for
approximation in each step of recursion. It allows us to hold the number of numerical evaluations
and computation time reasonable.

Two alternatives of approximation (5.22) are proposed. Other approaches to this approxima-
tion could be applied, e.g. employing mixtures or replacement of arithmetic mean by geometric
mean [?, ?], but the proposed solutions have very simple interpretation.

Approximation (5.22) via the equality of the first and second moment of pdf s
This approximation is based on a preservation of moments of the original pdf in its approximation.
Since the gamma distribution is defined by two parameters, also only two important moments
— mean and variance — were selected to be preserved. It means:

Ef [s] = Ef̂ [s] , Vf [s] = Vf̂ [s] . (5.23)

Means and variances (5.23) of the original and approximative pdf s expressed by means of their
parameters (see Section 3.2.7 for information on moments of this distribution) are

Ef [s] =
∑n̊

n=1 wn
αn

βn
, Ef̂ [s] = α̂

β̂

Vf [s] =
∑n̊

n=1 wn
α2

n+αn

β2
n

− Ef [s]2 , Vf̂ [s] = α̂
β̂2 .

The parameters (α̂, β̂) of single gamma distribution approximation can be then determined as

α̂ =
Ef [s]2

Vf [s]
, β̂ =

Ef [s]
Vf [s]

.

Minimal discrepancy approximation The second type of approximation is based on
the minimization of the discrepancy between the original distribution and its approximation, see
Remark(s) 3.2.3(i). Such approximation is searched which minimizes the expected loss of the
local logarithmic loss function of reporting approximative pdf rather than the original pdf, see
Section 3.2.5. The optimal single gamma approximation is then determined by

min
α̂,β̂

D
(
f (s) || f̂ (s)

)
= min

α̂,β̂

∫ ∞

s=0

n̊∑
n=1

wnGa(s|αn, βn) log
∑n̊

n=1 wnGa(s|αn, βn)

Ga(s| α̂, β̂)
ds. (5.24)

The numerator in the logarithm in (5.24) does not depend on the approximative pdf, therefore it
has no influence on the result of the minimization and the solution can be found as the maximum
over (α̂, β̂) from∫∞

s=0

∑n̊
n=1 wnGa(s|αn, βn) log Ga(s| α̂, β̂)ds = α̂ log β̂ − log Γ(α̂) + . . .

+
∑n̊

n=1 wn

[
(α̂− 1)(ψ(αn)− log βn)− β̂ αn

βn

]
,

where ψ(·) = Γ(·)′/Γ(·) denotes the digamma function (see e.g. [?]).
The extreme can be found by searching the zero gradient of minimized term in (5.24), i.e. dif-

ferentiating the term with respect to α̂ and β̂ and setting them 0:

∂D
(
f (s) || f̂ (s)

)
∂α̂

= log(β̂)− ψ(α̂) +
n̊∑

n=1

wn[ψ(αn)− log(βn)] = 0 (5.25)

∂D
(
f (s) || f̂ (s)

)
∂β̂

=
α̂

β̂
−

n̊∑
n=1

wn
αn

βn
= 0 (5.26)
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By a substitution of β̂ from the equation (5.26) to the equation (5.25) and knowing αn is the
same for each n (exactly αn = nl/2+αs for all models N•, see Section 5.1), the following equation
of single unknown variable α̂ have to be solved:

log(α̂)− ψ(α̂) = log(αn)− ψ(αn) +
n̊∑

n=1

wn log(βn) + log(
n̊∑

n=1

wn/βn). (5.27)

The solution of (5.27) can not be found analytically, so the numerical techniques are employed.
The function log(α̂)− ψ(α̂) is purely monotonous so the a single solution can easily be found.

Remark(s) 5.2.1

(i) Let’s notice one interesting thing clearly visible in (5.26). The mean value of the original
distribution, Ef [s] =

∑n̊
n=1 wn

αn

βn
, is also preserved in its approximation via the minimal

discrepancy Ef̂ [s] = α̂
β̂
, alike in the first proposed approximation via moments.

(ii) The proposed approximations differ. They would coincide only when the normal minimal
discrepancy approximation would be searched for. Recall that the best normal approximation
via discrepancy to pdf is the normal distribution having the same mean and variance [6].

Global prediction inference and joint parametric inference of limb local parameters

The estimate (5.20) of the common parameter s is one of the global inferences, whose results
are employed for local inference necessary for individual limbs evaluation. However, solving
various global decision tasks over the group of limbs further global inferences are in demand.
Specifically, the global prediction inference (5.21) and joint parametric inference of strictly limb
local parameters are required for decision tasks in the Chapter 6.

Similarly to the estimate of common parameter s, the precise computation of these global
inferences causes technical difficulties. In general, we could employ approximations proposed for
estimation of common parameter s. However, the results would be dependent on the order of
processing of limbs again. The permuting of limbs order to suppress its influence is not practically
realizable on the larger group of limbs here. For that reason, the simplification is in demand.

The proposed simplification is based on the relaxation of the assumption about the parameter
s to be common for all limbs. The noise parameter s is considered here to be local for individual
limbs, i.e. common s breaks into local ones, s→ (s1, s2, . . . , s̊l). The estimate of the common s is
then employed as the prior pdf for individual sl. Thereafter the predictive inference transforms
to the form (5.18) and joint parametric inference of strictly limb local parameters to the form
structurally same form as (5.17) (only the strictly limb local parameters are included in Θl here),
that can be easily evaluated.

The proposed model simplification is not the the consequence of reassessment of original
model but only a solution how to overcome computational difficulties. It is clear that employing
this simplification we introduce some error into results. Though, we hope this error has negligible
influence on final decisions. Experiments, Chapter 7 are encouraging in this respect.

5.3 Summary
In this Chapter all the local and global predictive and parametric inferences for all the considered
models from Table 4.2 are presented. They form basic results of Bayesian inference, however,
their main aim is to serve for further purposes, the Chapter 6 is devoted to.
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Among all the results, the global estimation of the common parameter s should be stressed.
It is employed for refinement of roughly chosen prior distribution. The proposed approximations
are the case specific solutions of ever present computational complexity.



Chapter 6

Inference of Significant Quantities
and Decision Tasks

The parametric and predictive inference described in the Chapter 5 are the basic results originated
from modelling, but they are not the final aim of the work. They are employed for the solution of
partial tasks that have arisen to be important or useful for the specific case of lymphoscintigraphy
described in this Chapter. The beliefs are to be used directly as the basic elements in the solved
decision tasks or are to be reported with the intention to solve incompletely defined decision
tasks in the future.

The Section 6.1 concerns the estimate of time activity curve which forms the basis of various
scintigraphy quantification techniques while Section 6.3 is devoted to the inference of quantitative
parameters possibly useful for the assessment of the lymphedema. The Section 6.2 describes how
the quality of the proposed models can be verified comparing the original data with trends
in reconstructed output. The Section 6.4 deals more deeply with the problem of selection of
sampling times which is important to make the evaluation practically realizable and maximally
effective. At the end of the Chapter the approach how to compare quantitatively the patient’s
limbs is proposed in the Section 6.5.

6.1 Time Activity Curve Estimate

Construction of this curve has been one of the the principal motivations for the employed mod-
elling. Estimate of the whole curve is needed as it serves both to visual and quantitative evalua-
tions, see Section 1.2. The practical lack of measurements does not allow us to use or even modify
these techniques utilizing data at disposal alone. Therefore time activity curve as a means for
possible further evaluation is reconstructed from few measurements, only.

It follows from (4.9) that Xl is a deterministic function of the unknown parameters, (Ξl, bl).
The distribution on the ensemble of possible Xl, f (Xl|Yl), is therefore a highly non-linear
function of parameters (Ξl, bl) described by the posterior pdf f (Ξl, bl|Yl). From a clinical per-
spective, the point estimate of the time activity curve is representative enough. The expected
value, E [Xl|Yl], — the general result of the decision task searching point estimate with respect
to quadratic loss function, see Section 3.2.5, Remark(s) 3.2.1 and for more details [6, 47] — can
be calculated directly for all the considered models.

The expected value E [Xl|Yl] for the models P• and N1, N2, see Table 4.2, can be computed

51
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similarly from (4.9) and (5.1) or (5.5) according to the considered model:

E [Xl|Yl] ∝
∑
Ξ∗

l
,b∗

l

wΞl,bl
Xl(Ξl, bl) =

∑
Ξ∗

l
,b∗

l

wΞl,bl
blÃΞl

. (6.1)

The calculation for remaining models N3, N4 from the Table 4.2 is little modified due to a
possibility of analytical integration of bl. Then employing (4.9), (5.10) and (5.14) it follows:

E [Xl|Yl] ∝
∑
Ξ∗

l

wΞl
ÃΞl

∫
b∗

l

blf (bl|Ξl, Yl) dbl =
∑
Ξ∗

l

wΞl
ÃΞl

E [bl|Ξl, Yl] , (6.2)

where an expectation E [bl|Ξl, Yl] of the Student distributions f (bl|Ξl, Yl) (5.14) is χ3/χ2. Hence,
the numerical evaluation of (6.1) and (6.2) reduces to a simple summation over the grid of a
priori -allowed values of (Ξl, bl) in the first case and of Ξl in the second case.

Remark(s) 6.1.1

(i) Instead of the expected value, other point estimates like quantiles and medians [6] could
be computed, but it would not be so easy and would require more intensive computations.
Therefore the former solution has been selected as a single curve estimate report.

(ii) The Bayesian theory works with uncertainty, on that account some more information about
the probability distribution of estimated time activity curve f (Xl|Yl) should be given. Un-
fortunately right credible regions, e.g. highest probability density regions [6], need too much
computation. Therefore the probability distribution is summarized here by its moments.
The covariance matrix (with marginal variance on the main diagonal) and higher moments
can be computed similarly as the expected value.

6.2 Output Reconstruction at Non-Sampled Times
In the previous Section the estimate of the time activity curve is given. It is tightly connected
with the observed data. It is important quantifier for our purpose but it can not say anything
about the quality of the model how it fits the employed data. The right choice for such task is
a prediction (reconstruction) of the output variable at the non-sampled times, i.e. times where
the observation was not done T̃l = (0, 1, 2, . . . , t, . . .) \ Tl. The quality of the model can be then
verified by comparing how the original data fits into the trend of predicted output variable at non-
sampled times. For that purpose predictive pf f

(
RỸl|Yl

)
for the raw data, and pdf f

(
N Ỹl|Yl

)
for the normalized data need to be evaluated, where •Ỹl = (•yl;t̃l;1

,• yl;t̃l;2
, . . .), t̃l;· ∈ T̃l.

The joint distribution of the whole vector •Ỹl, f
(
•Ỹl|Yl

)
is of the general interest, though for

comparing the data with the trend of prediction the marginal distributions of •yl;t at individual
times t are sufficient. For the Poisson models P• in the Table 4.2 the marginal pf f

(
Ryl;t|Yl

)
follows from (4.10) and (5.3):

f
(
Ryl;t|Yl

)
=

∑
Ξ∗

l
,b∗

l

∫
g∗

l

f
(
Ryl;t|Ξl, bl, gl

)
f (Ξl, bl, gl|Yl) dgl

∝
∑
Ξ∗

l
,b∗

l

wΞl,bl

∫
g∗

l

Pn(Ryl;t| glblÃΞl,t+1)Ga(gl|χ1, χ2)dgl

∝
∑
Ξ∗

l
,b∗

l

wΞl,bl
Pg(Ryl;t|χ1, χ2, blÃΞl,t+1), t ∈ T̃l, (6.3)
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i.e. it is the sum of weighted Poisson-Gamma (Pg) distributions (3.16). The various moments
of the distribution (6.3) can be then computed similarly to time activity curve estimate in the
Section 6.1. For instance, its expected value

E
[
Ryl;t|Yl

]
∝
∑
Ξ∗

l
,b∗

l

wΞ,bl
blÃΞl,t+1E [gl|Ξl, bl, Yl]

is the weighted sum of relative time activity curve multiplied by the posterior mean value of the
absolute gain parameter gl.

The marginal distribution f
(
Nyl;t|Yl

)
for the first pair of models on normalized data N1, N2,

see Table 4.2 follows from (4.11) and (5.7):

f
(
Nyl;t|Yl

)
=

∑
Ξ∗

l
,b∗

l

∫
s∗
f
(
Nyl;t|Ξl, bl, s

)
f (Ξl, bl, s|Yl) ds

∝
∑
Ξ∗

l
,b∗

l

wΞl,bl

∫
s∗

N(Nyl;t| blÃΞl,t+1, s)Ga(s|χ1, χ2)ds

∝
∑
Ξ∗

l
,b∗

l

wΞl,bl
St
(

Nyl;t| blÃΞl,t+1,
χ1

χ2
, 2χ1

)
, t ∈ T̃l (6.4)

and for the second pair of normal models N3, N4 in the Table 4.2, employing (4.11) and (5.13)
the similar form is obtained:

f
(
Nyl;t|Yl

)
=

∑
Ξ∗

l

∫
s∗,b∗

l

f
(
Nyl;t|Ξl, bl, s

)
f (Ξl, bl, s|Yl) dsdbl

∝
∑
ϑ∗

l

wΞl

∫
s∗,b∗

l

N(Nyl;t| blÃΞl,t+1, s)N
(
bl|
χ3

χ2
, sωϑl

χ2

)
Ga
(
s|χ1,

χ4

2

)
dsdbl

∝
∑
Ξ∗

l

wΞl
St
(

Nyl;t| ÃΞl,t+1
χ3

χ2
,
2χ1

χ4
[1 + (ωΞl

χ2)−1Ã2
Ξl,t+1]

−1, 2χ1

)
, t ∈ T̃l.(6.5)

The marginal distribution in both cases (6.4), (6.5) is formed by the weighted sum of Student
(St) distributions(3.16).

Remark(s) 6.2.1

(i) In comparison to the estimated time activity curves in the previous Section, the mean values
of the marginal predictions are the same but the variances are greater. It is implied by the
incorporating the noise of measurement into the prediction.

Let’s notice e.g. that for the models N3 and N4 the conditional posterior variance of one
point of the time activity curve xt given Ξl is V [xt|Ξl, Yl] = Ã2

Ξl,t+1χ4/(2ωΞl
(χ1 − 1)χ2).

By contrast the variance of the prediction of Nyl;t (6.5) given Ξl:

V
[
Nyl;t|Ξl, Yl

]
= V [xt|Ξl, Yl] +

χ4

2(χ1 − 1)
= V [xt|Ξl, Yl] + E

[
s−1|Ξl, Yl

]
is greater by the additive term constant for all times t, that is not anything else than the
mean value of the reciprocal value of the parameter s, E

[
s−1|Ξl, Yl

]
, i.e. the posterior

expectation of the variance of measurement noise given Ξl.



54 CHAPTER 6. INFERENCE OF SIGNIFICANT QUANTITIES AND DECISION TASKS

(ii) The approach proposed for the evaluation of the model quality can also be used for the
verification of the chosen optimal sampling times. Exactly, the prediction employing only
data in optimal sampling times can be compared with the rest of (not used) data from the
extended set, how they “fit together”.

6.3 Quantitative Parameters in General

It is expected that the parameter estimates can be used in clinical staging of lymphedema.
Point or interval estimates of the elementary time constant, al, and the cascade length, dl, are
intuitively good indicators of accumulation dynamics. They are described by the analytically ob-
tained marginal posterior distribution f (Ξl|Yl). Its discrete nature makes evaluation of moments
of interest straightforward. Besides the model parameters (Ξl, bl) alone describing the individual
accumulation dynamics their various functions can be tested on the clinical significance. Some
of promising quantifiers motivated by tradition in nuclear medicine are listed bellow.

Maximum of time activity curve and time of its reaching have been the first quantifiers
proposed by the physicians. If they should be found from the measured data alone, it would
require sequential scintigraphic imaging till the occasion when it is evident the response is falling
down. Employing proposed modelling and a few data, their estimates can be found according
(4.12) and (4.13) and corresponding posterior distributions of parameters. Unfortunately these
quantifiers don’t express the global characteristics so the next seems more suitable.

Residence time The residence time, ζl, is defined as the accumulated activity within a ROI,
divided by the administered activity. It is widely accepted in nuclear medicine as a quantitative
global characteristic of accumulation dynamics [37, 82]. With the adopted scaling, the residence
time in minutes is found as the area under the time activity curve.

The area under the sampled time activity curve is ζl =
∑∞

t=0 xt∆, with ∆ = 1 (min). This
sum converges for the considered stable elementary models with 0 ≤ a < 1 to the value

ζl(al, dl, bl) =
bl∆

(1− al)dl
. (6.6)

Again the expected residence times, E [ζl|Yl], and variation, V [ζl|Yl], (respectively standard
deviation) are the most instructive characteristics of the pdf f (ζl|Yl).

6.4 Selection of Appropriate Sampling Times

The selection of appropriate sampling times of limb imaging is the critical task of the quan-
titative scintigraphy evaluation. Routine application of the quantitative scintigraphy can be
achieved only if just the measurements serving to morphologic (qualitative) inspections will be
exploited. Exactly, it means that the number of images (except the initial one) employed for the
quantitative evaluation can not exceed the number 3, yet the physicians’ desire is to get along
with 2 measurements.

It is obvious that the selection of sampling times has an influence on results of processing. The
limited number of sampling times makes this influence even more significant. The basic selection
can be done empirically (e.g. the senseless combinations of neighbouring times can be excluded
and the rough selection can be done) but the further fine-tuning for the maximal efficiency of
the method is necessary. Thus it is desirable to advance beyond the current empirical choice
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of standardized sampling times. A collection of patient-specific data, measured more frequently
than is the clinical norm, has provided the aggregated experimental data needed for Bayesian
inference of an optimal sampling grid.

The basic principle of the task of selection of appropriate sampling times can be expressed
as looking for such times for which the “desirable results are the most informative”. Its transfor-
mation to the scheme of Bayesian decision structure strongly depends on the designer demands.
This aim belongs to the global tasks for which data of all the patients from experimental group
is employed. There will be described two alternative versions of the mathematical formulation
of this task. The difference between them is in the demanded result. The first version aims
to find optimal sampling times for reporting the inference (beliefs) about demanded quantities,
Section 6.4.1, while the second version is done with respect to report only point estimate of these
quantities, see Section 6.4.2. Let’s remark that the discussion bellow is related to the proposed
models from the Chapter 4, but its generalization to arbitrary models and parametrization is
possible.

6.4.1 Optimal Sampling Times for Reporting Beliefs

The triple (al, dl, bl) ≡ (Ξl, bl) ≡ Φl are those model parameters of interest that describe the
limb local relative lymphatic system response (accumulation dynamics). Thus, reporting their
beliefs is one of the main tasks. Therefore one possible approach to selection of sampling times
should be related with respect to it.

Let’s suppose there is available an extended observation set Yl for each patients’ limb within
the considered over-sampled experimental set. We can define various sub-selections of sampling
times, Sl ⊂ Tl, that divide this extended observation set into the selected observations [S]Yl and
remainder [S̄]Yl:

Yl = ([S]Yl,
[S̄] Yl).

Let’s also consider now for the simplicity that the sampling times for all the limbs are the same,
i.e. Tl = T . Then the task of selection of sampling times is transformed to the aim to choose
sub-selection S of fixed size from the the extended set of sampling times T .

The proposed approach of selection of sampling times in order to report the beliefs about the
parameters of interest Φl is based on the following idea: “We want to choose such sub-selection S
for which the estimate of the parameters of interest given the observations in this sub-selection
[S]Yl is close to the estimate done on all the data Yl.” It means to select such sampling times for
which the distance between the posterior distributions f

(
Φl| [S]Yl

)
and f (Φl|Yl) is minimal. The

result of the selection of sampling times is considered to serve as the suggestion for the sampling
times for all patients. Thus it is the global task solved over all the limbs in the experimental
set. Then it will be searched the minimal distance between the joint distributions f

(
Φ| [S]Y

)
and f (Φ|Y ), where Φ = (Φ1,Φ2, . . . ,Φl̊), Y = (Y1, Y2, . . . , Y̊l) and [S]Y similarly.

Employing the framework of the general static decision task described in the Section 3.2.2 its
specific instances for the solved task are specified:

• Decomposition of the behaviour Q = (Pξ, ξ, Fξ) ≡ (Y,S,Φ)

• Admissible rules are of the form R : Y ∗ → S∗

• Loss function Z (Y,S,Φ) measuring distance between f
(
Φ| [S]Y

)
and f (Φ|Y )

These elements determine the outer model needed for the decision making, f (Φ|Y,S). The
adopted natural conditions of decision making (3.7) imply that the sub-selection S is superfluous
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in the conditioning. For the given Y the optimal sub-selection is

Ŝ ∈ arg min
S

∫
Φ∗
Z (Y,S,Φ) f (Φ|Y ) dΦ. (6.7)

It remains only to determine loss function that measures the distance of f
(
Φ| [S]Y

)
and f (Φ|Y ).

The proper loss function for reporting beliefs in pure inference problems, consequently for distance
between two pdf s, is the local logarithmic loss function, see Section 3.2.5. Employing it, the
general optimization (6.7) can be expressed as:

Ŝ ∈ arg min
S

∫
Φ∗
f (Φ|Y ) log

f (Φ|Y )
f
(
Φ| [S]Y

)dΦ = arg min
S
D
(
f (Φ|Y ) || f

(
Φ| [S]Y

))
. (6.8)

It is the minimization of the expected local logarithmic loss (3.12) in reporting pdf f
(
Φ| [S]Y

)
rather than the pdf f (Φ|Y ) (or minimization of the Kullback-Leibler distance between these
distributions). Since the numerator in logarithm in (6.8) is not influenced by the sub-selection S,
the optimization can be simplified to

Ŝ ∈ arg max
S

∫
Φ∗
f (Φ|Y ) log f

(
Φ| [S]Y

)
dΦ. (6.9)

Both the formulas (6.8) and (6.9) can be decomposed along the limbs if all the parameters Θl

are strictly limb local. It is only the case of the models P• listed in the Table 4.2 at the page 40.
In the case where some part of parametric space is common for more limbs the computations are
more difficult. However the simplification described in Section 5.2.2, at the page 49, allows us to
do it also for the considered models N• from the Table 4.2. Then the partial integrations can be
done on individual limbs. Only the final optimization is done globally in the following manner:

Ŝ ∈ arg max
S

l̊∑
l=1

∫
Φ∗

l

f (Φl|Yl) log f
(
Φl| [S]Yl

)
dΦl = arg min

S

l̊∑
l=1

D
(
f (Φl|Yl) || f

(
Φl| [S]Yl

))
.

(6.10)

Remark(s) 6.4.1

(i) In order to understand more deeply the optimized formula in (6.10) it is interesting to look
what is hidden behind the term D

(
f (Φl|Yl) || f

(
Φl| [S]Yl

))
. It can be simply rearranged

with the help of basic probabilistic calculus into:

D
(
f (Φl|Yl) || f

(
Φl| [S]Yl

))
=
∫

Φ∗
l

f (Φl|Yl) log f
(

[S̄]Yl|Φl,
[S] Yl

)
dΦl−log f

(
[S̄]Yl| [S]Yl

)
.

(6.11)
It contains the predictive term f

(
[S̄]Yl| [S]Yl

)
which has been considered intuitively from

the beginning as a good indicator for selecting the sampling times, however, the other term
influences the result of optimization.

(ii) It is also possible to propose modified approach, how to select sampling times in order to
report the beliefs about the parameters of interest Φ, employing little different loss function.
The modification is that we want to minimize the distance between the posterior distribution
f
(
Φ| [S]Y

)
given the observations in the sub-selection [S]Y and similar posterior distribu-

tion f
(
Φ|Y, Ỹ

)
given not all the available data but all (even) hypothetically available data
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(Y, Ỹ ). Ỹ denotes hypothetically available data in non-sampled times. Employing again
the framework of the general static decision task described in the Section 3.2.2, only the
decomposition of the behaviour Q = (Pξ, ξ, Fξ) ≡ (Y,S, (Φ, Ỹ )) together with loss func-
tion Z differ from the previous task. The needed outer model with consideration of natural
conditions of decision making is then f

(
Φ, Ỹ |Y

)
and optimal sub-selection is

Ŝ ∈ arg min
S

∫
Ỹ ∗

∫
Φ∗
f
(
Φ, Ỹ |Y

)
log

f
(
Φ|Y, Ỹ

)
f
(
Φ| [S]Y

) dΦdỸ .
The numerator in the logarithm is again not influenced by the sub-selection S and in the
remainder, Ỹ can be integrated out so the optimization simplifies into

Ŝ ∈ arg max
S

∫
Φ∗
f (Φ|Y ) log f

(
Φ| [S]Y

)
dΦ,

that is identical with (6.9). It means the results of both proposed approaches are the same.

(iii) All the considerations here were related to the purpose of reporting beliefs about model pa-
rameters of interest describing relative lymphatic system response. It is due to the assump-
tion these parameters are somehow important for the disease assessment, but the specific
quantifier is not known yet. If some quantifier Kl would be chosen as an appropriate for
the disease assessment and its belief is of interest then, instead of (6.10), it would be better
to do optimization with respect to this quantifier

Ŝ ∈ arg min
S

l̊∑
l=1

D
(
f (Kl|Yl) || f

(
Kl| [S]Yl

))
.

The formulas for the computation of maximized limb term Wl=
∫
Φ∗

l
f (Φl|Yl) log f

(
Φl| [S]Yl

)
dΦl

in (6.10) for individual models from the Table 4.2 are listed here, for completeness.

Maximized limb termWl for models P1, P2, N1, N2

Wl =

∑
Ξ∗

l
,b∗

l

wΞl,bl

−1 ∑
Ξ∗

l
,b∗

l

wΞl,bl
log[S] wΞl,bl

− log
∑
Ξ∗

l
,b∗

l

[S]wΞl,bl

Maximized limb term Wl for models N3, N4

Wl = − log
∑
Ξ∗

l

[S]wΞl
+

∑
Ξ∗

l

wΞl

−1∑
Ξ∗

l

wΞl

[
log

Γ([S]χ1 + 1/2)
Γ([S]χ1)Γ(1/2)

+log
(
ω

1/2
Ξl

[S]χ
−([S]χ1+1/2)

4

)

−([S]χ1+1/2)
∫

b∗
l

log

(
1+

ωΞl
χ2

[S]χ4

(
bl −

[S]χ3

[S]χ2

)2
)

St
(
bl|
χ3

χ2
,
2ωΞl

χ1χ2

χ4
, 2χ1

)
dbl

]

The integral in this term can not be evaluated analytically, therefore the numerical evaluation is
necessary. In this case e.g. the Laplace approximation can be employed [6, 42].
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6.4.2 Optimal Sampling Times for Reporting Point Estimates
The Section 6.4.1 was devoted to the selection of sampling times in order to report beliefs about
quantities of interest. If, on the other hand, only point estimates of the quantities are sufficient
for further processing then the approach of selection of sampling times can be related to these
point estimates.

Let’s consider the point estimate of a selected quantityKl is wanted. Thereafter if the popular
quadratic loss function is used, the optimal point estimate of Kl on the base of the selected
observations [S]Yl is the conditional expectation [S]K̂l = E

[
Kl| [S]Yl

]
, see Section 3.2.5. Then

the proposed approach of selection of sampling times in order to report these point estimates can
be formulated as follows: “We want to choose such sub-selection S for which the point estimate
of the desired quantity Kl given the observations in this sub-selection [S]Yl, [S]K̂l = E

[
Kl| [S]Yl

]
,

minimizes the expectation of the loss function Z, that quantifies the quality of the point estimate.”
Again it is the global task solved over all limbs in the experimental set, then the task is solved
with respect to global parameter K =

(
K1,K2, . . . ,Kl̊

)
and its point estimate [S]K̂.

Employing the framework of the general static decision task described in the Section 3.2.2 its
specific instances for the solved task are similar to those in the previous Section:

• Decomposition of the behaviour Q = (Pξ, ξ, Fξ) ≡ (Y,S,K)

• Admissible rules R : Y ∗ → S∗

• Loss function Z (Y,S,K) quantifying the quality of the estimate [S]K̂ = E
[
K| [S]Y

]
Outer model needed for the decision making is f (K|Y,S). Again the adopted natural conditions
of decision making (3.7) imply that the sub-selection S is superfluous in the conditioning. For
the given Y the optimal sub-selection is

Ŝ ∈ arg min
S

∫
Φ∗
Z (Y,S,K) f (K|Y ) dK. (6.12)

The possible loss function for quantification of the quality of the estimate [S]K̂, can be defined
as

Z =
l̊∑

l=1

(
Kl −[S] K̂l

)T

M
(
Kl −[S] K̂l

)
, (6.13)

where M is a symmetric positive definitive matrix. Employing it together with the decomposition
along limbs (5.17), or (5.19) (together with the model simplification proposed in Section 5.2.2,
at the page 49, for the models N•), the optimization (6.12) can be expressed as

Ŝ ∈ arg min
S

l̊∑
l=1

∫
K∗

l

(
Kl −[S] K̂l

)T

M
(
Kl −[S] K̂l

)
f (Kl|Yl) dKl =

= arg min
S

l̊∑
l=1

[
tr(MV [Kl, |Yl]) +

(
[S]K̂l − K̂l

)T

M
(

[S]K̂l − K̂l

)]
, (6.14)

where K̂l = E [Kl|Yl] and tr(·) denotes matrix trace. The first term of (6.14) does not depend
on the sub-selection S, therefore only the second term has to be minimized. If the evaluation is
done for the scalar quantifier Kl only on one limb, i.e. l̊ = 1 it is easily checked that the preferred
sampling times are those for which the estimate of Kl is the nearest to estimate found from
all observations. For more limbs the sampling times with minimal sum of square of difference
between the point estimates done on selected and all data are preferred.
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Remark(s) 6.4.2

(i) Different point estimate of a quantity Kl and different loss function Z (6.13) could be used
in general. The quadratic forms were selected here only due to the analytical solution of
optimization and accordingly possibility to interpret the results. However, the selection of
the suitable loss function is not straightforward, see bellow.

(ii) This approach to the optimization has one general drawback that is clearly visible on the
example with quadratic loss function. Both the local loss function that determines the point
estimates [S]K̂l and the loss function Z (Y,S,K) in (6.12) of the global optimization of
sampling times should be selected with respect to the posterior distributions f

(
[S]Kl|Yl

)
and

f (Kl|Yl). For instance, it is evident that the optimization (6.14) with constant matrix M
for all limbs is not suitable for cases where the level of uncertainty of estimates is different
for individual limbs. The quadratic loss functions are appropriate for normal models in
general. In this specific case the loss function with constant M for all limbs suits only for
normal models f

(
[S]Kl| [S]Yl

)
= N([S]Kl| [S]µl, s) with common precision parameter s. For

other cases it can be unsuitable.

The optimization for reporting beliefs based on the Kullback-Leibler distance described in
the Section 6.4.1 is in this respect better, as it takes into consideration the whole probability
distribution. Employing the approach of optimization for reporting beliefs about the param-
eters of interest Kl, where f

(
[S]Kl| [S]Yl

)
= N([S]Kl| [S]µl,

[S] sl) f (Kl|Yl) = N(Kl|µl, sl),
the result of optimization (6.10) is:

Ŝ ∈ arg max
S

l̊∑
l=1

[
1
2

log
(

[S]sl

2π

)
−

[S]sl

2

(
([S]µl − µl)2 + s−1

l

)]
.

It coincides with (6.14) only for the common [S]sl for all limbs and selections. If the distri-
bution is normal then the Kullback-Leibler distance is practically the quadratic loss function,
if not then the general Kullback-Leibler distance leads to the loss function appropriate for
this distribution. Therefore the optimization for reporting beliefs in the Section 6.4 is su-
perior to the approach described in this Section and only the former will be used onward.

(iii) It was considered commonly for both optimization versions at the very beginning that the
sampling times for all the limbs are the same for the simplicity, i.e. Tl = T . However it is
not possible to ensure it in reality. Therefore the task of selection of sampling times has to
be generalized e.g. to intervals. It means to group similar sampling times into intervals and
perform the optimization with respect to these intervals. It can be done since the theoretical
conclusions for sampling times and intervals are the same.

6.5 Comparison of Accumulation on Both Limbs

Comparison between the responses of a particular patient’s upper limbs is a very useful diagnostic
aid, since, often, it is known that one limb is healthy, and it can act as a control for evaluation
of the other limb. Technically, the need for a quantitative comparison of just two or three
scintigraphic images is implied, a task which is hopeless without a Bayesian treatment. Over
here the lexical terms that the responses on both limbs are the same/different is translated into
the mathematical terms and the task of making statement transformed to the decision-making
task.
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This problem is formalized here in the general framework of hypothesis testing, see Sec-
tion 3.2.5 [6, 47]. A selection of better variant between alternative hypotheses “response is
same/different” is done. The individual hypotheses can be defined in the following manner:

H0: The same responses The correspondence of responses on both limbs can be expressed
as that the accumulation characteristics on both limbs are the same, i.e. the parameters
(Ξl, bl) ≡ Φl determining these characteristics are the same and common for both limbs:

Φ1 = Φ2 = Φ.

H1: Different responses The difference of responses implies the different accumulation char-
acteristics, i.e. the parameters Φ1 and Φ2 are generally different and local for each limb.

Putting this testing of hypothesis into the general framework of static decision task, Sec-
tion 3.2.2, we come to its specific instances for this task

• Decomposition of the behaviour Q = (Pξ, ξ, Fξ) ≡ ((Y1, Y2), ĥ, (Φ1,Φ2, {Hh}h∈{0,1}))

• Admissible rules are of the form R : (Y1, Y2)∗ → h∗

• Loss function Z
(
(Y1, Y2), ĥ, (Φ1,Φ2, h)

)
≥ 0 is a (2, 2) table typically with zero diagonal

entries as no penalty is paid when ĥ = h. Positive entries reflect medical and economic
consequences of a bad selection. Mostly, the simplified loss function Z

(
ĥ, h

)
is used.

The outer model needed is then f
(
h,Φ1,Φ2|Y1, Y2, ĥ

)
. The natural conditions of decision mak-

ing (3.7) imply the decision ĥ is superfluous in conditioning. The Bayesian decision for the
general loss function Z is the result of optimization

ĥ ∈ arg min
ĥ∈{0,1}

∑
h∈{0,1}

Z
(
(Y1, Y2), ĥ, (Φ1,Φ2, h)

)
f (h,Φ1,Φ2|Y1, Y2) , (6.15)

while for the simplified loss function Z
(
ĥ, h

)
it is

ĥ ∈ arg min
ĥ∈{0,1}

∑
h∈{0,1}

Z
(
ĥ, h

)
f (h|Y1, Y2) . (6.16)

The needed conditional pf f (h|Y1,Y2) in (6.16) and mixed-type p(d)f f (h,Φ1,Φ2|Y1,Y2) in (6.15)
can be obtained using the chain and Bayes rules:

f (h,Φ1,Φ2|Y1, Y2) = f (Φ1,Φ2|h, Y1, Y2) f (h|Y1, Y2)
f (h|Y1, Y2) ∝ f (Y1, Y2|h) f (h) . (6.17)

The simplified loss function is employed only here, so the stress is on the computation of
f (Y1, Y2|h). Though, for the general case f (Φ1,Φ2|h, Y1, Y2) can be obtained too.

The null hypothesis h = 0 defines the local parameters to be same for both limbs. Therefore
the predictive pdf f (Y1, Y2|h = 0) cannot be be evaluated using formulas (5.18) and (5.21) in
the Section 5.2, where the limb local parameters are considered generally different. In the case of
models P•, see Table 4.2, the model and null hypothesis assumptions imply that only parameter
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gl is limb local, the others are common for both limbs. Then employing parametrised model
(4.10) and modified prior distribution, the predictive pdf f (Y1, Y2|h = 0) can be expressed as

f (Y1, Y2|h = 0) =
∑
Ξ∗,b∗

[
2∏

l=1

∫
g∗

l

f (Yl|Ξ, b, gl) f (gl) dgl

]
f (Ξ, b) .

The same predictive pdf for normal models N• in the Table 4.2 is even simpler. The parameter
s is considered to be common for all limbs from the beginning. Therefore all the parameters are
common for both limbs in null hypothesis. Thus it follows for models N1, N2:

f (Y1, Y2|h = 0) =
∑
Ξ∗,b∗

[
2∏

l=1

f (Yl|Ξ, b, s)

]
f (s) ds f (Ξ, b) .

Similar formula can be obtained also for the models N3, N4. The prediction f (Y1, Y2|h = 1) for
the alternative hypothesis h = 1 is computed according to (5.18) and (5.21) where l̊ = 2. Its
evaluation is obvious for the models P•. For the models N• application of the approximation
of the pdf of common parameter s or model simplification described in the Section 5.2.2 are
required.

Computation of the posterior distribution f (h|Y1, Y2), see (6.17), requires the prior probabil-
ity of the hypotheses f (h). Since in the moment of making the decision about the correspondence
of limbs the information from clinicians is not available and the evaluation is done due to the
doubt about the limb differences, the prior distribution on the space of the hypothesis is se-
lected uniform. To eliminate the prior distribution f (h) in the temporary computation, only the
posterior to prior odds ratio called the Bayes factor [6] is computed:

B01(Y1, Y2) =
f (Y1, Y2|h = 0)
f (Y1, Y2|h = 1)

=
f (h = 0|Y1, Y2)
f (h = 1|Y1, Y2)

/
f (h = 0)
f (h = 1)

. (6.18)

It provides a measure of whether the data (Y1, Y2) have increased or decreased the odds on h = 0
relative to h = 1. The posterior hypothesis probabilities are then given by

f (h = 0|Y1, Y2) =
B01(Y1, Y2)f01

1 + B01(Y1, Y2)f01
, f (h = 1|Y1, Y2) =

1
1 + B01(Y1, Y2)f01

,

where f01 = f (h = 0) /f (h = 1).
The posterior probability f (h = 0|Y1, Y2) is a temporary final result, if the simplified loss

function (table) Z
(
ĥ, h

)
is not determined yet, that allows to make the final decision later. If

the loss Z is specified then the hypothesis of limb equality ĥ = 0 is accepted if:

f (h = 0|Y1, Y2) ≥ P =
Z
(
ĥ = 0, h = 1

)
Z
(
ĥ = 0, h = 1

)
+ Z

(
ĥ = 1, h = 0

) . (6.19)

That is to say, the loss function Z
(
ĥ, h

)
determines the probability bound (threshold) P for

acceptance of the null hypothesis. This threshold can be therefore understood as tuning knob of
this decision task.

In order to make this section complete the exact formulas (6.18) for individual models are
listed. It is supposed hereafter that the sampling times for both limbs are the same, i.e. T1 = T2.
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Bayes factor for models P1, P2

B01(Y1, Y2) =

∑
Ξ∗,b∗{Ξ=Ξ1=Ξ2,b=b1=b2} wΞ1,b1wΞ2,b2∑
Ξ∗1 ,b∗1

wΞ1,b1

∑
Ξ∗2 ,b∗2

wΞ2,b2f (Ξ2, b2)

Bayes factor for models N1, N2

B01(Y1, Y2) =
Γ(n+ αs)Γ(α̌s)

∑
Ξ∗,b∗

[
βs + 1

2

∑2
l=1 ||NYl − bAΞ||2

]−(n+αs)

Γ(χ1,l=1)Γ(χ̌1,l=2)β̌α̌s
s
∑

Ξ∗1 ,b∗1
wΞ1,b1

∑
Ξ∗2 ,b∗2

w̌Ξ2,b2f (Ξ2, b2)
(6.20)

Bayes factor for models N3, N4

B01(Y1, Y2)=
Γ(n+αs)Γ(α̌s)

∑
Ξ∗,b∗

∑2

l=1
||N Yl||2+2βs+ωΞ

̂b2Ξ−

(
b̂Ξ+ω

−1
Ξ

(∑2

l=1
N Y l

)T
AΞ

)2

1+2ω
−1
Ξ

||AΞ||2

−(n+αs)

(1+2ω−1
Ξ ||AΞ||2)1/2

Γ(χ1,l=1)Γ(χ̌1,l=2)(2β̌s)α̌s
∑

Ξ∗1
wΞ1

∑
Ξ∗2
w̌Ξ2f (Ξ2)

(6.21)
The notation •̌ in (6.20) and (6.21) allows us to express the formulas for normal models N• for
both versions of computation. The first version assumes parameter s to be common for both
limbs and employs approximation (5.22). The second version employs model simplification with
local limb parameter sl. The former supposes that terms α̌s, β̌s, w̌· are substituted or computed
with the parameters α, β of approximating single Gamma distribution f̂ (s|Y1) while the latter
uses repeatedly the hyper-parameters αs, βs of the prior distribution of limb specific parameter
sl. Similarly to the estimate of common parameter s, the results for the first version employing
approximation depends on the order of limb processing.

6.6 Summary
This Chapter is an important part of this work, where the proposed modelling, Chapter 4, and
Bayesian inference, Chapter 5, are employed for the solution of majority of tasks useful for the
scintigraphic evaluation of limbs listed in the objectives of the thesis, Section 1.3.

The main outcomes of the Chapter are:

• estimate of the “whole” time activity curve from sparse measurements. This curve can
be used for visual evaluation alone. Besides it is the only chance how the quantification
techniques proposed by another authors that need the whole or some points of time activity
curve can be used having only sparse data. The mean and marginal standard deviation of
time activity curve are basic outcomes that express also uncertainty of the estimate.

• quantitative test, that compares two limbs on the base of just two or three scintigraphic
images. It is based on the Bayesian hypothesis testing of two alternative hypotheses, whose
outcome is binary decision if the accumulation characteristics on both limbs are the same
or different.

• Bayesian treatment of a selection of appropriate sampling times for scintigraphic evaluation.
According my best knowledge, the proposed approach in the Bayesian framework has not
been described in any publication, yet. Though the idea behind is straightforward. Two



6.6. SUMMARY 63

versions of sampling time optimization according the demanded results of scintigraphy
quantification were proposed, however only the superior version was decided to use. They
were constructed for the specific scintigraphic problem and considered model, however the
results can be generalized to any problem and model.

Besides some promising quantifiers for the assessment of staging of lymphedema are proposed,
that can be computed by means of estimated model. This Chapter and also the whole work in
this occasion does not solve the problem of searching a suitable quantitative parameter, that are
correlated with the disease staging. It belongs still to open problems. Finally, the sense of output
reconstruction at non-sampled times, Section 6.2, is for the verification of proposed models and
also for verification of the optimized sampling times.

The Chapter 7 demonstrates all the theoretical results on practical experiments.
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Chapter 7

Experiments

This Chapter is devoted to the experiments on real data. It comprises the experimental results
whose main aim is to verify applicability of the proposed models and algorithms on the quantita-
tive scintigraphy problem. The general aim of the Chapter consists of several important primary
goals:

(i) Demonstrate that practically all the algorithms work.

(ii) Show that the results are reliable.

(iii) Demonstrate that results are sufficiently insensitive to the optional parameters — tuning
knobs.

(iv) Show that results are meaningful and give to the physicians expected benefit.

(v) Summarize open problems, which appear as doubts in experiments dedicated to the all
previous goals.

All the presented experiments hereafter are meant to demonstrate some of these goals. Some
of them can cover even more goals. The goal (i) is in the background of all experiments, for
instance.

At the beginning, the Section 7.1 contains information about the set of real data used in
all the experiments. The Section 7.2 deals with necessary and optional initial tuning of the
algorithm, that have preceded to all the subsequent tasks. The extensive set of local limb and
patient inferences for all the patients is demonstrated over here by the illustrative examples in
the Section 7.3. The “best” model from the considered set of models is being selected in the
Section 7.4. The Section 7.5 is devoted to the experimental verification of the robustness of
the estimator to the optional parameters that determine the prior information. The results of
the proposed quantitative comparative test is compared with the decisions of physicians in the
Section 7.6 and the sampling times are optimized in the Section 7.7. At the end, the potential
model employment for the disease staging assessment is outlined in the Section 7.8.

The basic information about the implementation of the algorithms employed for generating
the results can be found in the Appendix A. There are also concentrated all the tuning knobs of
algorithms with their default values implicitly used in the experiments if not specified otherwise.

65
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7.1 Data Source

Testing of algorithms on data is important to consider their stability and reliability. However,
testing on “artificial” simulated data can hide some pitfalls, because data values prepared artifi-
cially are “pretty” and need not reflect situations that can be met with real data. Therefore the
real scintigraphic data are used.

The algorithms were tested on an experimental group of well checked data of 32 limbs. For
each limb in the group the data on all ROIs are available. The number of data for each ROI
and limb is between 3 and 4 (besides the initial injected activity). All the subjects whose
limbs are used in the experiments are females after the breast cancer treatment with suspicion
to lymphedema or its early stages. Limbs with the advanced stages of lymphedema were not
included standardly (apart from one exception) in the experimental set intentionally, as the
corresponding data sets were incomplete.

There is also available, besides the scintigraphic data, information about the assessment of the
stage of lymphedema for each ROI and limb and about the correspondence between limbs made
by the clinician and nuclear medicine expert (more details can be found in the Section 2.2.3). It
allows us to compare some results with the conclusions of independent experts.

7.2 Tuning phase

Before the proposed models and resulting algorithms can be employed for the purpose of quan-
titative evaluation of scintigraphy it is necessary to tune up their parts, mainly those that have
been specified only roughly during the definition of models. The whole experimental group of
data is used to “learn” these parts. It concerns first and foremost the prior distribution of the
noise precision parameter s of the normal models N•, see Table 4.2. Though the rest of prior
information could be possibly refined employing indicated but not fully formalized common col-
lective hyper-parameters in the Remark(s) 4.3.1. It will be demonstrated here on the range of
model orders dl.

7.2.1 Estimate of the Common Noise Parameter s

Let’s recall that the precision parameter s for normal models N• is considered to be common for
all limbs characterizing the measurement process. It is the reciprocal value of the variance of
measurement noise. Its prior distribution was initially determined in the Section 4.3.3 roughly
according to the supposed range of a priori possible values. It was considered that the range and
distribution of this parameter common for all limbs can be refined by processing of sets of ROI
data. The right instrument how to refine it was described in the Section 5.2.2 at the page 47
where also two possible approximations for realizable computation were proposed. It was the
initial task preceding all further processing.

Results The initial prior range of the parameter s was chosen 1e5 < s < 1e8 and corresponding
gamma distribution determined by means of (4.18) in the Section 4.3.3. This distribution is flat
enough as its hyper-parameter αs ≈ 1. Using this initial prior distribution the noise parameter s
was estimated on the experimental set of data employing both proposed approximations. In order
to suppress the influence of the order of processed limbs on the results the solution mentioned in
Section 5.2.2 was applied. The estimation was done on 30 permutations of limbs and summarized
into one gamma distribution. The results for individual ROIs and considered normal models N•
are summarized in Table 7.1.
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Estimate f (s|Y ) = Ga(s|αs, βs)

Approx. via discrepancy Approx. via moments

Model αs βs E [s] σ(s) αs βs E [s] σ(s)

N1 43.03 8.35e-5 5.15e5 7.86e4 43.07 8.35e-5 5.16e5 7.86e4
N2 43.31 8.35e-5 5.18e5 7.88e4 43.40 8.36e-5 5.19e5 7.88e4
N3 43.13 8.34e-5 5.17e5 7.87e4 43.16 8.34e-5 5.17e5 7.87e4
N4 43.69 8.35e-5 5.23e5 7.91e4 43.73 8.35e-5 5.23e5 7.91e4

(a) ROI=axilla

Estimate f (s|Y ) = Ga(s|αs, βs)

Approx. via discrepancy Approx. via moments

Model αs βs E [s] σ(s) αs βs E [s] σ(s)

N1 42.39 1.14e-5 3.71e6 5.71e5 42.4 1.14e-5 3.72e6 5.71e5
N2 42.54 1.15e-5 3.69e6 5.67e5 42.47 1.15e-5 3.69e6 5.67e5
N3 42.87 1.12e-5 3.82e6 5.84e5 42.79 1.12e-5 3.82e6 5.85e5
N4 42.99 1.13e-5 3.78e6 5.77e5 42.90 1.13e-5 3.78e6 5.77e5

(b) ROI=upper arm

Estimate f (s|Y ) = Ga(s|αs, βs)

Approx. via discrepancy Approx. via moments

Model αs βs E [s] σ(s) αs βs E [s] σ(s)

N1 42.46 2.58e-5 1.65e6 2.52e5 42.28 2.58e-5 1.63e6 2.52e5
N2 41.76 2.61e-5 1.6e6 2.47e5 41.71 2.59e-5 1.64e6 2.49e5
N3 43.47 2.60e-5 1.67e6 2.53e5 43.52 2.60e-5 1.67e6 2.53e5
N4 42.63 2.64e-5 1.62e6 2.47e5 42.63 2.64e-5 1.62e6 2.47e5

(c) ROI=forearm

Table 7.1: Estimates of the precision parameter s from the data of experimental set. Tables for
individual ROIs contain estimates for all models N• and two proposed approximations. Both
parameters (αs, βs) of Gamma distribution are given together with mean E [s] and standard
deviation σ(s) of the distribution.
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Discussion There are almost no difference between the pairs of results in Table 7.1 for both
approximations described in the Section 5.2.2 and the proposed normal models from the Table 4.2.
Employing both approximations similar results are obtained, hence there is no reason here to
prefer some of them. The differences among estimates of s, i.e. noise levels, on the ROIs, can be
explained by the used simplification in normal models. In the original Poisson model the level of
noise depends on the level of the data. Used simplification for models N• assumes the constant
noise level for all data. The consequence is that the estimated pdf of s reflects the highest level
of the noise in the original raw data on ROIs. This idea was already used for the initial rough
setting of the noise. The estimated noise precision corresponds to the 30% noise to signal ratio in
the worst case of low data and about 1% in the best case. Such boundary ratios are reasonable
for the estimation and the estimated ranges agree with the assumption about the noise. Thus
the proposed normal models from this point of view seem meaningful. It can be also understood
as a special experiment for the check of meaningfulness of the results, the goal (iv) from the list
of primary goals at page 65.

The different results of this task for individual ROIs were then employed as the prior pdf
about the parameter s for further processing.

7.2.2 Range of the Model Orders dl

The prior information about the model order dl was determined in the Section 4.3.3 in the form
of range of a priori possible model orders. It was chosen according the supposed time activity
curve shape and comparing it with model responses for various orders dl. The consequence of
this consideration is the conservative range 1 = d ≤ dl ≤ d = 5. The objective of this Section
is to demonstrate that this range is sufficiently large. Besides it will be shown how this range
can be narrowed down employing non-formalized refinement through the collective bounds, only
indicated in the Remark(s) 4.3.1.

Results The estimates of the model order dl on individual limbs are good indicators for the
testing of sufficiency of the overall model order range. The “significance” of individual model
orders dl on the individual limb and ROI is clearly visible from this result. All the posterior
distributions f (dl|Yl) computed for each limb and ROI in the experimental group are summarized
in box graphs along the order dl for each ROI and considered model in the Figure 7.1. The lower
and upper line of the boxes mark the 25% and 75% percentiles of the “samples” f (dl|Yl) while
the middle line of box is median. The whiskers above and bellow box mark whole range of the
“samples” f (dl|Yl).

In general, the fixed range (d, d) of model orders dl can be considered to be unknown common
collective hyper-parameter for all limbs. Then this range can be narrowed down employing the
Bayesian learning on the experimental set of data. The posterior distribution f

(
d, d|Y

)
is the

correct quantity from the Bayesian viewpoint necessary for the refinement, however under specific
conditions, see e.g. [35], it coincides with the maximum likelihood estimate max(d,d) f

(
Y | d, d

)
.

In our case it is not reasonable to narrow the range (d, d) since the maximum likelihood estimate
for the majority of models and ROIs coincides with the original conservative range. The only
exceptions are the estimate (1, 3) for the Poisson models P• on the ROI of axilla and (1, 4) for
model P1 on the upper arm ROI.

Discussion The summarized results of individual posterior distributions f (dl|Yl) expressed
by box graphs in the Figure 7.1 are very similar in the groups of normal models N• and Poisson
models P• while there is visible difference in the results between those two groups, especially
on the ROI of axilla. Regardless it is possible to make conclusion common for all models.
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Figure 7.1: Box plots of model order estimates f (dl|Yl) for each ROI and considered model. The
lower and upper line of the box are the 25% and 75% “percentiles” of the “samples” f (dl|Yl),
line in the middle is median and “whiskers” above and bellow show the whole range. Each graph
refers to one ROI and one considered model (ROI, model).
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Let’s notice that the orders dl = 1, 2, 3 have the major role and the influence of higher orders
decreases. These results indicate that the selected range of model orders is sufficiently great.
The model order dl = 1 is “used” in the estimate on the distant ROI of axilla only in the sporadic
cases while its significance increases for the nearer ROIs from the injection site. Finally also
notice that for each considered model moving through the ROIs with greater distance from the
injection the major role moves to higher orders, even no such information were included in the
prior information and no relations among ROIs were defined. It indicates the meaningful results
(goal (iv) from the list of goals at page 65) and verifies the usage of “compartmental” model to
be reasonable even if the compartments are not bound up with regions.

The results of maximum likelihood estimate of the common collective range of model orders
do not allow us to narrow down the initially selected range. Mostly the estimates coincide with
the initial range chosen according to the supposed time activity curve shape. The reason is that
even the range of model orders could be narrowed down on the great part of limbs there exist
“exceptions” where it is not possible. Therefore the initial setting of the range of model orders
remained for a further processing.

The similar approach of the refinement could be applied also on further collective hyper-
parameters, e.g. bounds of the maximum gain of the response (rmax, rmax) and bounds of its
time (tmax, tmax) from the Table 4.1, however it was not employed here. The demonstrated
refinement of the range of model order serves only as the illustration of further possibility how
to employ Bayesian inference. The bounds are standardly considered fixed herein. When we had
done some refinement (especially of the maximum gain of the response) the rough setting came
out from the empirical knowledge of physicians.

7.3 Illustrative Examples
Most of the practical experiments have comprised computation of results of various tasks solved
on individual limbs or their pairs. As it is not possible to show all extensive results, they are
illustrated here by selected examples on the specific limbs and ROIs. Their aim is to demonstrate
that the results are meaningful (goal (iv) from the list of goals at page 65) and to compare the
results for individual models. In order to be objective, both poor and good results are shown.

Results Two examples of the results on the selected patients and ROIs are given here. In the
first example the data comes from the ROI of axilla. There is evident difference between both
limbs of patient. The results belong to better ones. The second example concerns the ROI of
upper arm with similar data on both limbs whose results present the worse from the group of
results. The presented outcomes are time activity curve estimate, output reconstruction, estimate
of two promising quantitative parameters and comparison of limbs for all the considered models
from the Table 4.2. Their discussion is the part of the next paragraph.

Example 1: Illustrative results on one axilla ROI

Time Activity Curve (TAC) — see Figure 7.2.

Output Reconstruction at Non-sampled Times — see Figure 7.3.

Residence time and time activity curve (TAC) maximum — the resulting estimates from both
limbs are summarized in the Table 7.2.

Comparison of accumulation on both limbs — the posterior probability f (h = 0|Y1, Y2), (6.19),
of zero hypothesis in the case of chosen uniform distribution on alternative hypothesis is almost
zero (1e-29).
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Figure 7.2: (Example 1) Time activity curve estimates on both limbs for all the considered
models. The solid line represents the expected time activity curve E [Xl|Yl] on the left limb.
Dashed lines represent its uncertainty (mean value±marginal standard deviation). The dash-
dotted line and two dotted lines are used for the same results on the right limb. Y-axes give %
values of relative normalized estimate.

Residence time TAC maximum

L R L R

Model E σ E σ E σ E σ

P1 10.17 1.134 16.314 0.444 1.27e-2 5e-4 3.37e-2 3e-4
P2 10.21 1.130 15.251 0.676 1.27e-2 5e-4 3.29e-2 5e-4
N1 6.35 3.53 16.55 2.48 1.18e-2 1.6e-3 3.39e-2 1.2e-3
N2 6.93 3.73 16.74 2.57 1.19e-2 1.6e-3 3.39e-2 1.3e-3
N3 6.36 3.51 16.55 2.46 1.18e-2 1.6e-3 3.39e-2 1.2e-3
N4 7.16 3.71 16.82 2.54 1.21e-2 1.6e-3 3.39e-2 1.3e-3

Table 7.2: (Example 1) Residence time and maximum of time activity curve (TAC) estimates
for all the considered models. The mean value E and standard deviation σ for both left (L) and
right (R) limbs are presented.
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Figure 7.3: (Example 1) Output reconstruction at non-sampled times for all the considered
models. The circles and plus signs denote the measured data on the left/right limb. The solid
line represents the mean of the output reconstruction on the left limb. Dashed lines represent its
uncertainty (mean value±marginal standard deviation). The dash-dotted line and two dotted
lines are used for the same results on the right limb. Y-axes give the absolute values on the raw
data scale for the models P• whereas % values on the normalized data scale for the models N•.
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Figure 7.4: (Example 2) Time activity curve estimates on both limbs for all the considered
models. The graphical conventions are those of Figure 7.2.

Example 2: Illustrative estimate on the upper arm ROI

Time Activity Curve (TAC) — see Figure 7.4.

Output Reconstruction at Non-sampled Times — see Figure 7.5.

Residence time and time activity curve (TAC) maximum — the resulting estimates from both
limbs are summarized in the Table 7.3.

Comparison of accumulation on both limbs — the posterior probability f (h = 0|Y1, Y2), (6.19), of
zero hypothesis in the case of chosen uniform distribution on alternative hypothesis is summarized
in the Table 7.4 for all the considered models.

All the possibilities of computation of this quantity for the normal models according the
proposed simplification or computation approximation involving the common parameter s is
given.

Discussion The “confidence” intervals of the time activity curve estimates (mean±marginal
standard deviation) in the Figures 7.2, 7.4 appear to be the same (or very similar) in the groups
of normal models N• and Poisson models P•. But again similarly to the results in the Section 7.2.2
the results between those two group of models differ. The obvious difference in the Example 1 is
only greater standard deviation for all the normal models comparing to Poisson models. There are
also variances among individual models too but their are minimal at a glance. In the Example 2
even the shapes of estimated time activity curves differ. Poisson models can seem more suitable
from this viewpoint as they give the narrower estimate. However the output reconstruction in
non-sampled times shown in the Figures 7.3, 7.5 casts another sights on the results. The tight
estimates for Poisson models cause that the original employed data lie outside the “confidence
interval” for output reconstruction similar to those for time activity curve estimate. It is especially
noticeable in the Example 2. The normal models are more “tolerant”, they cover majority of data
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Figure 7.5: (Example 2) Output reconstruction at non-sampled times for all the considered
models. The circles and plus signs denote the measured data on the left/right limb. The graphical
conventions are those of Figure 7.3.

Residence time TAC maximum

L R L R

Model E σ E σ E σ E σ

P1 1.161 0.726 4.998 1.68 3.4e-3 1.37e-5 3.5e-3 2.29e-4
P2 1.236 1.172 3.466 1.39 3.4e-3 1.38e-4 3.6e-3 1.59e-4
N1 2.386 1.9 3.238 1.867 3.6e-3 3.91e-4 3.6e-3 3.76e-4
N2 2.802 2.285 3.866 2.215 3.5e-3 3.95e-4 3.5e-3 3.7e-4
N3 2.379 1.897 3.235 1.853 3.6e-3 3.93e-4 3.6e-3 3.74e-4
N4 2.752 2.267 3.849 2.203 3.6e-3 3.96e-4 3.5e-3 3.7e-4

Table 7.3: (Example 2) Residence time and maximum of time activity curve (TAC) estimates
for all the considered models. The mean value E and standard deviation σ for both left (L) and
right (R) limbs are presented.
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Model f (h = 0|Y1, Y2)

Limb local parameters Approx. via discrepancy Approx. via moments

P1 0.939 — —
P2 0.866 — —
N1 0.9902 0.9903 0.9903
N2 0.9705 0.9706 0.9706
N3 0.9996 0.9996 0.9996
N4 0.9996 0.9996 0.9996

Table 7.4: (Example 2) The posterior probability of the hypothesis, that the accumulation char-
acteristics on both limbs are the same. The results for all the considered models are listed.
For the normal models N•, the values in the first column are obtained employing the simplifi-
cation that the parameter s is limb local while next two columns correspond to the proposed
approximation of computation of posterior distribution of common s.

by the estimated confidence intervals.
The estimates of residence time and maximum of time activity curve are given here as exam-

ples of proposed quantitative parameters. They result from the estimated time activity curve,
therefore the similar statements could be done also here. Besides further interesting things are
revealed here. The estimated mean value of the maximum of time activity curve is very sim-
ilar for all the considered models even the whole time activity curves differ (especially in the
Example 2). It can be understood that the maximum is (in time) local quantifier of the time
activity curve, whose corresponding part is estimated similarly for all the models. In contrast the
residence time is global quantifier where the small difference in the estimate of model parameters
and consequently of time activity curve manifests itself distinctly to it. This is the reason why
the estimates of residence time so differ for individual models. Its second consequence is that
the relative uncertainty of estimate of global quantifiers is greater than for the local quantifiers.
Finally let’s notice that the estimates of residence time for pairs of odd and even normal models
are similar while they differ each other.

The result of comparison of accumulation on both limbs in the Example 1 is obvious imme-
diately from the visual evaluation of the estimated time activity curves in the Figure 7.2. The
difference in estimated time activity curves is confirmed by the “zero” posterior probability of
hypothesis that the accumulation characteristics on both limbs are the same f (h = 0|Y1, Y2).
The results for all the considered models and variants of its computation for the normal models
is ≈1e-29. The posterior probabilities from the Example 2 are given in the Table 7.4. The first
column corresponds to the case, where all the parameters are limb local. It is the case of Poisson
models P•. For the normal models N• the values are obtained by the proposed simplification that
the parameter s is limb local too. The next two columns correspond to the case where parameter
s is still considered to be common for all (here for both) limbs and two proposed approxima-
tions of its posterior distribution are used. Employing this approximation the results depend in
general on the order of processing of limbs. However the results for both sequences left/right
and right/left limbs are the “same” over here and almost the same as the result employing the
simplification about common s. The differences in the results for individual models manifest also
distinctly in the results of limbs comparison while its manner of computation for the individual
models has small influence on them. The greater values for the models N3, N4 comparing to
models N1, N2 can be explained by the introduced greater uncertainty through the flat prior dis-
tribution f (bl|Ξl, s) = N(bl| b̂Ξl

, ωΞl
s) for models N3, N4. The partial prediction f (Y1|h = 0) on
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the first limb is greater for the models N3, N4 but it is cancelled by the same term for the alterna-
tive hypothesis. The significant role has the posterior parametric distribution processing one limb
f (Ξ, b, s|Y1, h = 0). It is tighter for the models N1, N2 because of more precise introduced prior
distribution. Since the data on both limbs are not exactly same, the prediction for the shifted
data on the second limb, f (Y2|Y1, h = 0) =

∫
Ξ∗,b∗,s∗

f (Y2|Ξ, b, s) f (Ξ, b, s|Y1, h = 0) dΞ db ds, is
smaller employing tighter parameter estimate from the first limb for the models N1, N2.

The illustrative examples have demonstrated that some results for all the considered models
are similar but in many tasks the results differ more or less. Therefore it is necessary to select
the “best” model from the proposed list of models and evaluate all the partial results. Then
the results for this model have to be considered as the consequence of model selection. A few
results in the given illustrative examples indicate that the normal models N• are better for the
description of the problem than the Poisson models P•. The proper selection of the model solves
the next Section 7.4.

7.4 Choice among Alternative Models
Up to now the results for all the considered models have been presented. However, only a single
model can be employed for the practical application. Therefore it is necessary to select the best
one among alternative models. The Section 7.3 has shown that the results differ partially for
individual models which asks for the choice.

In the previous Section there was an attempt to make a choice among the models, that
was based on a simple comparison of the results for all the models. However its only outcome
was the preference of normal models towards the Poisson models with no further specification.
Fortunately the task of model selection is again special decision problem which can be solved
using the Bayesian approach. The solution of the model choice from the range of possible models
is described well in [6]. The task of hypothesis testing can be applied on, see Remark(s) iii at
page 23. Let’s recall that to be able to make decision from the Bayesian viewpoint it is necessary
to have probabilistic model f (mi|Y ) for all the considered models mi and corresponding loss
function. The needed model can be obtained simply using the Bayes rule (3.1):

f (mi|Y ) ∝ f (Y |mi) f (mi) ,

where f (Y |mi) = f
(
Y1, Y2, . . . , Y̊l|mi

)
is the prediction (5.18), (5.21) already evaluated for

individual models in the Section 5.2.

Results In order to evaluate the posterior distribution f (mi|Y ) essential for the Bayesian
decision, it is necessary to determine prior distribution f (mi) on the space of models mi besides
the predictions log f (Y |mi). Since there is no reason to a priori prefer some model(s) the
prior distribution on the space of models has been chosen uniform. The obtained results are
summarized for all ROIs by the pairs log f (Y |mi) and f (mi|Y ) in the Table 7.5. The posterior
distributions f (mi|Y ) on the space of models for all ROIs are peaked enough with a single
maximum so the choice of the model is straightforward. It reduces to the maximum of f (mi|Y )
no matter of the selected (reasonably smooth) loss function. The model N2 is then selected as
the best one for the ROIs of forearm and upper arm while model N1 is preferred on the ROI of
axilla. If only one common model would be necessary to select for all ROIs then the model N2 is
the result of global optimization over all ROIs. From the perspective of lymphedema evaluation,
the ROI on axilla does not appear to be suitable due to the unilaterally removed axillary nodes
(see Sections 1.2, 2.1.1). Therefore the decision has simplified even more as the optimal results
on remaining ROIs are the same.
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Model ROI=axilla ROI=upper arm ROI=forearm

mi log f (Y |mi) f (mi|Y ) log f (Y |mi) f (mi|Y ) log f (Y |mi) f (mi|Y )

P1 -1.86e3 0 -1.33e3 0 -1.38e3 0
P2 -1.92e3 0 -1.31e3 0 -1.38e3 0
N1 -9.82e1 1 -1.4e1 0 -1.79e1 0
N2 -1.23e2 0 0 1 -2e-1 1
N3 -1.99e2 0 -1.14e2 0 -1.18e2 0
N4 -1.97e2 0 -1.12e2 0 -1.14e2 0

Table 7.5: Values ∝ log f (Y |mi) and f (mi|Y ) necessary for the selection of model from the
list of considered models on individual ROIs. The log f (Y |mi) is normalized according its
maximum over all ROIs. It is given here for the illustration since this information is hidden in
the peak posterior distributions f (mi|Y ). Maximums of the posterior distributions f (mi|Y ) on
individual ROIs in the frames determine the optimal selection of model.

In order to verify the results, some auxiliary quantifiers are evaluated too and compared if they
are not in a contradiction with the results of Bayesian decision. The sum of absolute deviation
of the normalized data from the mean of the reconstructed output in the sampling times over
all the limbs q =

∑l̊
l=1

∑nl

1 |Nyl;t − E
[
Nyl;t|Yl

]
| is the quantifier which describes the quality

of the point estimate. The results for the Poisson models on the raw non-normalized data are
obtained similarly, only they have to be normalized with respect to the injected amount in order
to be comparable with the results for normal models. The reconstructed output is computed in
the times where the data from these times are already employed for the reconstruction. It is not
absolutely fair, however it serve only as the auxiliary indicator and is not used further. This
quantifier is employed here for the comparison of individual models but also for the demonstration
that the proposed models have far better quality compared to the the primitive constant model
defined as the average of data on individual limbs. The values of the quantifier q for all the
considered models and simple constant model are

Quantifier q =
∑l̊

l=1

∑nl

1 |Nyl;t − E
[
Nyl;t|Yl

]
|

ROI\
Models P1 P2 N1 N2 N3 N4 constant

axilla 9.72e-2 1e-1 8.9e-2 9.41e-2 8.89e-2 8.76e-2 6.3e-1
upper arm 3.6e-2 3.61e-2 3.77e-2 3.8e-2 3.78e-2 3.76e-2 1.18e-1
forearm 3.5e-2 3.5e-2 4.05e-2 4.25e-2 4.05e-2 4.07e-2 7.3e-2

Another useful indicator of the output reconstruction is the relative deviation of the data from
the mean of reconstructed output. It can be e.g. expressed by the frequency with which the
original data fall into the “confidence” intervals determined as the mean value±marginal standard
deviation of the output reconstruction. It tries to depict also the quality of the uncertainty of the
probabilistic estimate. While the relative frequencies range from 80% to 90% on individual ROIs
similarly for all the normal models N• the same frequencies for Poisson models P• range from
30% to 50%. It corresponds to the results of output reconstruction for the illustrative examples
in the previous Section. For all the considered models the empirical p(d)f of relative deviations
of data from the mean of reconstructed output is symmetric round the zero mean.
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Discussion The interpretation of the results of Bayesian model selection from the Table 7.5 is
a hard task. In spite of it, we attempt to find and explain the reasons of these results, especially
why the Poisson models P• come out from the comparison as the worst ones.

The explanation of the failure of Poisson models is based on the idea that the model of inner
response of lymphatic system is not absolutely perfect description of the reality. Therefore the
differences between the ideal and real responses exist. For the case of normal models N• these
differences can be hidden (incorporated) into the noise of the measurement process, because
the variance of the noise is determined by the separate parameter s. For the Poisson models
P• the noise is determined only by the the signal level, that does not allow to incorporate the
error of modelling. Its additional impulse gain parameter gl is tightly related with the initial
measurement so the error of modelling cannot be incorporated into the model here. It is possible
perhaps to find further reasons but this one seems to be the most decisive one. Accordingly, the
parameter s of the normal models does not describe only the noise of the measurement process
but also inner model error.

The reason why the models N1, N2 are preferred against the remaining models N3, N4 is in
the difference between those models, i.e. f (bl|Ξl, s) = N(bl| b̂Ξl

, ωΞl
s) for N3, N4. This prior dis-

tribution has to be selected flat enough, see the end of the Section 5.1, so it is also non-negligible
outside the range (bΞl

, bΞl
). It incorporates more uncertainty to the estimate for the models N3,

N4 then for the models N1, N2 where the prior distribution is zero outside the range (bΞl
, bΞl

).
It results then in a smaller value of predictive pdf f (Y |mi). Interpretation of the results for the
pair of models N1, N2 is much more difficult. Comparing their prior distributions the second
one prefers slower and smaller responses of lymphatic systems. The uniform distribution on
log(1 − al) of model N2 induces more flat distribution of term at

l which appears in observation
model (4.11) comparing to uniform distribution on al. Then the prior distribution f (blAΞl

) of
the mean value of the observation model f

(
NYl|Θl

)
= N(NYl| blAΞl

, sInl
) is more flat. This

seems to be practically better for the expressing of the adequate uncertainty about these pa-
rameters. The reason why the model N2 was not selected on the ROI of axilla could be caused
by the uniform distribution on log bl together with its discretization. It handicaps the greater
responses (common for axilla) by the assigned smaller prior probability and consequently greater
discretization grid. Since the essential influence on the prediction f (Y |mi) has an absolute
difference between the data and modelling response, the greater discretization grid on bl causes,
on average, greater difference between them and consequently the smaller value of predictive pdf
f (Y |mi). It is not significant drawback of the model N2.

The auxiliary quantifier q gives similar values for all the proposed models only the values for a
primitive constant model are far greater. It indicates the proposed modelling is of better quality
then simple averaging. Thus the proposed models are useful. It would be also possible to make
selection among the proposed models according these values, however the differences (especially
in the groups of normal and Poisson models) are very small with respect to the significance of
this quantifier. The relative frequencies with which the original data fall into the “confidence”
intervals of the output reconstruction confirm the idea why the Poisson models come out from the
comparison as the worst described at the beginning of this discussion. According to it, further
choice among models is not possible. The auxiliary quantifiers do not allow to make the detailed
choice among models, but they are not also in a sharp contradiction with the results of Bayesian
decision. Therefore the results of Bayesian decision cannot be disproved from this viewpoint.

The main outcome of this Section describing the choice of model from the set of proposed
models listed in the Table 4.2 is the decision that the model N2 is the best candidate for practical
usage. Therefore from this point of text all the subsequent Sections in this Chapter include only
the results employing the model N2. If it would be necessary to speed up the computation due
to the some technical reasons, then model N4 is the best alternative.
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7.5 Robustness of Estimator

The prior distribution on the space of parameters forms an important part of the whole proba-
bilistic model but it is sometimes considered by non-Bayesians as the biggest obstacle to employ
the Bayesian approach. Sometimes an effort appears to suppress its significance even by some
Bayesians (non-informative priors, reference analysis, etc. [6, 73]) but it is reasonable only in
the cases with a sufficient amount of data. On the other hand, a rich set of prior information
is exploited in this work. It supplements sparse data available in order to make inferences im-
portant for scintigraphic evaluation. Without it the whole evaluation would be more difficult or
even impossible in the critical situations. Therefore the prior information has the significant role
on the final results definitely. The question arising here is a robustness of the estimator to the
setting of the prior information. In spite of the importance of prior information the estimator
should be sufficiently insensitive to its setting. It means the small changes in the setting of prior
information should not cause (distinct) difference in the final results. The intent of this Section
is to demonstrate that results are (sufficiently) insensitive to the optional knobs of algorithms
that serve for setting of prior distribution (goal (iii) from the list of goals at page 65).

Results Two examples from the Section 7.3 are again used here for the demonstration of the
sensitivity of the final results to the changes in the prior information. Results for four different
settings of prior information are compared together. The used original setting is that defined
as default in the Table A.1. The changes has been applied then on three important (group
of) tuning knobs of algorithm — number of discretization samples nA, nB of parameters al and
bl, upper bound gain_h of relative response maximum rmax and the supposed time interval
[t_max_l t_max_h] of the response maximum. The setting of tuning knobs for all compared
versions is

Setting of tuning knobs of algorithm (differences)

v0 see defaults in the Table A.1
v1 nA=105, nB=105
v2 nA=105, nB=105, gain_h=1.3*gain_h (v0)
v3 nA=105, nB=105, t_max_l=t_max_l-5, t_max_h=t_max_h+10 (v0)

The given results are similar to those in the Section 7.3. Estimates of time activity curve are
compared in the Figures 7.6 and 7.7 for both Examples. Tables 7.6 and 7.7 collect the estimates
of residence time and of response maximum, while the Table 7.8 contains the results of limb
comparison.

Discussion The results presented on the examples have demonstrated that the proposed esti-
mator is not sensitive to the small changes in the setting of important part of the prior distribu-
tion.

The difference of upper bound gain_h of relative response maximum in the version v2 has
almost no influence on the final results. The only case where it can cause troubles is too low
selected upper bound which does not cover all responses. Since it is selected very conservatively
and also the approach of refinement of the collective bounds, described in the Section 7.2.2 for
the range of model orders, can be employed for the upper bound gain_h, this danger can be
eliminated.

The setting of number of discretization samples nA, nB of parameters al and bl and of the
supposed time interval [t_max_l t_max_h] of the response maximum influences the results that
is most visible on the estimates of time activity curves in the Figure 7.7 and estimates of the
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Figure 7.6: (Example 1) Comparison of time activity curve estimates for various settings of prior
information. In all graphs the result for the version v1 of setting is compared with the remaining
versions on single limbs (left/right). The dash-dotted line represents the expected time activity
curve E [Xl|Yl] for the version v1. Dashed lines represent its uncertainty (mean value±marginal
standard deviation). The solid line and two dashed lines are used for the results for the other
versions v•. Y-axes give % values of relative normalized estimate.

Residence time TAC maximum

Prior L R L R

setting E σ E σ E σ E σ

v0 6.94 3.74 16.74 2.57 1.19e-2 1.6e-3 3.39e-2 1.3e-3
v1 6.95 3.74 17.15 2.59 1.19e-2 1.6e-3 3.42e-2 1.3e-3
v2 6.95 3.75 17.16 2.51 1.19e-2 1.6e-3 3.42e-2 1.3e-3
v3 7.12 3.91 17.15 2.59 1.19e-2 1.6e-3 3.42e-2 1.3e-3

Table 7.6: (Example 1) Residence time and maximum of time activity curve (TAC) estimates
for all the versions v• of prior information. The mean value E and standard deviation σ for both
left (L) and right (R) limbs are presented.
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Figure 7.7: (Example 2) Comparison of time activity curve estimates for various settings of prior
information. In all graphs the result for the version v1 of setting is compared with the remaining
versions on single limbs (left/right). The graphical conventions are those of Figure 7.7

Residence time TAC maximum

Prior L R L R

setting E σ E σ E σ E σ

v0 2.802 2.285 3.866 2.22 3.5e-3 3.95e-4 3.5e-3 3.7e-4
v1 2.805 2.289 3.869 2.22 3.5e-3 3.95e-4 3.5e-3 3.7e-4
v2 2.806 2.289 3.869 2.22 3.5e-3 3.95e-4 3.5e-3 3.7e-4
v3 2.859 2.347 3.872 2.28 3.5e-3 3.97e-4 3.5e-3 3.8e-4

Table 7.7: (Example 2) Residence time and maximum of time activity curve (TAC) estimates
for all the versions v• of prior information. The mean value E and standard deviation σ for both
left (L) and right (R) limbs are presented.
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Prior f (h = 0|Y1, Y2)

setting Example 1 Example 2

v0 8.6e-30 0.9706
v1 8.3e-30 0.9705
v2 8.5e-30 0.9706
v3 9.1e-30 0.9716

Table 7.8: The posterior probabilities of the hypothesis, that the accumulation characteristics
on both limbs are the same. The results for all the versions v• of prior information and for both
Examples are listed. The comparative test is computed employing the simplification that the
noise precision parameter s is limb local.

residence time in Tables 7.6, 7.7. The remaining results are again almost the same. The idea for
the global quantifier described in the Section 7.3 can be employed also here for the explanation
why the difference is the most visible on the estimates of residence time.

The numbers of discretization samples nA, nB are not the pure hyper-parameters that deter-
mine the prior distribution. The discretization only serve for the replacement of the continuous
uniform distributions in order to make the whole computation feasible. The discretization with
greater number of grid points is better in general, but it is not possible to increase it to almost
“infinity” as it influences the computational time. For instance, the computational time for the
version v0 of prior information is double of the computational time of version v1 for all tasks.
Therefore it is necessary to select such compromise when the estimate is not sensitive to the
changes of sampling grid of discretization and the computational time is still reasonable. The
proposed solution how to determine the number of grid points nA, nB employed here is to compare
the various results for the used deterministic uniform discretization with the results employing
the sampling-importance-resampling computational technique [76, 78, 80]. It works similarly but
it employs the random discretization. The default values nA, nB in Table A.1 were selected then
so as the results for both approaches were same.

The supposed time interval [t_max_l t_max_h] of the response maximum, i.e. (tmax, tmax)
in Table 4.1, is the most important part of the prior information that reduces the space of
suitable models to those with slow dynamics. Therefore it has influence on the results. Its aim
is to eliminate those models that could be wrongly estimated employing only few measurements.
Fortunately the sensitivity of the results to the small changes in its setting is also small.

There are two remaining tuning knobs of the algorithm that can be tested for the sensitivity
of the algorithm. However it is not done here. The reason is that the distribution of the precision
parameter s is learned by processing of sets of ROI data, see Section 7.2.1, and the range of model
orders (d, d) is refined by processing of data in the Section 7.2.2. Over against, the former was
determined only on the base of the empirical knowledge.

The sensitivity was demonstrated here on the examples with 3 measurements. It will be
probably greater in the case of only 2 measurements, but decisive for our purpose is the behaviour
of algorithm for 3 measurements, see Section 7.7.

7.6 Comparative Test of Limbs vs. Assessment of Physicians

Comparison between the responses of a particular patient’s upper limbs is a very useful diagnostic
aid. The proposed solution described in the Section 6.5 allows to do it even from the sparse data.
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Without staging assessment, this is the most important task of the scintigraphic evaluation of the
lymphedema. The outcome of this comparative test can be compared here with the independent
decisions of clinicians and nuclear medicine experts at disposal. It allows us to demonstrate that
the proposed quantification is working but, first and foremost that results are meaningful and
can give the expected benefit to the physicians (the goals (i) and (iv) from the list of primary
goals for this Chapter at page 65).

For this simple binary decision the quality of the diagnostic test can be evaluated by the 2x2
decision matrix (table)

Are the characteristics of both limbs on the ROI same?
Quantitative Physicians’ decision

test Yes No

Yes nTP nFP

No nFN nTN

which summarizes comparison of the results of proposed comparative test with analogous deci-
sions of physicians [18, 4]. nTP and nTN are number of cases (patients) where the both decisions
of test and physicians are the same positive or negative, nFP is number of cases where the quan-
titative test is positive and decision of physicians negative and nFN is opposite to nFP . This
comparison is very popular and frequently used in medical papers [3, 19, 61]. The modification of
this decision table from its analogy in [4] is in the part of clinicians’ decisions. Here the decision
of clinicians is again the consequence of evaluation of various observed factors that give some
evidence for this decision, so this decision is not absolute too (it is not guaranteed that it is really
correct). On the contrary it is considered in [4] that this part is really true. The most important
measures for the evaluation of the test are the sensitivity and specificity :

sensitivity =
nTP

nTP + nFN
, specificity =

nTN

nTN + nFP
,

rates of correctly diagnosed same/different limbs of patients on individual ROI. Another impor-
tant measure is the accuracy of the quantitative test

accuracy =
nTP + nTN

nTP + nTN + nFP + nFN
,

which is the rate of correctly diagnosed both the same and different limbs on individual ROI.
Both high sensitivity and high specificity are indicators of efficient test.

None of these measures should be regarded as an absolute. It has been considered in the
previous paragraph that the proposed test is fixed. But it is not absolutely true. The test would
be fixed if also the loss function Z of decision task (6.16) would be determined, that is not done
yet. It should be determined according the medical and economic consequences of bad selection.
As it is not fixed on the base of this consideration, it represents the tuning knob of the whole
decision task. Instead of the loss function, the quantity P determined by this loss function,
see (6.19), presents the threshold of the whole comparative test that influences the final outcome
of the test. It is useful then to make the comparison of results for various values of this threshold.
A convenient way of representing these results is in terms of a receiver operating characteristics or
ROC curve [4, ?]. This curve is plot of sensitivity vs (1-specificity), with various points obtained
simply by the varying threshold. It can give the helpful information about the proposed test.

Results The limbs should be theoretically compared on all the ROIs to reveal the differences on
them. However it makes no sense to compare limbs on the ROI of axilla if the axillary lymphatic
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Quantitative Clinical difference (CD)

test (QD) C+ C−

Q+ 9 0
Q− 1 5

(a) QD vs CD

Quantitative Visual scint. difference (ViD)

test (QD) V + V −

Q+ 7 1
Q− 2 5

(b) QD vs ViD

Visual scint. Clinical difference (CD)

difference (ViD) C+ C−

V + 7 1
V − 3 4

(c) ViD vs CD

Table 7.9: Comparison of decisions via the proposed Bayesian quantitative test (QD) (a) with
clinical (CD) and (b) visual (ViD) decisions on forearm equality. Table (c) compares the decisions
of clinicians (CD) with decisions of nuclear medicine expert about qualitative visual scintigraphic
difference (ViD). C+/C− denotes the cases when the limbs are taken as the same/different
from the CD viewpoint. V +, V − and Q+, Q− denote corresponding values for ViD and QD
respectively. The number of cases belonging to the individual groups are quoted in the tables.

nodes are unilaterally removed during the breast cancer surgery. Then the local structure of
lymphatic system is so different. There is reduced in some cases almost no accumulation in
this ROI. Anyway only two remaining ROIs are then suitable for the comparison of limbs and
lymphedema evaluation.

Table 7.9 illustrates the quality of the proposed Bayesian quantitative test on the forearms of
patients in the experimental set for P = 0.8 in (6.19). Limb equality was judged by a clinician who
was treating the patients (CD decisions). An independent decision was made by an experienced
nuclear medicine expert–who had access to the basic clinical patient data—via visual evaluation
of the raw (non-reduced) scintigraphic images (ViD decisions). These medical decisions serve
for practical evaluation of the Bayesian quantitative (QD) test (6.19). Comparing with the CD
decisions, the QD decisions have sensitivity 90%, specificity 100% and accuracy 93%. Compared
to the ViD decisions, the sensitivity is 78%, specificity 83% and accuracy 80%. The corresponding
ROC curves for both comparisons of decisions QD vs CD and QD vs ViD on forearm equality
are given in the Figure 7.8. Let’s notice, there are listed single results for only one way of
possible computation of quantitative test for normal model N2 employing the simplification that
the parameter s is limb local, while in the Table 7.4 the all ways are listed. The reason is that
the results for all ways of computation are (almost) the same. Table 7.9(c) demonstrates the
correspondence of visual scintigraphic decision ViD with the conclusion of clinicians CD. It can
serve for the evaluation if the proposed quantitative test QD or the present visual scintigraphic
decision ViD give the better results that coincide more with the clinical decisions CD. Comparing
with the CD decisions, the ViD decisions have sensitivity 70%, specificity 80% and accuracy 73%.

The situation is more complicated on the ROI of upper arm. Some patients have the limbs
with the lymphatic nodes that are located in the upper arm ROI. Unfortunately these nodes do
not exist symmetrically on both limbs. It has led to the hypothesis that it makes no sense to
compare the accumulation characteristics from the standpoint of the possible disease detection
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Figure 7.8: ROC curves for the comparison of decisions via the proposed Bayesian quantitative
test (QD) (a) with clinical (CD) and (b) visual (ViD) decisions on forearm equality. ◦ denote
the points of ROC curve while the diagonal dashed line is boundary ROC curve of absolutely
useless test.

Quantitative Visual scint. difference (ViD)

test (QD) V + V −

Q+ 7 1
Q− 2 5

Table 7.10: Comparison of decisions via the Bayesian quantitative test (QD) with visual (ViD)
decisions on scintigraphic equality on upper arm ROI. Q+/Q− denotes the cases when the ag-
gregated scintigraphic responses are taken as the same/different by the proposed quantitative
test (QD) V +, V − denote corresponding values for ViD. The number of cases belonging to the
individual groups are quoted in the table.

as the accumulated activity in these nodes is not “eliminated” from the integral counts on the
whole ROI. Consequently there is no reason to compare the results of quantitative test with a
clinical decision. The only possible comparison is that of decisions via the proposed Bayesian
quantitative test (QD) with visual (ViD) decisions on scintigraphic equality of upper arm ROI,
see Table 7.10. Such results have to be interpreted in a different way then in the previous cases.

Discussion The results must be taken as preliminary, since the amount of available patient
data is limited, and definite clinical conclusions are incomplete. It will not be possible to evaluate
the quality of the Bayesian quantitative test properly until the enough data will be at disposal.
The decision what is necessary amount of data to evaluate properly the test is another task
suitable for Bayesian treatment.

Taking into account the discrepancies between experts, however, the high degree of correspon-
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dence with the conclusions of both physicians on the forearm ROI is impressive. It is necessary
to stress that the information in the aggregated data for the quantitative test is much smaller
than in the raw (non-reduced) scintigraphic images employed by the nuclear medicine expert.
Regardless the results are comparable even the Bayesian quantitative test is nearer to the clinical
decisions, see Table 7.9. It underlines benefit of the Bayesian approach in lymphoscintigraphy.
Also ROC curves bow away from the diagonal towards the upper left-hand corner which indicates
the usefulness of the quantitative test. The ROC curve for the comparison of Bayesian decision
QD with the clinical decision CD in the Figure 7.8(a) even reaches the absolute optimum in the
left-hand corner. Though the reason is limited number of data. The ROC curve becomes more
smooth for increasing number of data so it looses the tooth in the left-hand corner.

The complications with the nodes on the upper arm ROI extend the list of the open prob-
lems for the nearest future. The hypothesis that it has no sense to compare the accumulation
characteristics from the standpoint of the possible disease detection and consequently the results
of quantitative test with clinical decision seems reasonable but it has to be inspected further on.
If it would be true then it is necessary to search the way how to make the results comparable.
It means to eliminate the activity in nodes from integral counts on the ROI or to introduce
further information about the existence of nodes into the process of staging assessment and limb
comparison. Till this occasion we have received already aggregated data for individual ROIs,
so there was no chance to cope with this problem. From the standpoint of only accumulation
characteristics the results are correct. The comparison from the Table 7.10 can therefore serve
for the decision if the both scintigraphic evaluations are the same.

The nature of this test is to evaluate if the accumulation characteristics on both limbs are the
same or different. It is not designated for the decision if the both responses can be classified to
the same stage of the disease. It belongs to the assessment of the disease staging. It is necessary
to have this in mind.

7.7 Selection of Appropriate Sampling Times

The selection of appropriate sampling times is very important subtask, that should ensure that
the whole proposed scintigraphy quantification will be routinely applicable. It forces us to select
the sampling times very carefully for the maximal efficiency of the method. This Section presents
the optimization results of the solution described in the Section 6.4 obtained on the experimental
group of patients.

Results The number of data obtained on each ROI of patients’ limbs in the experimental group
differs from 3 to 4. Therefore the proposed optimization can be solved for the case of 2 and 3
sampling times.

The physicians’ desire is to get along with 2 measurements. In this case the choice of the
pair of sampling times on the model quality is very significant, as is evidenced by the series of
results in Figure 7.9. There are shown the estimates of time activity curve together with output
reconstruction for all the combinations of used 2 measurements. The situation is not so critical
for 3 measurements, however the choice of sampling times has still significant influence on the
model quality, see Figure 7.10. Optimization of the sampling time is therefore essential for both
cases.

The sampling times differ from patient to patient in the experimental set. Hence, they
were grouped into sets of similar values, and measurement intervals—rather than individual
measurement times—were assessed as it was proposed already in the Remark(s) 6.4.2 (iii). The
available intervals were
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Figure 7.9: Example of time activity curve estimate from 2 measurements. ◦/× denotes data
used/unused for estimation. All possible combinations are demonstrated. Solid line represents
the expected time activity curves. Dashed lines represent its uncertainty (mean value± marginal
standard deviation). Dotted lines represent uncertainty interval for response with measurement
noise, defined in the same way. Y-axes give % values of relative normalized estimate.
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Figure 7.10: Example of time activity curve estimate from 3 measurements. ◦/× denotes data
used/unused for estimation. All possible combinations are demonstrated. Graphical conventions
are those of Figure 7.9.
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Optimal combination of intervals Ŝ
ROI 2 measurements 3 measurements

axilla {I1, I3} {I1, I2, I4}
upper arm {I1, I4} {I1, I2, I4}
forearm {I1, I3} {I1, I2, I4}

(a) Optimization for reporting beliefs (6.10)

Optimal combination of intervals Ŝ
ROI 2 measurements 3 measurements

axilla {I1, I3} {I1, I2, I4}
upper arm {I1, I4} {I1, I2, I4}
forearm {I1, I4} {I1, I2, I4}

(b) Former version of optimization via (7.1)

Table 7.11: Optimal choice of 2 and 3 measurement times for each ROI. Table (a) shows the
results of optimization for reporting beliefs about triple (al, dl, bl), (6.10). Table (b) summarizes
the results of optimization based on the predictions f

(
[S̄]Yl| [S]Yl

)
, (7.1).

Interval Range of intervals (mins)

I1 〈30, 50〉
I2 〈55, 95〉
I3 〈115, 150〉
I4 〈175, 220〉

The results of optimization proposed for reporting beliefs about the triple (al, dl, bl) (parameters
of interest that describe the limb local relative lymphatic system response), see Section 6.4.1, are
summarized for individual ROIs in Table 7.11(a). For the comparison, also the optimization

Ŝ ∈ arg max
S

l̊∑
l=1

log f
(

[S̄]Yl| [S]Yl

)
(7.1)

that was considered intuitively from the beginning as a good indicator for the selection of sam-
pling times, see Section 6.4.1 (6.11), is evaluated for individual ROIs in the Table 7.11(b).

In the case of global optimization done on all ROIs together the optimization results coincide
for both the proposed version in Section 6.4.1 and the version (7.1). They are {I1, I4} for two
measurements and {I1, I2 I4} for three measurements.

Quality of the chosen model N2 as well as of the performed optimization is confirmed by
comparing the output reconstruction, Section 6.2, done from optimally placed measurements
with position of real data unused for estimation. The results are summarized in Table 7.12
where the relative frequency of data in estimated “confidence” intervals determined as the mean
value± marginal standard deviation of the output reconstruction are given. The average half-
width of confidence intervals are listed also there.

Discussion Tables 7.11(a), 7.11(b) show the difference between the results of the proposed
optimization for belief reporting (6.10) and the version (7.1) for 2 measurements on the ROI of
forearm while on the other ROIs and for 3 measurements all the results coincide. The theoretical
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2 measurements 3 measurements
ROI fr hw fr hw

axilla 76% 4.9e-3 64% 1.8e-3
upper arm 78% 2.5e-3 61% 0.7e-3
forearm 85% 2.6e-3 68% 1e-3

Table 7.12: Relative frequency fr of real data unused for estimation in “confidence” intervals esti-
mated from optimally placed 2 and 3 measurements and the average half-width hw of confidence
intervals.

difference between those results is evident from (6.11). Term log f
(
[s̄]Yl| [s]Yl

)
used in the opti-

mization (7.1) is only a part of minimized term of (6.10). It has caused little different results on
individual limbs, however this difference has manifested in summary over all limbs just only on
the forearm ROI. It seems reasonable that the second time from the pair of optimal times for up-
per arm ROI for the new version of optimization is delayed compared to forearm. It corresponds
with fact that the upper arm is more distant from the injection site than forearm. Therefore it
is surprising that for both versions of optimization the optimal pair of times on the axilla is not
delayed even the second time foreruns times on other ROIs. The possible explanation is that the
interval I3 is somehow important for the determination of the shape of time activity curve on
the ROI of axilla. Since it is not known which ROI is the most important (if any) for evaluation
of lymphedema the compromise in the choice of time intervals has to be made. The results of
global optimization over all the ROIs is suitable for it. It is important and plausible that the
optimization leads to the recommendations that conform with the best current practice.

The optimization for reporting beliefs (6.10) proposed in the Section 6.4.1 is preferred to the
version (7.1) since the whole task of optimization is well defined in this case. Another reason is
that it compares the combinations of sampling times on the common space of parameters, while
in the optimization (7.1) the predictions for various times are compared. Besides in the latter
case, the interpolations and extrapolations are mixed together.

Table 7.12 can serve for the demonstration that (ii) the results are (relatively) reliable. The
relative frequencies of data unused for estimation in the chosen confidence intervals — mean
value± marginal standard deviation — for three measurements are in the range 60–70%. It is
near the equivalent confidence interval for normal Gaussian distribution (f (µ± σ) ≈ 2/3 for
f (·) ≡ N(·|µ, σ)). The values are even greater for pair of measurements. The reason is that
the estimate done only from 2 measurements is not learned enough, so it has not good quality
and is still quite uncertain. Consequently the confidence intervals for the pair of measurements
are much more wider than for 3 measurements, see Table 7.12 and Figures 7.9, 7.10, and the
relative frequencies of data in intervals are greater. The relative frequencies of data in confidence
intervals can be used as the indicator of the quality of the model together with optimization
however they are not suitable for the comparison of the combinations of sampling times (the
reason is the same as why not to use optimization (7.1) described in the previous paragraph).

It is necessary to repeat again that the optimization is searching among the existing sampling
times of data in the experimental set. It does not solve the absolute optimization of sampling
times also outside of the employed times. Therefore the result of optimization depends on the
data at disposal also in this way. The optimization results are therefore the consequence of data
available for the decision. For the different initial conditions the results need not be then the
same.
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All the gained experience leads to the following practical conclusions. Use of a pair of images
together with the proposed modelling is at the border of feasibility and three images provide
the best compromise between the accuracy of results and measurement demands. The Bayesian
estimator is capable to give the results from 2 measurements where the other techniques already
collapse. However the estimate is still quite uncertain. Permitting the first model order , dl = 1,
in the probabilistic model it is better to have 3 measurements to estimate properly the basic
shape of time activity curve. Using only 2 measurements can cause the model of the first order
is employed inappropriately.

The outcome of the optimization is the suggestion on the 3 measurements where the first
should be taken after 30 minutes from the time of injection of tracer the second about after 90
minutes and the last after 3 hours.

7.8 Potential Model Employment for the Disease Staging
Assessment

The disease staging assessment is the only task that is still missing to achieve final goal of
quantification. Staging estimate is the most detailed information that is desired to be obtained
as the outcome of the whole processing. The proposed modelling that forms the main part of
the thesis was considered from the very beginning as the aid of scintigraphy quantification so we
hope it can be used also for the lymphedema staging assessment.

There were proposed some promising quantitative parameters in the Section 6.3 that should
be tested with respect to the suitability of the disease assessment. It means to test various
parameters for the correlation with the disease staging. It is also possible to search for further
quantifiers outside the proposed set and combine them together. However all it faces the problem
of limited amount of available patient data. Therefore no final conclusion can be done here.
Instead of it, only results are given that illustrate the potential of two proposed quantifiers.

Results The open problem with existing lymphatic nodes on the ROI of upper arm that
concern also the disease staging assessment was already described in the Section 7.6. Therefore
the results for the forearm ROI are only demonstrated here. The Figure 7.11 tries to relate the (a)
estimate of the residence time and (b) estimate of response (time activity curve) maximum with
the lymphedema staging, see Section 2.1.3. The employed information about the staging comes
from the decision of the clinicians. The limbs were divided into the groups according the stage
and sorted in these groups according the expected value of the quantifier. Then the quantifier
estimates (mean value±standard deviation) for individual limbs in the groups are plotted. The
Figure 7.12 demonstrates the same relation for the couple of quantifiers (residence time, TAC
maximum) in the scatter plot where the circles denote their point estimates on individual limbs
while their radius depends on the lymphedema stage. It would be possible to give here results
for other quantifiers, however the work does not solve their selection. Thus the demonstrated
results serve only as a motivation for their search.

Discussion The Figures 7.11, 7.12 indicate that there exists some dependence between the
disease staging and two proposed quantifiers. The residence time seems from these plots to be
the better candidate as a suitable quantifier then TAC maximum. However it will be probably
necessary to supplement it with another quantifier. The selection of the suitable quantifier(s)
from the list of proposed quantifiers could be solved employing again within the framework of
Bayesian decision theory. Since it is not possible to realize this search now, it belongs still to
open problems and the most important practical result for the physicians is the comparative test
of limbs.
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(a) Estimate of residence time vs clinical staging
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(b) Estimate of TAC maximum vs clinical staging

Figure 7.11: Comparison of the estimate of (a) residence time and (b) TAC maximum with the
clinicians’ decisions about the lymphedema staging on the forearm. The limbs in the experimental
set are divided into the groups according the stage marked by plumb lines together with legend
in the plot. The sorted estimates (mean value±standard deviation) of quantifiers for individual
limbs in the groups are then plotted.
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Figure 7.12: Scatter plot comparing the point estimate of the pair of quantifiers (residence time,
TAC maximum) with the clinicians’ decisions about the lymphedema staging on the forearm.
◦ denote the point estimates of pair of quantifiers on individual limbs while the staging is denoted
by its diameter. The higher is the stage the greater is diameter.
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7.9 Summary
The methodology described in the previous Chapters has been experimentally evaluated. The
important outcomes from the whole set of experiments are emphasized in the following points:

• The normal model N2 was selected as the best alternative from the set of considered models
for the description of scintigraphic response of the lymphatic system in the Section 7.4.
The experiments have confirmed that the idea of the compartmental model (even the
compartments are not bound up with physical ROIs) are adequate for the modelling of
the scintigraphic response on the ROIs even having only few data. The normal models are
preferred against the Poisson models as they have more freedom to respect the error of
“ideal” modelling of the inner deterministic response.

• The proposed estimator is robust. Small changes in the setting of the tuning knobs of
algorithms expressing mainly the prior information cause minimal difference of results, see
Section 7.5. Besides the both approximations of the computation of the distribution of
the common parameter s for normal models proposed in Section 5.2.2 at page 47 give very
similar acceptable results for individual normal models, see Section 7.2.1. Thus, none of
the approximations is preferred here. The results of the quantitative comparisons of the
limbs demonstrated in the Section 7.3 have shown that there is a negligible difference in
the results among its various computation, employing various computation approximations
and simplification about the common parameter s. Therefore the simplest version of com-
putation based on the simplification that parameter s is limb local can be employed, despite
of the fact the other versions are theoretically more immaculate.

• The common model for all three ROIs, that differ only in the setting of prior distribution,
proved to be suitable for the description of the scintigraphy response on all ROIs. Since it
is not known yet if some ROI is dominant for the disease assessment the estimates of time
activity curves are done on each ROI. It has an added value as it provides the possibility
to determine the position of lymph tapering or blocking. It underlines significance of the
obtained estimates of time activity curves.

From the perspective of disease assessment the ROI of axilla appears to be improper as
the axillary lymphatic nodes are unilaterally removed during the breast cancer surgery.
Anyway two remaining ROIs are suitable for the comparison of limbs and lymphedema
evaluation. For the completeness, it is necessary to resolve the problem how to treat the
data of specific limbs having also the lymphatic nodes on the upper arm ROI to make them
comparable with other limbs.

• The expected sensitivity to measurement times was confirmed in the Section 7.7 and the
optimization led to the recommendations that conform with the best current practice.
Three images were selected for the employment together with the proposed model as the
best compromise between the accuracy of results and measurement demands. In spite of
the fact the Bayesian estimator can give results using only pair of images it is not enough to
estimate properly the basic shape of time activity curve. The selected intervals employing
the proposed optimization then resulted in the conclusion that is not in contradiction with
the current practice.

• The results of the proposed quantitative test of the comparison of limbs on the limited
amount of available patient data for the ROI of forearm have shown the high degree of cor-
respondence with the conclusions of both physician and nuclear medicine expert. Despite
the amount of information in the aggregated data for the quantitative test is much smaller
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than in the raw (non-reduced) scintigraphic images employed by the nuclear medicine ex-
pert, the results of quantitative test and conclusions of physicians are comparable. Even
the proposed quantitative test compared to visual qualitative scintigraphic evaluation gives
better results that are closer to decisions of clinicians. Evaluating the quality of the quanti-
tative test it has promising sensitivity and specificity. Also the rough drafts of ROC curves
have the good shape.

The comparison of limbs on the ROI of upper arm faces the previously mentioned problem
of the lymphatic nodes on this ROI. If the nodes exist symmetrically on both limbs the
comparison is possible. The sense of alone comparison without incorporating the informa-
tion about existence of nodes or elimination of the activity in them for the case of unilateral
nodes has to be inspected further on.

• The quality of the proposed model together with Bayesian processing was verified from
several viewpoints. All the previous items can be included among them. The fitting of used
data on the output reconstruction and also the comparison of unused data with the output
reconstruction from the data in optimal times belong to those more direct verification.
However also the correspondence of comparative tests with the decisions of physicians (and
another results) indicate the quality of model at least indirectly. At present, it remains
to find the suitable quantifier for the lymphedema assessment on the base of the proposed
model to achieve the final aim.
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Chapter 8

Conclusions

The quantitative lymphoscintigraphy is the most promising technique at present, how to evaluate
the state of the lymphatic system in the limbs and to diagnose even the latent stage of the
lymphedema disease. The present work is the core of the project that aims to develop such
a methodology of quantitative evaluation, missing up to now, that is reliable and routinely
applicable. It means that such methodology should get along with the practically limited amount
of measurements.

Thesis, that finalize my preliminary results [23, 24, 25, 26, 27], is focused on the design,
implementation and verification of the methodology of scintigraphy quantification. The Bayesian
processing has been selected as the viable option for this purpose. The solution is based on the
simplified modelling of the accumulation dynamics of radiotracer on the pre-specified regions of
interest of limb. It comes out from the presumption that the dynamic properties on the whole
limbs are important for the lymphedema evaluation.

The results of the thesis indicate that the aims of the work were successfully achieved. The
main result is the design and verification of a completely new methodology of quantitative scintig-
raphy. Its outcomes are in a good correspondence with the conclusions of physicians. It is nec-
essary precondition to employ the proposed inspection for the recognition of the lymphedema
already in its latent phase and evaluation of therapy effects.

8.1 Summary of Contributions
The whole thesis presents interdisciplinary work that tries to employ Bayesian theory for the
real problem of scintigraphy. Consequently, main contributions of the work are determined by
it. The contribution to the quantitative scintigraphic evaluation dominates but the application
of the general Bayesian theory on the real problem is significant too.

In summary of the most important general contributions, the following points have to be
listed:

• The real problem of quantitative scintigraphy is resolved in an integral and consistent way
from the initial formulation, through the modelling, algorithmic and numerical solutions
up to successful verification on the real data.

• The strength of the Bayesian theory is emphasized by the comprehensiveness of the solution
and the rate of its systematic utilization. It serves also for the demonstration, that the
Bayesian processing is suitable especially in inference problems based on few measurements
only.
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• Suitable class of models describing the scintigraphic response on the ROIs of limb for
the limited amount of measurements is adopted and finally the best one selected. They
distinguish between the local and common limb parameters. The prior distribution on
parameters employing the expert knowledge serves for the reduction of the space of a
priori suitable models.

• Non-standard Bayesian methodology of estimation respecting both the common and limb
local parameters is elaborated.

• The approach how to solve particular non-standard (decision) problems within the Bayesian
framework is proposed and verified.

• A practical diagnostic problem with a significant impact on the disease treatment is re-
solved. It opens the way for its further improvement.

In order to make the summary complete the accomplishment of partial objectives of the thesis
is described in details.

Modelling of accumulation dynamics of tracer in the ROIs A significant part of the
work is devoted to the modelling of the accumulation dynamics. It forms the core of
the proposed quantification, so it has the decisive influence on the success of the proposed
solution. In this respect:

• The chosen form of model describes well the response on individual ROIs separately.
The cascade structure of the model whose impulse response expresses the scintigraphic
response of lymphatic system is selected as the minimalist but sufficiently flexible
model for all ROIs. It has a small number of unknown parameters. The prior dis-
tribution on the space of parameters necessary for the Bayesian paradigm allowes us
to reduce the space of models to a priori suitable ones and to differentiate models for
individual ROIs.

• Due to the computational difficulties related to the used common parameters for all
limbs (noise precision parameter s for normal models N•), the approximations of global
parametric and simplification of predictive inference computation are proposed. The
solution is designed directly to the model used, but the idea can be generalized.
Two alternative approximative estimations of common precision s for normal models
are proposed. It is the parameter, whose prior distribution is set only roughly. As it
is defined as the common parameter for all limbs, processing of sets of ROI data could
be used for its refinement. The obtained results of both approximations on the set of
real data are found very similar, so they are accepted for further processing.

• Since the various alternatives of the basic model are proposed to be suitable for the
description without the preference of anyone, the choice of the best one has to be
solved. Fortunately, the well known general decision problem involving model choice
in Bayesian theory offered natural solution.

• The adequacy of the adopted model is verified in experiments on the set of real data.

Reconstruction of time activity curves on individual ROIs The evaluation of this quan-
tity is the direct consequence of the model employment. The expected value and standard
deviation are computed for its comprehensible and simple description. Other characteristics
could be evaluated, though it would be more complicated.
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Selection of appropriate sampling times The solution of this task important for scintigra-
phy quantification is useful, in our opinion, for all the problems with the limited amount of
data. To our best knowledge this problem has not been elaborated yet within the Bayesian
framework.

• The proposed solution selects the best combination of sampling times from those
included in the set of available data. It selects such a combination, for which the
estimate of quantity of interest employing the data in the corresponding sampling
times is nearest to the estimate from all data. Three parameters describing individual
accumulation characteristic are chosen as the quantity of interest for the scintigraphy
problem. It is demonstrated that the best variant is to compare the whole generalized
Bayesian estimates, i.e. tho whole pdf s, rather then their partial characteristics. Such
an optimization task is applicable for arbitrary probabilistic models. It does not suffer
the problems, what characteristics should be compared and how to select the proper
loss function with respect to the form of pdf s. The presented solution improves the
optimization proposed formerly in [26].

• Outcomes of the optimization on the real scintigraphic data suggest optimal sampling
times that conform with the best current practice.

Comparison of patient’s limbs The judging whether the limbs differ or not is realized as the
Bayesian test of the hypothesis whether the local limb parameters describing individual
accumulation characteristic are the same for both limbs or they differ. Using this approach:

• The posterior probabilities of the hypotheses are its temporary outcome. The final
binary decision then depends on the simply interpretable loss table, whose entries
penalize both possible bad decisions.

• The results on the experimental set of data showes good correspondence with the
conclusions of physicians. Both sensitivity and specificity are high, even the ROC
curves have the right shape.

Computation of various quantitative parameters Several quantitative parameters that
are promising with respect to the disease assessment are put forward and their estimates
computed. The conclusive tests of their suitability, i.e. if they are correlated with the
disease staging, could not be done yet due to the limited set of patient data. Instead of
it, the potential of some quantifiers is illustrated at least. The results seem to justify the
selected research direction, though search of suitable quantifier for the disease assessment
belongs to open problems.

Methodology verification The proposed methodology is verified from the several perspec-
tives. The quality of the proposed modelling and the robustness of the estimator together
with the solutions of decision tasks are tested on the real scintigraphic data. The outcomes
of the methodology are then compared with available conclusions of physicians.

The important outcome of the thesis is the implementation of the proposed methodology.
It is realized as the package of macros for MATLAB environment. It is at the disposal for the
physicians at the Clinics of Nuclear Medicine of the Faculty Hospital Motol for a further testing.
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8.2 Open problems
The very initial attempt served for the indication of the direction, how to solve the problem of
quantitative scintigraphy. At present, this work comprises pivotal part of the running project
that copes with this problem. Results of the thesis indicate that the proposed methodology
based on the employment of the Bayesian theory can give reliable outcomes. Though, several
tasks have to be still solved to achieve the final goals of the whole project. They are beyond the
scope of the present work, but they are addressed within the research project supported by IGA
MZ ČR. Let us mention them:

• The whole methodology is to be verified on a sufficient amount of data to make the results
relevant for physicians.

• The methodology is to be completed by finding suitable quantifiers for the lymphedema
assessment. It means to test various proposed quantifiers, possibly together with available
clinical information, if they are correlated with the disease staging and to select the best
one or their combination.

• Complications with the common case of nodes on the ROI of upper arm have to be re-
solved. It has to be inspected carefully if their existence has significant influence on the
quantification.

• Model describing the accumulation of radiotracer can be potentially further improved.
Already in the body of the work, there were indicated some alternatives to the basic model
that could improve the currently selected version of model. Instead of the local models for
individual ROIs the common model for all ROIs with the spatial relations could be used.



Appendix A

Implementation Aspects

The proposed estimator and the solution of decision tasks were implemented as a package of
macros for MATLAB environment [55]. It is numerically oriented software, which provides a
lot of useful tools and enables a comfortable work with them. All algorithms code directly
the formulas in Chapters 4, 5, 6. Already there, the formulas reflect the solution of found
computational difficulties (e.g. discretization of continuous parameters, used approximations).

Though MATLAB is powerful tool it is necessary to take care of specific numerical problems
related to pdf s. The one we met is described in the Section A.1. The algorithm tailor-made for
formulas in this work that prevents this numerical problem is proposed there too.

All macros are constructed in such way they use the common initialization setup containing
the tuning knobs that are mainly software counterparts of the prior information which allow to
change and tune-up setting of algorithms. The list of all tuning knobs for all considered models
together with their defaults are given in the Section A.2.

Finally, the code of two basic macros (functions) for evaluation of limbs for the chosen model
N2 from the considered set of models, see Section 7.4, is given. The first one computes esti-
mate of time activity curve and estimate of residence time, the second implements quantitative
comparison of limbs.

A.1 Numerical Realization — Treatment of Sharp Likeli-
hoods

The problem of numerical overflow is common for work with the probability density functions
(pdf s) mainly encountered in parameter estimation and in testing of hypothesis. In these cases,
they have tendency to converge to very sharp functions close to Dirac delta function. Their values
easily exceed the range of numbers that a software is able to operate with. The common solution
how to overcome this problem is to work with logarithms of pdf s [47]. It means to work with
logarithms of likelihood functions log(f (Y |Θ)) and before converting them into posterior pdf s
subtract maxΘ∈Θ∗ log(f (Y |Θ)). It is possible because the likelihood is determined uniquely up to
a Θ independent factor. It is advantageous as it prevents numerical overflows and the dynamical
range of the posterior pdf s causes at most numerical underflows for values for which the posterior
pdf is anyway negligible. Besides, it transforms the Bayes’ rule using the multiplication to simpler
version using addition of logarithms log(f (Θ|Y )) ∝ log(f (Y |Θ)) + log(f (Θ)).

In our case all is complicated due to the included discrete and discretized parameters. If
we want to compute e.g. some expectation or marginalization it is not advantageous to use
logarithmic version of Bayes rule since the logarithms are applied on the sums. In addition to
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it, the likelihoods of interest here are the terms f (Yl|Ξl, bl) ∝ wΞl,bl
for models P•, N1, N2, see

(5.1) and (5.5), and f (Yl|Ξl) ∝ wΞl
for models N3, N4, see (5.10), whose maximum can not

be easily found. For that reason we have proposed algorithm how to realize the computation
and to prevent overflows. Its core is demonstrated in Algorithm 1 on the computation of the
posterior expectation E [q|Yl] of some quantifier q = q(Ξl), which is a function of Ξl. The
algorithm holds the information about the so far found maximum of log-likelihood in the variable
wLmax and all the likelihoods relate to it. So if the maximum of log-likelihood wLmax does not
exceed the range of numbers in the used software the overflow can not occur. Sum of weights of
wΞl

(that is proportional to predictive inference f (Yl)) can be gained from the algorithm too,∑
Ξ∗

l
wΞl

= wΣ exp(wLmax) (see the Algorithm 1).

Algorithm 1 Calculate E [q|Yl]
Require: Ξ∗

l , logwΞl
, q(Ξl)

Ensure: E [q|Yl] = Eq

wΣ ⇐ 0
wLmax ⇐ []
Eq ⇐ 0
for all Ξl ∈ Ξ∗

l do
wL⇐ logwΞl

if wLmax = [] then
wLmax ⇐ wL
wΣ ⇐ 1
Eq ⇐ q(Ξl)

else if wL > wLmax then
wT ⇐ exp(logwΣ + wLmax − wL)
wΣ ⇐ 1 + wT

wLmax ⇐ wL
Eq ⇐ (Eq × wT + q(Ξl))/wΣ

else
wT ⇐ exp(wL− wLmax)
Eq ⇐ (Eq × wΣ + wT × q(Ξl))/(wΣ + wT )
wΣ ⇐ wΣ + wT

end if
end for

A.2 Tuning Knobs of Algorithms
In order to make macros relatively simple and usable by non-experts they are constructed in
such way that the number of their input parameters is limited to minimum. They only need
corresponding data and times of measurements. In addition to it, there is possibility to influence
the behaviour of macros without the need to modify them. All the macros employ the common
initialization file, which contains software counterpart of the prior information setting described
in Section 4.3.3. Consequently, this file contains a set of tuning knobs, that allow not only to
make experiments with various settings of prior information but also to tune-up these settings
and hide them for common use. All knobs used by individual models are listed in the Table A.1.
It contains their description together with relation to terms in the Section 4.3.3 and Table 4.1.
The default setting is given too. The initialization file contains also information about the ROI
where the data comes from. It allows a specific setting for individual ROIs.
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Models Knobs Description Default setting

All [d_l d_h] common hyper-parameters (d, d) for all
limbs that define the range of used
model orders dl; for their tuning see Sec-
tion 7.2.2

[1 5]

gain_h upper bound of relative response maxi-
mum rmax; used for computation of bΞl

,
(4.13)

0.2

[t_max_l t_max_h] supposed time interval (tmax, tmax) of the
response maximum (4.12) used for set-
ting of (adl

, adl
); their setting for dl = 1

is modified, see Section 4.3.3; they are
specific for individual ROIs, rows corre-
spond to ROIs (axilla, upper arm, fore-
arm)

 100 360
60 280
30 210



nA number of discretization samples of pa-
rameter al

150

P1, P2 [alpha_g beta_g] hyper-parameters (αg, βg) of gamma dis-
tribution (4.16) for impulse gain gl; they
are determined according (4.18) with
range setting 1e5 < gl < 4e5

[2.78 1.11e-5]

gain_l lower bound of recognized relative re-
sponse maximum rmax; used for compu-
tation of bΞl

similarly to gain_h

1e-4

nB number of discretization samples of pa-
rameter bl

150

N1, N2 [alpha_s,beta_s] hyper-parameters (αs, βs) of gamma dis-
tribution (4.17) for noise precision pa-
rameter s; for its refinement see Sec-
tion 7.2.1; the default values given here
are those before refinement obtained em-
ploying initially considered range 1e5 <
s < 1e8 and (4.18)

[1.004 2e-8]

gain_l same as for models P1, P2

nB same as for models P1, P2

N3, N4 [alpha_s,beta_s] same as for models N1, N2

gain_l same as for models N1, N2

h_q the hq-quantile for the computation of
the conservative estimate of precision pa-
rameter ŝ used for the setting of the
Gaussian distribution N(bl| b̂Ξl

, ωΞl
s) ac-

cording (4.20)

0.95

m_dev the hyper-parameter for setting of Gaus-
sian distribution N(bl| b̂Ξl

ωΞl
s), (4.19),

that determines the ratio of its standard
deviation to the half-width of the range
(bΞl

, bΞl
); (4.20) assumes m_dev=1, but it

can cause problems when gain_h is de-
creased, see Remark(s) 5.1.2 where the
proposed solution is given too.

1

Table A.1: List of tuning knobs of algorithms for individual models with their default settings
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A.3 Code

It is not reasonable to write out here the code of all macros (functions) for all the considered
models. Therefore, as an example, only two macros that are necessary for routine evaluation are
given bellow. The first one computes estimates of time activity curve and residence time, see
Sections 6.1 and 6.3, while the second one computes logarithm of the Bayes factor B01(Y1, Y2),
(6.18), necessary for comparison of limbs, see Section 6.5. The macros correspond to model N2,
that has been selected as the best one among all considered models, see Section 7.4. Given macro
for comparison of the limbs employs (6.20), i.e. uses simplification that the noise parameter s is
a local limb parameter.

Time activity curve and residence time estimates

function [E_tac,sdv_tac,E_rt,sdv_rt]=computeTAC(data,time,ROI);
% [E_tac,sdv_tac,E_rt,sdv_rt]=computeTAC(data,time,ROI);
% function computes mean (E) and standard deviation (sdv) of time activity
% curve (tac) and residence time (rt)
%
% Input: data column of data
% time column of samling times;
% both data and time have to be of the same length
% ROI ROI, data comes from (1,2,3)
%
% Output: E_tac,sdv_tac vectors of mean and marginal standard deviation of TAC
% E_rt,sdv_rt mean and standard deviation of residence time

% load the values of tuning knobs from the initialization file
% (contains alfa_s, beta_s, d_l, d_h, gain_l, gain_h, t_max_l, t_max_h, nA, nB;
% it contains also time t_h, the upper bound of time, TAC is computed to
run initialization(ROI);

% macro based on the general Algorithm 1 in the Section A.1

% definition of necessary variables
n_data=length(data);
E_tac=zeros(1,t_h+1);
sdv_tac=zeros(1,t_h+1);
E_rt=zeros(1,1);
sdv_rt=zeros(1,1);
w_sum=0;
wL_max=[];

for d=d_l:d_h, % cycle over model order d
% computation of bounds (a_l,a_h) of parameter a for given order d
% according the supposed range of times of TAC maximum
a_l=find_A_with_maximum_time(d,t_max_l);
a_h=find_A_with_maximum_time(d,t_max_h);
a_lL=-log(1-a_l);
a_hL=-log(1-a_h);
% discretization step on log(1-a) approximating uniform distribution
astepL=(a_hL-a_lL)/(nA-1);

for a_i=1:nA, % cycle over discretized parameter a
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% computation of bounds (b_l,b_h) of parameter b for given a,d
% according the supposed range of TAC maximum determined by gain_l, gain_h
a=1-exp((-1)*(a_lL+(a_i-1)*astepL));
b_h=inverse_gain(d,a)*gain_h;
b_l=b_h*gain_l;
b_lL=log(b_l);
b_hL=log(b_h);
% discretization step on log(b) approximating uniform distribution
bstepL=(b_hL-b_lL)/(nB-1);

for b_i=1:nB, % cycle over discretized parameter b
b=exp(b_lL+(b_i-1)*bstepL);
% TAC (4.9) determined by parameters d,a,b
pomtac=inner_response(d,a,b,t_h);
% residence time (6.6) determined by parameters d,a,b
pomrt=b*(1-a)^(-d);
% loglikelihood log(f(data|d,a,b)) (wL corresponds to w_{d,a,b} in (5.5))
wL=loglikelihood(data,time,d,a,b,alfa_s,beta_s);
% summation with overflow treatment
if isempty(wL_max),

wL_max=wL;
w_sum=1;
E_tac=E_tac+pomtac;
sdv_tac=sdv_tac+pomtac.^2;
E_rt=E_rt+pomrt;
sdv_rt=sdv_rt+pomrt^2;

elseif wL>wL_max,
w_T=exp(log(w_sum)+wL_max-wL);
w_sum=1+w_T;
E_tac=(E_tac*w_T+pomtac)/w_sum;
sdv_tac=(sdv_tac*w_T+pomtac.^2)/w_sum;
E_rt=(E_rt*w_T+pomrt)/w_sum;
sdv_rt=(sdv_rt*w_T+pomrt^2)/w_sum;
wL_max=wL;

else
w_T=exp(wL-wL_max);
wnew=w_sum+w_T;
E_tac(1,:)=(E_tac(1,:)*w_sum+w_T*pomtac)/wnew;
sdv_tac(1,:)=(sdv_tac(1,:)*w_sum+w_T*pomtac.^2)/wnew;
E_rt=(E_rt*w_sum+w_T*pomrt)/wnew;
sdv_rt=(sdv_rt*w_sum+w_T*pomrt^2)/wnew;
w_sum=wnew;

end
end

end
end

sdv_tac=sqrt(sdv_tac-(E_tac).^2);
sdv_rt=sqrt(sdv_rt-E_rt^2);
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Comparison of accumulation on both limbs

function rateL=computeComp(data,time,ROI);
% rateL=computeComp(data,time,ROI);
% function computes Bayes factor (6.20)
% rateL=log(f(data|hyp.-limbs same)/f(data/hyp.-limbs generally different))
%
% Input: data,time two-column matrices that have the same number of rows;
% they contain measurements and their sampling times on both limbs;
% each column corresponds to one limb
% ROI ROI, data comes from (1,2,3)
%
% Output: rateL see above

% load the values of tuning knobs from the initialization file
% (contains alfa_s, beta_s, d_l, d_h, gain_l, gain_h, t_max_l, t_max_h, nA, nB;
run initialization(ROI);

% macro based on the general Algorithm 1 in the Section A.1

% definition of necessary variables
n_data=size(data,1);
w_sum=0;
w_sum1=0;
w_sum2=0;
wL_max=[];
w1L_max=[];
w2L_max=[];
% data and sampling times on both limbs merged together
timeC=[time(:,1);time(:,2)];
dataC=[data(:,1);data(:,2)];
%--
for d=d_l:d_h, % cycle over model order d

% computation of bounds (a_l,a_h) of parameter a for given order d
% according the supposed range of times of TAC maximum
a_l=find_A_with_maximum_time(d,t_max_l);
a_h=find_A_with_maximum_time(d,t_max_h);
a_lL=-log(1-a_l);
a_hL=-log(1-a_h);
% discretization step on log(1-a) approximating uniform distribution
astepL=(a_hL-a_lL)/(nA-1);

for a_i=1:nA, % cycle over discretized parameter a
a=1-exp((-1)*(a_lL+(a_i-1)*astepL));
b_h=inverse_gain(d,a)*gain_h;
b_l=b_h*gain_l;
b_lL=log(b_l);
b_hL=log(b_h);
% discretization step on log(b) approximating uniform distribution
bstepL=(b_hL-b_lL)/(nB-1);

for b_i=1:nB, % cycle over discretized parameter b
b=exp(b_lL+(b_i-1)*bstepL);
% loglikelihood log(f(data_of_both_limbs|d,a,b))
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wL =loglikelihood(dataC,timeC,d,a,b,alfa_s,beta_s);
% loglikelihood log(f(data_of_left_limb|d,a,b))
wL1=loglikelihood(data(:,1),time(:,1),d,a,b,alfa_s,beta_s);
% loglikelihood log(f(data_of_right_limb|d,a,b))
wL2=loglikelihood(data(:,2),time(:,2),d,a,b,alfa_s,beta_s);
% summation with overflow treatment
if isempty(w1L_max),

w1L_max=wL1;
w_sum1=1;

elseif wL1>w1L_max,
w_T=exp(log(w_sum1)+w1L_max-wL1);
w_sum1=1+w_T;
w1L_max=wL1;

else
w_T=exp(wL1-w1L_max);
w_sum1=w_sum1+w_T;

end

if isempty(w2L_max),
w2L_max=wL2;
w_sum2=1;

elseif wL2>w2L_max,
w_T=exp(log(w_sum2)+w2L_max-wL2);
w_sum2=1+w_T;
w2L_max=wL2;

else
w_T=exp(wL2-w2L_max);
w_sum2=w_sum2+w_T;

end

if isempty(wL_max),
wL_max=wL;
w_sum=1;

elseif wL>wL_max,
w_T=exp(log(w_sum)+wL_max-wL);
w_sum=1+w_T;
wL_max=wL;

else
w_T=exp(wL-wL_max);
w_sum=w_sum+w_T;

end
end

end
end
% resulting Bayes factor
rateL=log(w_sum)-log(w_sum1)-log(w_sum2)+wL_max-w1L_max-w2L_max+...

gammaln((2*n_data+2*alfa_s)/2)-2*gammaln((n_data+2*alfa_s)/2)+...
log(nA*nB*(d_h-d_l+1))-alfa_s*log(beta_s)+gammaln(alfa_s);
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Both functions call in their bodies other functions. For the completeness, all necessary func-
tions are listed below.

function g=response_point(d,a,b,time);
% g=response_point(d,a,b,time);
% returns one point of impulse response (i.e. TAC) for model
% with parameters d,a,b at time time, see (4.8)

g=b*(nchoosek(time+d-1,time)*a^time);

%------------------------------------------

function x=inner_response(d,a,b,t_h);
% x=inner_response(d,a,b,t_h);
% computes impulse response (4.9) (i.e. TAC) in time interval (0, t_h)
% for model with parameters d,a,b

x=zeros(1,do+1);
for i=0:do,

x(i+1)=response_point(d,a,b,i);
end

%------------------------------------------

function t=time_of_maximum(d,a);
% t=time_of_maximum(d,a);
% finds the time of the maximum (4.12) of impulse response (i.e. TAC) for model
% with parameters d,a

t=floor((d*a-1)/(1-a))+1;

%------------------------------------------

function b=inverse_gain(d,a);
% b=inverse_gain(d,a);
% returns the inverse of the maximum of impulse response (TAC) for model
% with parameters d,a (b=1)

t=time_of_maximum(d,a);
b=(response_point(d,a,1,t))^(-1);

%------------------------------------------

function ll=loglikelihood(data,time,d,a,b,alfa_s,beta_s);
% ll=loglikelihood(data,time,d,a,b,alfa_s,beta_s);
% computes loglikelihood f(data|a,d,b) (parameter s is integrated out).
% It corresponds to w_{a,d,b} in (5.5).
%
% Input: data column of data
% time column of samling times;
% both data and time have to be of the same length
% d,a,b model parameters
% alfa_s, beta_s hyperparameters of prior gamma distribution (4.17)
% of noise precision parameter s
%
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% Output: ll loglikelihood log(f(data|a,d,b))

pom2=0;
n_data=length(data);
for i=1:n_data,

pom2=pom2+(data(i)-response_point(d,a,b,time(i)))^2;
end
pom2=.5*pom2+beta_s;
ll=log(pom2)*(-(n_data+2*alfa_s)/2);

%------------------------------------------

function a=find_A_with_maximum_time(d,t);
% a=find_A_with_maximum_time(d,t);
% finds model parameter a given model order d, for which impulse response (TAC) maximum
% is in time t;
% for the model of the first order (d=1) t is time where the response descents to
% its half

bound=1e-6;
la=.9;
ha=.9999999;
C=.5; %descent for the model of the first order
if d>1,

while time_of_maximum(d,la)>=t
la=la^2;

end
a=la;
while abs(ha-la)>bound

a=(la+ha)/2;
if time_of_maximum(d,a)<t

la=a;
else

ha=a;
end

end
else

while la^t>=C
la=la^2;

end
while ha^t<C

ha=sqrt(ha);
end
a=la;
while abs(ha-la)>bound

a=(la+ha)/2;
if a^t<C

la=a;
else

ha=a;
end

end
end
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