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Recognition of Blurred Images by the Method of Moments

Jan Flusser, Toma3 Suk, and Stanislav Saic

Abstract—This correspondence is devoted to the feature-based recogni-
tion of blurred images acquired by a linear shift-invariant imaging system
against an image database. The proposed approach consists of describing
images by features that are invariant with respect to blur and recognizing
images in the feature space. The PSF identification and image restoration
are not requiered.

A set of symmetric blur invariants based on image moments is intro-
duced. A numerical experiment is presented to illustrate the utilization of
the invariants for blurred image recognition. Robustness of the features
is also briefly discussed.

1. INTRODUCTION

One of the most frequent tasks in image processing is the recogni-
tion of an image (or, more frequently, of an object on the image)
against images stored in a database. Whereas the images in the
database are supposed to be ideal, the acquired image represents
the scene mostly in an unsatisfactory manner. Because real imaging
systems as well as imaging conditions are imperfect, an observed
image represents only a degraded version of the original scene. Blur
is introduced into the captured image during the imaging process
by such factors as diffraction, lens aberration, wrong focus, and
atmospheric turbulence.

The widely accepted standard linear model [1] describes the
imaging process by a convolution of an unknown original (or ideal)
image f(xz,y) with a space-invariant point spread function (PSF)
h(z,y)

9(z,y) = (f * h)(z,y) 1)

where g(x,y) represents the observed image. The PSF h(z,y)
describes the imaging system, and in our case, it is supposed to be
unknown.

The classical “blind-restoration” approach to the recognition of
blurred images consists of the following three steps:

* estimation of the PSF h(z,y)
*» estimation of the ideal image f(z,y) via restoration of the
blurred image g(z,y)

* matching the restored image against an image database.

All these steps have been dealt with extensively in the literature
during last two decades.

One group of methods for PSF identification is based on the
investigation of zero patterns in the frequency domain [2]-[4] or spike
patterns in the cepstral domain [5]. Another group of methods is based
on modeling of the image by a stochastic process. The original image
is modeled as an AR process and the blur as an MA process. The
blurred image is then modeled as an ARMA process, and the MA
process identified by this model is considered to be a description of
the PSF. In this way, the problem of PSF estimation is transformed
onto the problem of determining the parameters of an ARMA model
[6]-[11].

Manuscript received April 24, 1994; revised July 7, 1995. This work was
supported by Grant 102/94/1835 of the Grant Agency of the Czech Republic.
The associate editor coordinating the review of this paper and approving it
for publication was Dr. Reginald L. Lagendijk.

The authors are with the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, Prague, Czech Republic.

Publisher Item Identifier S 1057-7149(96)01790-3.

533

PSF estimation

Restoration filter
design

|

Image restoration

|

Restored image
feature computing

Fig. 1. Flowchart of a blurred image recognition process: a traditional
approach (left stream) and a new approach (right stream).

After the PSF has been identified, the original image can be
estimated via restoration of the blurred image by inverse filter, Wiener
filter, or by any other similar technique (see [1], [12], or [13] for a
survey). Finally, the restored image is compared with each image of
the database to find the best match.

Generally speaking, the abovementioned approach to image recog-
nition is very complicated and time consuming. In this paper, we
present a completely different approach. The idea is quite simple:
We describe all images (the blurred one as well as the images
in the database) by a set of features, which are invariant to the
blur (that means the feature values of g(z,y) do not depend on
h(z,y), and they are the same as the feature values of f(z,y))
and can distinguish among the images. Image recognition is then
accomplished via classification in the feature space. In this way, we
get rid of the necessity of the PSF identification and image restoration
(see the flowchart in Fig. 1).

Blur-invariant features introduced in this correspondence are based
on image moments. In Section I, we deal with central moments of
a blurred image, and we express them as functions of moments of
an ideal image and the PSF. Then, our attention will be focused
on the symmetric blur, which involves long-term atmospheric blur
and out-of-focus blur as special cases. Section III contains the major
part of the paper. An original algorithm for invariants derivation is
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presented, and the invariants up to the fifth order are shown in the
explicit form. Robustness of the invariants with respect to additive
random noise is investigated in Section IV. Finally, the utilization
of the invariants for recognition of blurred portrait photographs is
experimentally demonstrated in Section V.

II. MOMENTS OF A BLURRED IMAGE

The 2-D (p + ¢)th-order central moment st

defined by the integral
usl) = / / (2 = 2Dy — gV f(w,y) dedy @)

where (a:Ef ),ygf )) are the coordinates of the center of gravity of

image f(z,y).

The following theorem describes how to express moments of a
blurred image in terms of moments of original image and PSF.

Theorem 1: Let f(xz,y) be a function describing an original
image and h(z,y) a shift-invariant PSF of a linear imaging system.
The functions f(z,y) and h(z,y) are supposed to be piecewise
continuous and nonzero only on bounded supports. Let g(z,y) be
a blurred image given by the convolution (1). Then, the relation

P q
p q £,k
i =303 (1) (1),

k=0 7=0

of image f(z,y) is

holds for every p and g.

Using the definition of central moment (2) and the definition of
convolution and changing the order of the integrals, we can easily
prove the assertion of Theorem 1.

III. SYMMETRIC BLUR INVARIANTS

In this section, we derive moment-based image features that are
independent of blur, i.e., independent of the type and parameters of
h(z,y). Feature B is called blur invariant if and only if BY) =
BUYM = B for every h(z,y).

We consider symmetric blur only, which means that h(z,y) is
assumed to be symmetric with respect to both axes and both diagonals

h(z,y) = h(—z,y) = h(y, x)

and, moreover, the degradation system is assumed to be energy
preserving, i.e., y,gé) = 1. Note that every PSF with radial symmetry
h(z,y) = h(r) is a special case of symmetric blur defined above.
Therefore, two very frequent types of blur—long-term atmospheric
turbulence blur and out-of-focus blur—belong to our class of sym-
metric blur.

Lemma I: If h(x,y) satisfies the conditions of symmetry, then

h h
o by = ply) for every p,g;

¢ if p and/or ¢ are odd, then ;Lg;) = 0.
The proof of Lemma 1 is straightforward.

A. Derivation of the Invariants

Derivation of the invariants up to the third order is almost trivial.
It is quite easy to prove by means of Theorem 1 and Lemma 1 that
1600, (115 420 — [h02, 12, 421, o3 and pae are invariant with respect
to symmetric blur.

‘We propose the following algorithm for the construction of sym-
metric blur invariants of any order:

1) Let ppq be any central moment, and let p 4 ¢ > 1. Then we

start by setting

KE=[p+q-4/2
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TABLE 1
ROBUSTNESS OF THE INVARIANTS WITH RESPECT TO ADDITIVE
GAUSSIAN ZERO-MEAN RANDON NOISE. Top Row: NOISE STANDARD
DEVIATION; MIDDLE ROW: SIGNAL-TO-NOISE RATIO (IN DECIBELS);
BottoM Row: THE DISTANCES BETWEEN THE ORIGINAL AND
CORRUPTED IMAGES IN 20-D EUCLIDEAN FEATURE SPACE

o 0 5 10 15 20 25 30 35 40 45 50
SNR. [dB] - 2 21 17 15 13 11 10 9 8 7
o(frgs) [107%110 02 03 05 09 1.0 08 15 14 L1 1.9

(symbol [z] denotes an integer part of x)
Io = ppq
if p and/or ¢ are odd, and
Io = tipg = Hap

if p and g are even, and p # ¢. If p is even and p = ¢, no
invariant is generated by the moment ppq.
2) forn = 0 to K
Define D,, as

D, =1 ~ 1.
D,, has the form

Do =3 (), + B, 1)
=1

where F1,---, F, are functions of central moments of image
f(z,y) only, and ug’:%i are central moments of the highest
order of h(z,y). No moment of h(z,y) of the same order
is contained in Rn(u'?,u™). Moments of g(z,y) were
evaluated by means of Theorem 1. It holds that

ar+bi=as+br=-=a., +bs, =2(K-n+1)

and, due to the symmetry of h(z,y), all a; and b; are even for
each n. Define I,4+1 as

1 &
In = [n - FL ab;-
+1 o0 ;:1 (1) tha;b;
endfor
3) Define the invariant B(p,q)

B({p,q) = Ix+1.

B. Symmetric Blur Invariants in Recursive and Explicit Forms

The invariants derived by the above described algorithm can be
also expressed in a recursive form as follows:
p q
t— 27 ) \2¢

K ma
1
B(Pa@:#m_a'ﬂqp__z Z
00
“B(p—t+2i,q—2) - t1—242: 3

n=0i=mq

where
K=[(p+q-4)/2],
t=2(K-n+1),
m1 =max(0,[(t - p-+1)/2]),
me = min(t/2,[q/2]),
a =1 pAqare even,
a=0<« pV g are odd.
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Fig. 2.

Note that if (p A q) are even, then the invariants B(p,¢) and
B(q, p) are dependent. Moreover, if p = ¢, then the invariant B(p, q)
computed by (3) is equivalent to some lower order invariant.

Applying the above described algorithm or (3), we can construct
blur invariants of any order and express them in explicit form. A set
of invariants of the fourth and fifth order is listed below:

¢ Fourth order:

3
B(1,3) = s — “E2HL

Hoo
3
B(3,1) = ps1 — M’
Hoo
6 —
B(4,0) = a0 — oy — DH20(i20 = pro2)

Hoo
¢ Fifth order:
_ Buazpa0 + psoftoz

B(3,2) = e
(3,2) = ps2 o
3
B(2,3) = pgy — SH21H02 F Hositzo
Hoo
6
B(4,1) = par = 20,
Hoo
6
B(1,4) = g — F2E2
Hoo
10
B(0,5) = pos — ZHosfoz
Hoo
10p:
B(5,0) = pso — —F2420
Moo

Since the invariants should serve as features for image similarity or
dissimilarity assessment, it is sometimes inconvenient to use directly
the invariants described above.

The invariants should be normalized in two ways: to be indepen-
dent of the image contrast and to have the same “weight” in the
Euclidean metric space. To achieve this, we use normalized blur
invariants

B(p,q)

B = 2Wd)
(p:9) foo - (N/2)P+4

()

(a) Original image; (b) image blurred by 21 x 21 smoothing mask and corrupted by additive Gaussian zero-mean random noise, SNR = 7 dB.

where N is the size of the image. It is also possible to use the
normalization

B(p,q)

+qt+2)/2"
ppter/

B”(p>‘1) -

In this way, we get the features invariant to the image scale but
sensitive to the contrast.

IV. ROBUSTNESS OF THE BLUR INVARIANTS

Every feature we want to use for image description and recognition
should have the property of stability. Generally speaking, if two
images are similar in some manner (in ¢ norm for instance), then
their feature values should be similar too, and vice versa. In this
section, we will discuss how the blur invariants satisfy this criterion.

There are three different kinds of stability to be investigated in
the case of blur invariants: stability under additive random noise
(which is sometimes called robustness), stability with respect to
boundary effect, and stability with respect to PSF distortions. In this
correspondence, we discuss the robustness of the invariants only.
Investigation of the influence of the remaining two factors will be
the subject of future research.

Thus far, we have considered the noise-free model (1) only. Now,
let us consider an imaging model with additive zero-mean (not
necessarily Gaussian) random noise n(z, y)

g(z,y) = (f * k) (z,y) + n(z,y). C))
Since the image g(z,y) is then a random field, all its moments and
all invariants can be viewed as random variables. It holds that

E(uiy)=E </ / 2Pyin(z,y) dz dy)

= / / 2"y B(n(z,y)) dz dy =0
and
E(uff) = B(ufy™) + Blu)) = ufi™

where F(X) denotes the mean value of random variable X.
In practice, however, only a single image g(z,y) (i.e., only one
realization of a random field) is available in most cases. We obtain



536

B
L

Fig. 3.
Petra, Stan, and Tom).

159, but we are not able to estimate mean values E(u59). Since the

moments are computed by a summation over the whole image, they
are supposed to be affected by additive noise only very little. That
means ,ug,%) are supposed to be close to (y}(,?])), and we can directly
use /,L;%) for the computation of the invariants.

Accuracy of such a description is illustrated by the following
experiment. Denote a blurred image corrupted by additive Gaussian
zero-mean noise with standard deviation o as g-(x,y)

ga(m7y> - (f * h)(a:vy) +n°’(m7y)‘

Robustness of the invariants up to the given order r is characterized
by the distance o(f, g-) as a function of o in the Euclidean space
of invariants:

o(f90)= [ Y (B'D(p,q) = B'G)(p,g)).

pF+q<r
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Image database (first row: Eve, John, and George; second row: Kate, Catherine, and Lenka; third row: Mary, Mike, and Monica; fourth row:

The results in the case of Lena image are shown in Table I. In
this experiment, image blur was introduced by an averaging of a
21 x 21 mask (the original image size was 256 X 256 pixels), and
the noise had standard deviations o from 5 to 50. The corresponding
signal-to-noise ratio values defined as

SNR = 10.10&0.M

o2

were from 26 to 7 dB. In this experiment, the invariants B’ (p, ¢) up
to the sixth order were utilized.

You can see that the robustness of the invariants is sufficiently high;
even for the most corrupted image (which is degraded very heavily
for human vision; see Fig. 2) the distance from the original is about
0.02, whereas the distances between Lena and other portrait images
are usually higher than 1. Note that o(f, f * h) is approximately
zero—this illustrates the invariance of the features.
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Fig. 4. Faces to be recognized: Person X (left) and Person Y (right).

V. RECOGNITION OF BLURRED IMAGES
AGAINST A DATABASE: AN EXPERIMENT

The experiment demonstrates the recognition of images degraded
by a symmetric blur against an image database. The database of
portrait photographs is shown in Fig. 3 (first row: Eve, John and
George; second row: Kate, Catherine and Lenka; third row: Mary,
Mike and Monica; fourth row: Petra, Stan and Tom). The size of
each image is 256 x 256 pixels.

Two blurred images of unknown persons are displayed in Fig. 4
(Person X and Person Y). In fact, Person X is Catherine, and the
photo in Fig. 4 is a defocused version of her photo from the database.
Person Y is Eve, but her photograph in Fig. 4 is different from that
in the database—it was taken about two years later.

The values of all invariants B’(p,q), where p + ¢ < 6, were
calculated for each image. However, in the case of digital image f;;
of the size N X N, we have to use a discrete approximation of (2)
for moment evaluation:

N N
foa =Y > (i —@)’(f —yo) fij. (5)

i=1 j=1

Then, the unknown images were classified according to minimum
distance rule in 20-D Euclidean feature space. The distances between
each unknown image and the database elements are shown by a
diagram in Fig. 5. As you can see, Person X as well as Person Y
were recognized correctly.

The correct recognition of Person X is not a surprise—it follows
immediately from the theory. However, successful recognition of
Person Y cannot be generalized. We do not claim that our method is
invariant to such things as hair color/style, aging, etc.

VI. CONCLUSION

This correspondence was devoted to the feature-based recognition
of blurred images. The images were assumed to be formed by a
linear shift-invariant imaging system, where the blur can be modeled
by convolving an original image with a system point spread function.
The proposed approach consists of describing images by the features
that are invariant with respect to blur (that means with respect to the
PSF) and recognizing images in the feature space. In comparison with
complicated and time-consuming “blind-restoration” approach, we
got rid of the necessity of the PSF identification and image restoration.
Thanks to this, our approach is much more effective.

|—A—Person X —m—Person YI
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Fig. 5. Distances in the space of invariants between the unknown persons
and the database images.

A set of features that are based on image moments and are
invariant with respect to symmetric image blur was introduced in
this correspondence. An original algorithm for the construction of the
invariants of any order was presented, which is the major theoretical
result of this work. The invariants proved to be sufficiently robust.

A numerical experiment was performed to illustrate the utilization
of the invariants for blurred image recognition. However, our method
has several limitations. The most significant limit arises from the
fact that the image to be recognized should have roughly the same
background as the images in the database.
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Nonlinear Dynamic Range Transformation
in Visual Communication Channels

Rachel Alter-Gartenberg

Abstract— This correspondence evaluates nonlinear dynamic range
transformation in the context of the end-to-end continuous-input/discrete-
processing/continuous-display imaging process. Dynamic range transfor-
mation is required when we have the following:

i) The wide dynamic range encountered in nature is compressed into
the relatively narrow dynamic range of the display, particularly
for spatially varying irradiance (e.g., shadow).

ii) Coarse quantization is expanded to the wider dynamic range of
the display.

iii) Nonlinear tone scale transformation compensates for the « cor-
rection in the camera amplifier.

1. INTRODUCTION

The performance of an image-gathering device is constrained
by its optical response, sampling passband, and sensitivity. These
constraints limit the resolution of the displayed image to the sampling
interval and its visual quality to the level of degradations caused by
acquisition, quantization, transmission, digital filtering, and display
(Fig. 1). The tradeoffs among these degradations have been studied
by Schreiber [1] for optimal design of electronic imaging, by Huck et
al. [2] for optimal design of image gathering and digital restoration,
and by Alter-Gartenberg [3] for constrained transmission. While lin-
ear modeling of the continuous-input/discrete-processing/continuous-
display (c/d/c) imaging process inherently assumes homogeneous
wide-sense stationary stochastic fields, this assumption does not apply
to targets with spatially varying irradiance. Additionally, in most
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conventional acquisition systems, the nonlinear characteristic of the
CRT display is gamma corrected at the camera amplifiers, i.e., at the
transmitter, and not at the receiver [4]. For electronic imaging, the
placement of this transformation does not affect the visual quality
of the image. However, when digital image processing is added and
the source of digital data comes from either conventional acquisition
devices or digitized films, the gamma correction or the nonlinearity
of the film exposure should be accounted for by a nonlinear dynamic
range transformation.

This correspondence assesses the proper placement of the nonlinear
dynamic range transformation in the context of the c/d/c/ imaging
model. Design candidates for this assessment are informationally opti-
mized image-gathering devices and optimal digital restorations, where
the quantization process is part of the design of the analog-to-digital
(A/D) converter [3]. The nonlinear transformation chosen for this
assessment is a stochastic extension of the modified logarithmic trans-
formation [5]> This extension accounts not only for false contours in
coarse quantization [5] but also for dynamic range compression and
expansion. The visual quality of the resultant image is compared with
its corresponding linear compression and extension for both stationary
and nonstationary fields. Three cases are addressed: dynamic range
compression of spatially varying irradiance, dynamic range expansion
from coarse-to-fine quantization, and tone-scale transformation to
compensate for the v correction.

II. FORMULATIONS

The formulations are given in both the spatial and the spatial-
frequency domains. For presentation uniformity, discrete signals and
functions are defined in their continuous representations. The symbols
A and ~ represent Fourier transforms of continuous (aperiodic)
and discrete (periodic relative to sampling passband ]§) signals,
respectively. Consequently, the formulations distinguish between
continuous and discrete processes and between periodic, bandlimited,
and aperiodic signals and operations.

A. The End-to-End Visual Communication Model [2]

Digital image gathering ia characterized by its optical response
7(x,y) and sampling lattice |[|. It converts the continuous target
L(z,y) into the discrete signal s(z,y)

s(z,y) = [KL(z,y) x 7(z,y)|lll + n(z, y)

with a spatial-frequency response given within its sampling passband
B(v,w) by

§(v,w) = [I(L(v,w)v“(v,w)]*M«l— fi{v, w) 1)
where
K steady-state gain of the radiance-to-analog (R/A) signal
conversion,
n(z,y) additive discrete photodetector noise.

The A/D converter quantizes s(z, y) into s.(z, y) with a data density
of = log, x bits over the dynamic range of (—v/30., \/Eas)

03://{@L(v,w)w(v,w)m*||”|+<f>n<v,w)}dudw 2)
5

where & r{v,w) and 3, (v,w) are the target and noise power spectral
densities (psd’s), respectively. Signal values outside this range are
assigned to either 0 or k — 1.
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