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Ph.D. Thesis Prague, December 2005





Acknowledgements
I would like to express my thanks to my supervisor, Ing. Miroslav Kárný, DrSc.. At the same time,
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Symbols and Notations

x∗ denotes the range of x, x ∈ x∗.

x̊ denotes the number of entries in the vector x.

≡ means the equality by definition.

t̊ is finite time horizon, see Section 2.1.

xt is a (vector) quantity x at the discrete time labelled by t ∈ t∗ ≡ {1, . . . , t̊}.
xi;t is an i-th entry of the vector xt. The semicolon in the subscript indicates that

the symbol following it is the time index.

xk l;t is a subvector of the vector xt. xk l;t = (xk;t, · · · , xl;t).
x(k l) ≡ xk, . . . , xl.

x(t) ≡ x(1 t). It is an empty sequence and reflects just the prior information if t < 1.

d is data array, dt is data record at time t (vector with entries (d1;t, · · · , dd̊;t ) ).

φt−1 is state vector, see Section 2.1 .

ψt is regression vector, see (4.7) .

Ψt is data vector, see Agreement 4.

c̊ is finite number of components, see Section 4.1.

Θ is unknown parameter, finite-dimensional array.

f, π, ρ are the letters reserved for probability density functions (pdf).

f(dt|d(t− 1),Θ) means parameterized model of the system.

fc(dt|d(t− 1),Θc) is parameterized component of the mixture.

π0(Θ) denotes prior density of the unknown parameter Θ.

πt(Θ|d(t)) ≡ πt(Θ|Gt) means (approximate) posterior density of the parameter
Θ determined by the sufficient statistic Gt.

ρ(Ω|Ht−1) means (approximate) posterior density of the parameter Ω determined
by the statistic Ht−1.

E [g(θ)|α]
f

is conditional expectation of function g(θ) with respect to pdf f(θ).

cov [θ|α]
f

is conditional covariance of random variable θ with respect to pdf f(θ).

Gt,Sic;t,Ht are general statistics of (approximate) posterior pdf.
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∝ is the proportion sign, h ∝ g means that function h equals to the function g up to
the normalization, i.e. h∫

h
= g∫

g
.

∂ is the model order.

D(·||·) means the Kullback-Leibler divergence [1]. D
(

f
∣
∣
∣

∣
∣
∣ g
)

=
∫

f ln
(
f
g

)

. It is also

referred to as the KL divergence. See Section C.2.

K(·||·) means the Kerridge divergence [2]. K
(

f
∣
∣
∣

∣
∣
∣ g
)

= − ∫ f ln (g). See Section

C.4.

Γ(x) means gamma function, Γ(x) =
∫+∞
0 tx−1 exp(−t)dt.

• is used as a placeholder when specifying submatrix of a matrix. See Agreement 2.

ψ0 (x) , ψ1 (x) are digamma and trigamma functions, ψ0 (x) = ∂ ln Γ(x)
∂x

, ψ1 (x) =
∂ψ0(x)
∂x

.

δ denotes identity matrix. i.e. δij = 1 iff i = j, otherwise δij = 0.

⊗ denotes the Kronecker product of two matrices

GiW denotes Gauss-inverse-Wishart (GiW) pdf, see Section C.5.2.

V is statistic of GiW pdf, symmetric, positive definite matrix, see Section C.5.2.

bψV, bdψV, bdV denote submatrices of matrix V , see (C.15).

ν is statistic of GiW pdf, positive scalar, see Section C.5.2.

L is part of L′DL decomposition, lower triangular matrix with units on diagonal, see
Section C.5.2.

bψL, bdψL denote submatrices of the matrix L, see (C.16).

D is part of L′DL decomposition, diagonal matrix with positive diagonal, see Section
C.5.2.

bψD, bdD denotes submatrices of the matrix D, see (C.16).

C, θ̂ are alternative statistics of GiW pdf, see (C.18) and (C.17).

N denotes Gaussian pdf, see Section C.5.2.

M is statistic of Gaussian pdf, finite dimensional vector, see (C.6).

R is statistic of Gaussian pdf, symmetric, positive definite matrix, see (C.6).

κ is statistic of Dirichlet pdf, vector with positive elements, see Section C.2.

α(φt−1|Ω) is component weighting function, see Section 4.1.

Ω is parameter of component weighting function, see Section 4.1.

′ denotes transposition of a matrix.

Agreement 1 (Generalization of matrix) Within this text, we index general math-
ematical objects in the same manner as matrices. For example Θ1,1 is first element
of ”generalized matrix” Θ and can be arbitrary mathematical object. This notation is
analogical to cell matrices in MATLAB.
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Agreement 2 (Indexing of (generalized) matrices) For M being a (generalized)
matrix of type m,n the following notation is used:

Mij is ij-th entry of M .

M•j is (generalized) matrix







M1j
...

Mmj







.

Mi• is (generalized) matrix (Mi1, · · · ,Min).

M•• means the same as M .We use this notation when we want to stress that M is a
(generalized) matrix.

Agreement 3 (Other matrix notations) Let M be a matrix of type m,n and c

some scalar. Let us define the following operations:

M ± c is matrix of type m,n, (M ± c)ij = Mij ± c.

exp(M) is matrix of type m,n, (exp(M))ij = exp (Mij).

maxM is scalar with maximal value of M .

|M | is determinant of matrix M .
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Chapter 1

Introduction

1.1 Motivation

This work has its origin in the EU grant ProDaCTool, which stands for Probabilistic
Data Clustering Tool. The aim of the project was to develop an advisory system
for operators of complex systems. Typically, an operator observes many variables
indicating state of the system. His task is to manage the system, i.e. perform
necessary actions based on the observations. Experienced operator is trained to detect
abnormal behavior of the system and react appropriately. However, his experience
can not be expressed by simple rules. Therefore, it is not easy to share this knowledge
with the new unexperienced operators.

The main assumption of the ProDaCTool project is that the experience of the
operators is reflected in the historical data. If this assumption is true, then it is
possible to create an advisory system, which will guide an unexperienced operator
by suggesting solutions that were successful in the past. Moreover, the current data
will also be incorporated into the advisory system to improve quality of advising in
the future. This is known as adaptivity.

The advising problem can be formalized as a task of optimized dynamic decision
making. The challenge is to process huge amount of historical data in such a way
that reveals the operator’s experience. This could be achieved by a detailed analysis
of the specific application domain using as much expert knowledge as possible. Such
analysis can be time consuming and expensive task, moreover its results cannot be
used in other application domains. Therefore, this approach is suitable only for large
companies, where benefits of the analysis will pay off. However, in many application
domains this approach is too expensive or risky.

The aim of the ProDaCTool project was to prepare a general theoretical and
software background, that will be applicable to many various application domains.
The project was successfully finished in 2003 and the approach was applied in industry
(operating cold rolling mill [3]), medicine (treatment of thyroid gland cancer [4]),
traffic control (prediction of traffic flow [5]) and society (modelling of a fair governing
in connection with e-democracy [6]).

In order to make the solution domain-independent, detailed physical modelling of
the problem is not possible, hence the system is modelled by a black-box model. A
general parametric model is chosen and its parameters are estimated to match the
observed data as close as possible. The choice of the parametric model is essential for
success of the approach. Too simple parametric model has a low descriptive power
and too complex parameterized model is not analytically tractable. Hence, we seek

17



18 CHAPTER 1. INTRODUCTION

a compromise between descriptive power of the model and its analytical tractability.
The probabilistic models were chosen as a base class of parametric models. The

advantage of probabilistic models is the availability of compact theoretical solution
of all tasks related to model learning, which is known as the Bayesian theory [7].
This theory allows finding the compromise mentioned above [8]. Moreover, Bayesian
recursive learning of model parameters provides the desired adaptivity of the advisory
system.

1.2 Problem Formulation

The basic model used in the ProDaCTool project is a probabilistic mixture. It was
chosen for the following reasons:

i) it provides a universal approximation of almost any probability density function
[9],

ii) the tasks of control and decision making with mixture models are computationally
tractable [10].

The mixture model is a convex combination of simpler models called components,
the coefficients of the convex combination are called component weights. If the com-
ponents model the temporal dependency of data samples, we speak about dynamic
components, otherwise, we speak about static components. Similarly, if the compo-
nent weights depend on historical data, they are called dynamic, otherwise, they are
called static.

In the ProDaCTool project, mixtures with dynamic components and static weights
were used. Exact Bayesian inference of their parameters is not tractable and some
approximations of Bayesian learning have to be used. The quasi-Bayes approximation
[11] was exploited to solve this task. This approach was successfully used in many
application domains [3, 4, 5, 6], however, for some data sets this approach does not
provide an acceptable solution. This can be due to two reasons: i) the quasi-Bayes
approximation is too coarse, or ii) the descriptive power of the model is not sufficient.

The aim of this work is to address these two issues as follows:

i) to develop a better approximation for inference of parameters of mixtures with
static weights,

ii) to find a richer model than mixtures with static weights and to develop an ade-
quate approximate inference method.

1.3 State of the Art

1.3.1 Inference of Mixture-model Parameters

Rich literature on inference of probabilistic mixtures with static components and
static weights is available [9, 12, 13, 14, 15, 16]. These models are appropriate for
sequences of independent observation [9]. They are related to clustering [17], neural
networks [18] or principal component analysis (PCA) [19]. However, the static mix-
tures are not sufficiently rich for the considered advisory system.

Inference of probabilistic mixtures with dynamic components and static weights is
more demanding task and only a little work was published in this area [20]. The quasi-
Bayes algorithm [21] developed for static probabilistic mixtures has been generalized
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to cope with dynamic components [10]. Theoretical justification of the quasi-Bayes
modification is missing.

Particle filters [22] can be efficiently used for estimation of parameters of arbitrary
probability density function. They are based on Monte-Carlo techniques and their use
is limited to low dimensional cases only. Another general approach is based on mean
field methods [23], which provide promising approximation techniques. Especially, the
variational Bayes (VB) approach [24] provides a systematic and applicable solution.
It is based on minimization of Kullback-Leibler divergence [1]. Since this divergence
is not symmetric, the result of optimization depends on the selected argument order
of this divergence. Theoretical analyses [25, 26] suggest that one of the possible
argument orders provides a better approximation. However, the VB approach uses
the opposite order of arguments, which allows to find an analytical solution [27].

The theoretical analyses [25, 26] motivate our search for an approximation mini-
mizing the KL divergence with recommended argument order. It may not be possible
to derive such general results as the VB approach, but it may be possible to derive
inference algorithms for special but important classes of pdfs. This approach will be
used to address the tasks of this work.

1.3.2 Other Classes of Models

Naturally, there are competitive ways of modelling the dependency of data samples.
For example dynamic versions of PCA [28, 29, 30] or neural networks [18]. PCA
provides probabilistic model of the system, but it can represent unimodal pdfs only.
Hence it can not be used instead of probabilistic mixtures. It can be used as a mixture
component, but the problem with static component weights remains.

Neural networks (NN) serve as universal approximations of multivariate, generally
non-linear mappings [31]. As such, they provide non-linear black-box dynamic mod-
els used in various decision-supporting modules, for instance, as standards in fault
detection or as predictors [32]. They are extensively used so that their advantages
and limitations can be studied on real cases [33]. Unfortunately, NN does not pro-
vide probabilistic description of the system and thus can not be exploited to solve
our task.

Other important approaches to probabilistic models are based on nonparametric
Bayesian estimation [34, 35]. They are mostly used for simple static cases. Important
representant of nonparametric classes are gaussian priors and mixtures of them [36].
These models look very promising, but still, the complexity of systems, which this
approach is tractable for, is limited.

To our best knowledge, none of the existing system models is equivalent with
probabilistic mixtures in the sense of tractability, description power and suitability
for subsequent control or decision-making tasks. This forces us to stay within the
class of probabilistic mixture models. It was proven [10] that probabilistic mixtures
with dynamic components and static weights describe all dynamic probability dis-
tributions only asymptotically. There were also attempts [10] to estimate dynamic
mixtures with specific types of dynamic weights, but a general framework is missing.
This leads to the need for introducing general probabilistic mixtures with both dy-
namic components and dynamic weights and developing an appropriate estimating
algorithm.
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1.4 Aims of the Work

The two main problems addressed within this text were already mentioned. First,
we need to improve estimation of dynamic probabilistic mixtures with static weights.
Second, we need to improve the mixture model to work with data-dependent compo-
nent weights.

As the static-weights mixtures are a special case of dynamic-weights mixtures, both
these tasks can be solved within a single general framework. Estimation algorithm
for static-weights mixtures will be then obtained by specialization of the general
algorithm. The specific tasks of the work are:

• to define dynamic probabilistic mixture model with dynamic weights as a gen-
eralization of the current dynamic mixture with static weights,

• to elaborate a general algorithm for recursive estimation of the generalized
model,

• to apply the algorithm to specific types of components and component weighting
functions,

• to specialize the algorithm for mixtures with static weights,

• to implement all algorithms in MATLAB,

• to implement algorithms for static-weights mixtures in C and integrate them
into MATLAB toolbox Mixtools,

• to compare quality of the new algorithm with the current quasi-Bayes algorithm
on a large set of examples dealing with estimation of a static-weights mixture,

• to test reliability of algorithms for dynamic-weights mixtures on simple examples.

1.5 Thesis Layout

Chapter 1 summarizes the aims of this work. Also, the means used to achieve these
aims are presented here.

The underlaying Bayesian estimation is discussed in Chapter 2.

In Chapter 3, general useful propositions about projection into two important classes
are proved.

Chapters 4, 5, 6 and 7 form the core of the work. The two main problems of the
work are discussed and solved here.

Chapter 4 provides a specific problem formulation.

General techniques describing solution of the formulated problem form the content of
Chapter 5. The problem is split into two subproblems: (i) optimizing of factors
statistics and (ii) optimizing of statistics determining the component weighting
functions.

Chapters 6 and 7 solve the mentioned subproblems (i) and (ii).

Content of Chapter 8 is formed by experiments demonstrating and verifying the
theoretical results.
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Chapter 9 concludes the work by summarizing the status of the research achieved
and lists some problems to be addressed in future.

Appendix A recalls the quasi-Bayes estimation algorithm, which serves as a reference
for quality comparison. Also the algorithm mixinit for initialization of mixture
estimation is briefly described there.

General mathematical tools used, auxiliary propositions and properties of polygamma
functions are summarized in Appendix B.

Appendix C summarizes basic properties and propositions of probabilistic calculus,
The Kullback-Leibler divergence, the Kerridge divergence and their properties
as well as important probability density functions and their properties.

Appendix D describes normal autoregressive factors and their Bayesian estimation.

In order to provide compact text, majority of propositions, definitions and pdf
properties are placed in the appendices. Inside the main text, references to them are
made. This style of presentation may be little bit confusing for the readers who are
beginners in area of probabilistic modelling. To minimize this confusion, Section 1.6
briefly summarizes most of the terms, which will be referred within the main text.

1.6 Means and Tools Used for the Work

Here, the main tools and means used for the work are summarized.

• Basic properties of probability density functions (Appendix C)

– Conditioning (Proposition 19)

– Jensen inequality (Proposition 20)

– Mean value transformation (Proposition 21)

– Marginalization (Proposition 19)

– Chain rule (Proposition 19)

• Properties of known pdfs

– Gaussian pdf (Section C.6)

– Dirichlet pdf (Section C.2)

– Gauss-inverse Wishart pdf (Section C.5)

• Bayesian estimation (Chapter 2)

– Prior, posterior pdf (Section 2.1)

– Bayes rule, Bayesian updating (Section 2.2)

– Conjugate prior, conjugate posterior (Section 2.3)

• Proximity measures (Appendix C)

– Kullback-Leibler divergence (Section C.1.1)

– Kerridge divergence (Section C.1.2)

• General mathematical tools (Appendix B)
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– Matrix differential calculus (Section B.1)

– Extremes of multivariate functions (Proposition 10)

– Monte-Carlo integral evaluation (Section 7.2.5)

– Polygamma functions (Appendix B.3)

This text doesn’t have ambitions to provide exact mathematical description of the
presented propositions and their proofs. Instead, it tries to present them as simply
as possible in the form close to their software implementation.



Chapter 2

Bayesian Estimation

This chapter starts with a description of Bayesian estimation. Then its feasibility is
discussed. Finally, general mechanism for achieving feasibility of Bayesian recursive
estimation is proposed.

2.1 General Description of Bayesian Estimation

Let us have some process with d̊ scalar sensors called here data channels. Current val-
ues on all data channels at time t form a d̊-dimensional data vector dt ≡ [d1;t, · · · , dd̊;t].
We measured values on all data channels for t̊ times and got data d(̊t) ≡ (d1, · · · , dt̊).

Probabilistic modelling relies on assumption that d(t) is a random quantity. Then,
the task of estimation is defined as finding the probability density function (pdf) of
this random quantity. It means that our task is to find pdf f(d(̊t)). As this task is
enormously difficult, we usually assume that f(d(̊t)) belongs to some known class of
pdfs determined by finite dimensional parameter Θ, f(d(̊t)) ≡ f(d(̊t)|Θ). Then the
task reduces to estimating the parameter Θ.

According to the chain rule (Proposition 19), we can factorize the pdf f(d(̊t)|Θ)
as follows:

f(d(̊t)|Θ) =
t̊∏

t=1

ft(dt|d(t− 1),Θ).

It is reasonable to expect that dt does not depend on all historical values d(t− 1),
but just on a subselection φt−1 forming state vector, i.e.:

ft(dt|d(t− 1),Θ) ≡ ft(dt|φt−1,Θ).

The state vector φt−1 can be even empty. In such a case no dependence on past is
considered and the model is called static. Otherwise, the model is called dynamic.

Next, it is often reasonable to expect that all pdfs ft have the same functional
form:

ft(dt|d(t− 1),Θ) ≡ f(dt|φt−1,Θ).

The pdf f(dt|φt−1,Θ) is called parameterized model of the system and it of course
fully determines the pdf f(d(̊t)|Θ) considering the previous assumptions.

The basic principle of Bayesian decision making [7] states that uncertainty should
be modelled by randomness. This means that unknown parameter Θ should be
treated as a random quantity. If Θ is a random quantity it makes sense to speak
about its pdf. The main interest of Bayesian analysis lies on studying the pdf of Θ

23
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conditioned by all known data d(̊t). This is so called posterior pdf πt̊(Θ|d(̊t)). This pdf
is the main outcome of Bayesian estimation as it provides full available information
about the unknown parameter Θ. From practical reasons, we consider the posterior
pdf πt̊(Θ|d(̊t)) to be determined by statistic Gt̊ instead of all d(̊t). This assumption
is very weak, because we do not assume the finiteness of Gt̊ yet. Hence πt̊(Θ|d(̊t)) ≡
πt̊(Θ|Gt̊). Important object of Bayesian estimation needed for evaluation of πt̊(Θ|d(̊t))
is also the so called prior pdf π0(Θ) ≡ π0(Θ|G0) reflecting our knowledge about the
system before the estimation. This pdf can be constructed using information of some
experts. The expert information must be of course translated into probabilistic terms
[37].

According to previous considerations, we can formulate the task of Bayesian pa-
rameter estimation:

Provide the posterior pdf πt̊(Θ|Gt̊), using the knowledge of:

• t̊ data records (realizations) d(̊t),

• the prior pdf π0(Θ),

• the parameterized model f(dt|φt−1,Θ).

In practical applications, we often need to update the posterior pdf πt−1(Θ|Gt−1) with
each new data record dt. This task can be formulated as follows:

Provide the posterior pdf πt(Θ|Gt), using the knowledge of:

• state vector φt−1,

• new data record dt,

• the parameterized model f(dt|φt−1,Θ),

• old posterior pdf πt−1(Θ|Gt−1).

This task is called Bayesian recursive estimation and it is the key problem ad-
dressed within this text. It is simple to observe, that non-recursive version of esti-
mation can be obtained by repetitive use of the recursive version.

The following example illustrates some terms defined in previous paragraph.

Example 1 (Bayesian estimation)

d̊ = 1 (scalar data)
φt−1 ≡ (dt−1, dt−2) (state of the model)

Θ ≡ (a, b, c) (unknown parameter)
f(dt|φt−1,Θ) = Ndt

(adt−1 + bdt−2 + c, 1) (normal parameterized model)
π0(Θ|G0) ≡ Ua(0, 2)Ub(1, 3)Uc(−1, 1) (uniform prior pdf)

We have some scalar system. Data record dt at time t depends on two historical values
dt−1 and dt−2. We measured t̊ data records d1, · · · , dt̊. We do not know the values
of parameters a, b, c, but the prior pdf says that a ∈ (0, 2), b ∈ (1, 3), c ∈ (−1, 1).
We need to know more about them. The posterior pdf πt̊(a, b, c|Gt̊) will give us better
information.
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2.2 Solution of Bayesian Recursive Estimation

Bayesian recursive estimation has a simple solution:

πt(Θ|Gt) =
f(dt|φt−1,Θ)πt−1(Θ|Gt−1)

∫

f(dt|φt−1,Θ)πt−1(Θ|Gt−1)dΘ
. (2.1)

The pdf f(dt|φt−1,Θ) is taken as a function of Θ. The data record dt and state
vector φt−1 must be known. The following example demonstrates use of this relation.

Example 2 (Bayesian recursive estimation)

d̊ = 1 (scalar data)
φt−1 ≡ ∅ (static model)

Θ (unknown scalar parameter)
f(dt|φt−1,Θ) ≡ Ndt

(Θ, 1) (normal parameterized model)
πt−1(Θ|Gt−1) ≡ NΘ (Mt−1, Rt−1) (Gaussian old posterior pdf)

According to the relation (2.1), the new posterior pdf is:

πt(Θ|Mt, Rt) =
Ndt

(Θ, 1)NΘ (Mt−1, Rt−1)
∫ Ndt

(Θ, 1)NΘ (Mt−1, Rt−1) dΘ
.

With a simple computation, we obtain the result:

πt(Θ|Mt, Rt) = NΘ

(

Mt−1 +Rt−1dt

Rt−1 + 1
,

Rt−1

1 +Rt−1

)

.

The new posterior pdf πt(Θ|Mt, Rt) has the same functional form as the old one.
This fact is very important, because Bayesian update reduces here to updating of
statistics Mt, Rt, i.e. it consists of the mapping (Mt−1, Rt−1, dt) → (Mt, Rt) defined
as follows:

Mt =
Mt−1 +Rt−1dt

Rt−1 + 1
, Rt =

Rt−1

1 +Rt−1

.

Now let us assume we have the prior pdf π0(Θ|M0, R0) ≡ NΘ (M0, R0) and apply the
rule repeatedly in t̊ time steps. We get the posterior pdf πt̊(Θ|Mt̊, Rt̊) ≡ NΘ (Mt̊, Rt̊) .

Let us simulate t̊ ≡ 10 data records with Θtrue ≡ 2.0000. The result of simulation
is displayed in Table 2.1.

t 1 2 3 4 5
dt 1.7271 0.9745 3.0329 1.0502 1.4423

t 6 7 8 9 10
dt 1.4322 1.2444 2.7505 1.7242 4.9642

Table 2.1: Example 2 : Simulated data

If we select relatively flat prior pdf given by

M0 = 0.0000, R0 = 5.0000,

we obtain the result

M10 = 1.9944, R10 = 0.0980.
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t Mt Rt

0 0.0000 5.0000
1 1.4392 0.8333
2 1.2280 0.4545
3 1.7920 0.3125
4 1.6154 0.2381
5 1.5821 0.1923
6 1.5579 0.1613
7 1.5144 0.1389
8 1.6651 0.1220
9 1.6715 0.1087
10 1.9944 0.0980

Figure 2.1: Example 2 : Example of Bayesian estimation
The figure shows the prior pdf π0(Θ|M0, R0) and resulting posterior pdf π10(Θ|M10, R10) after
processing 10 data records. It can be seen that the posterior pdf concentrated near the true value
2.0000. The table in the right part of the figure shows evolution of the posterior statistics during
time.

The prior pdf π0(Θ|M0, R0) and posterior pdf π10(Θ|M10, R10) as well as values of
Mt and Rt during the estimation are depicted on Figure 2.1. Note that the posterior
pdf is concentrated near the true value 2.0000.

2.3 Feasibility of Bayesian Estimation

In Example 2, the Bayesian estimation leads to simple recursion on statistics Mt and
Rt. Unfortunately, this happens only in a very limited number of cases, when the
new posterior pdf πt(Θ|Gt) after one step of estimation preserves the same functional
form as the previous posterior pdf πt−1(Θ|Gt−1). Then we can omit the time subscript
in the pdf, i.e. πt(Θ|Gt) ≡ π(Θ|Gt)∀t. When updating from π(Θ|Gt−1) to π(Θ|Gt),
it suffices to update the statistic Gt. The prior pdf, which leads to this behavior is
called conjugate[38] .

In this text, we will orient us on the case, when the conjugate pdf does not exist.
Then we have to face to two major problems.

• The normalizing integral in (2.1) need not be analytically solvable.

• Repetitive use of this rule would lead to very complex forms of the posterior pdf.

The first problem can be solved by approximation of the integral or using nu-
meric integration. Solution of the second problem is much more difficult. We will
demonstrate this problem on a simple example.

Example 3 (Limits of Bayesian estimation)

d̊ = 1 (scalar data)
φt−1 ≡ ∅ (static model)

Θ ≡ (a, b) (unknown parameter)
f(dt|φt−1,Θ) ≡ 0.5Ndt

(a, 1) + 0.5Ndt
(b, 1) (parameterized model)

π0(a, b|G0) ≡ N(a,b) (M0, R0) (Gaussian prior pdf)

According the Bayes rule (2.1):

π1(a, b|G1) ∝ 0.5Nd1 (a, 1)N(a,b) (M0, R0) + 0.5Nd1 (b, 1)N(a,b) (M0, R0) .
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With a little simple computation:

π1(a, b|G1) = w1N(a,b)

(

M
(1)
1 , R

(1)
1

)

+ (1 − w1)N(a,b)

(

M
(2)
1 , R

(2)
1

)

,

where w1,M
(1)
1 ,M

(2)
1 , R

(1)
1 , R

(2)
1 are evaluated somehow. Details are not important

now. Important is that π1 is a weighted sum of two pdfs of the same type as π0. It
is simple to observe, that π2 would be a weighted sum of two pdfs of the same type
as π1, i.e. it will be a sum of 4 pdfs of the type π0. Generally, πt would consist of 2t

weighted terms. It is clear that we are not able to store the statistics of these terms
in computer even for a relatively small t.

In the previous example, we were able to perform analytically one estimation step,
but we were not able to use its result in the next estimation steps. A simple way out
of this situation is to approximate the new posterior pdf to obey the same form as
the old one. Now let us formalize the Bayesian estimation using this trick.

Off-line phase

• Choose sufficiently rich class of posterior pdfs π(Θ|Gt). Element of this class
is determined by finite statistic Gt.

• Set G0 so that π(Θ|G0) reflects the prior information.

On-line phase

• Evaluate one step of the Bayesian estimation (2.1), getting

π̂t(Θ) =
f(dt|φt−1,Θ)π(Θ|Gt−1)

∫

f(dt|φt−1,Θ)π(Θ|Gt−1)dΘ
. (2.2)

This pdf will be referred to as correct update and it is usually out of our
class.

• Find Gt so that π(Θ|Gt) is the best projection of the obtained pdf π̂t into
our class of posteriors.

The term ”best projection” is a little bit vague. Within this text, under this term
we will consider exclusively the minimizer of Kullback-Leibler divergence [1]. So the
task can be more precisely formulated as follows:

Find Gt, so that

D
(

π̂t(Θ)
∣
∣
∣

∣
∣
∣ π(Θ|Gt)

)

is minimal.

Note that this divergence is not symmetric in order of its arguments. There
exist approaches minimizing the other argument order [39], because more or less
analytical solution can be found [40]. We choose KL divergence and this argument
order, because it is compatible with the Bayesian methodology [25, 26]. The feasible
solution is not guaranteed at general level, but it is possible to find the minimizer for
special cases. As the specified approach finds the best projection into specific classes,
it is called projection based (PB) approach.
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Example 4 (Projection based approach) Let us have the same parameterized
model and prior pdf as in Example 3. Now we will force the posterior pdf to stay
within the class of 2-dimensional Gaussian distributions.

d̊ = 1 (scalar data)
φt−1 ≡ ∅ (static model)

Θ ≡ (a, b) (unknown parameter)
f(dt|φt−1,Θ) ≡ 0.5Ndt

(a, 1) + 0.5Ndt
(b, 1) (parameterized model)

π(a, b|Gt−1) ≡ N(a,b) (Mt−1, Rt−1) (Gaussian class of posteriors)

Similarly as in the previous example, we came to the relation

π̂t(a, b) = wtN(a,b)

(

M
(1)
t , R

(1)
t

)

+ (1 − wt)N(a,b)

(

M
(2)
t , R

(2)
t

)

.

Now, we have to find Gt ≡ (Mt, Rt) determining the best projection of this pdf to class
of 2-dimensional Gaussian pdfs. Using Propositions 2 and 22, it can be found that

Mt = wtM
(1)
t + (1 − wt)M

(2)
t

Rt = wtR
(1)
t + (1 − wt)R

(2)
t + wt(1 − wt)(M

(2)
t −M

(1)
t )(M

(2)
t −M

(1)
t )′.



Chapter 3

Basic Tool

This chapter contains two important propositions exploited extensively during the
work. They convert very complex problem of minimization the KL divergence into a
simpler task of integration for two important classes. The two classes of our interest
are the Gauss inverse Wishart (GiW) pdfs (Section C.5) and the Gaussian pdfs
(Section C.6).

Proposition 1 (Best projection into GiW class) Let f(θ, r) be arbitrary joint
pdf on vector θ and positive scalar r fulfilling following conditions.(The assumptions
are not very restrictive and in usual situations they are fulfilled.)

p ≡
∫
f(θ, r)

r
dθdr is finite.

s ≡
∫

ln (r) f(θ, r)dθdr is finite.

h(θ, r) ≡ f(θ, r)

rp
has finite positive definite covariance matrix cov [θ]h .

Then the statistics (C, bdD, θ̂, ν) minimizing the KL divergence

D
(

f(θ, r)
∣
∣
∣

∣
∣
∣ GiWθ,r(C,

bdD, θ̂, ν)
)

fulfill:

C = p cov [θ]h

θ̂ = E [θ]h
ln (0.5ν) − ψ0 (0.5ν) = ln (p) + s

bdD =
ν

p

Proof: We will show that the specified statistics minimize the Kerridge divergence

K
(

f(θ, r)
∣
∣
∣

∣
∣
∣ GiWθ,r(C,

bdD, θ̂, ν)
)

= −
∫

f(θ, r) ln
(

GiWθ,r(C,
bdD, θ̂, ν)

)

, (3.1)

which, according to Proposition 23, directly implies the statement of the proposition.
GiW pdf has the following form:

GiWθ,r(C,
bdD, θ̂, ν) =

r−0.5(ν+ψ̊+2)

I(C, bdD, ν)
exp

{

− 1

2r

[

(θ − θ̂)′C−1(θ − θ̂) + bdD
]}

,where

I(C, bdD, ν) = Γ(0.5ν) bdD−0.5ν
∣
∣
∣C−1

∣
∣
∣

−0.5
20.5ν(2π)0.5ψ̊.
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We need to evaluate logarithm of GiW pdf:

ln
(

GiWθ,r(C,
bdD, θ̂, ν)

)

= −0.5(ν + ψ̊ + 2) ln (r) − ln (Γ (0.5ν)) + (3.2)

+ 0.5ν ln
(
bdD

)

− 0.5ψ̊ ln (2π) − 0.5ν ln (2) +

+ 0.5 ln
(

|C−1|
)

− 1

2r

[

(θ − θ̂)′C−1(θ − θ̂) + bdD
]

.

Before substituting (3.2) into (3.1), we split it into two parts. The first part depends

only on ν and bdD, the second part depends on θ̂ and C. The part, which does not
depend on any of ν, bdD, θ̂, C is omitted, because it does not influence the optimization.
With this separation, the Kerridge divergence, we are evaluating, splits into

K
(

f(θ, r)
∣
∣
∣

∣
∣
∣ GiWθ,r(C,

bdD, θ̂, ν)
)

= G(ν, bdD) +W (θ̂, C) + const, where

G(ν, bdD) =

= −
∫

f(θ, r)
[

−0.5ν ln (r) − ln (Γ (0.5ν)) + 0.5ν ln
(

0.5 bdD
)

− 1

2r
bdD

]

dθdr =

= 0.5ν
∫

f(θ, r) ln (r) dθdr
︸ ︷︷ ︸

≡s

+ ln (Γ (0.5ν)) − 0.5ν ln
(

0.5 bdD
)

+ 0.5 bdD

∫ 1

r
f(θ, r)dθdr

︸ ︷︷ ︸

≡p

=

= 0.5νs+ ln (Γ (0.5ν)) − 0.5ν ln
(

0.5 bdD
)

+ 0.5 bdDp

W (θ̂, C) =

= −
∫

f(θ, r)
[

0.5 ln
(

|C−1|
)

− 1

2r
[(θ − θ̂)′C−1(θ − θ̂)]

]

dθdr =

= −0.5 ln
(

|C−1|
)

+
∫

f(θ, r)
1

2r
[θ′C−1θ − 2θ̂′C−1θ + θ̂′C−1θ̂]dθdr

Prop.7
︷︸︸︷
=

= −0.5 ln
(

|C−1|
)

+ 0.5tr







C−1

∫
θθ′

r
f(θ, r)dθdr

︸ ︷︷ ︸

≡Q







− θ̂′C−1

∫
θ

r
f(θ, r)dθdr

︸ ︷︷ ︸

≡U

+0.5p θ̂′C−1θ̂ =

= −0.5 ln
(

|C−1|
)

+ 0.5tr
(

C−1Q
)

− θ̂′C−1U + 0.5p θ̂′C−1θ̂

It is clear that we can split the minimization task into two independent parts. The first
part is searching for the optimal scalars ν, bdD and the second part is searching for the op-
timal matrix C and vector θ̂. The minimization will use the standard differential approach
summarized in Proposition 10. Let us start with the first 2-dimensional minimization.

First, we evaluate partial derivatives of G.

∂G

∂ bdD
= −0.5

ν
bdD

+ 0.5p (3.3)

∂G

∂ν
= 0.5s+ 0.5ψ0 (0.5ν) − 0.5 ln

(

0.5 bdD
)

(3.4)

∂2G

∂ bdD
2 = 0.5

ν

bdD
2 (3.5)



31

∂2G

∂ν2
= 0.25ψ1 (0.5ν) (3.6)

∂2G

∂ν∂ bdD
= − 0.5

bdD
(3.7)

(3.8)

By zeroing the first derivatives, we obtain the equations for the optimal values:

bdD =
ν

p
(3.9)

ln (0.5ν) − ψ0 (0.5ν) = ln (p) + s (3.10)

According to Proposition 17, the equation (3.10) is known to have unique positive
solution iff ln (p) + s > 0. It holds:

ln (p) + s = ln
(∫ 1

r
f(θ, r)dθdr

)

−
∫

ln
(

1

r

)

f(θ, r)dθdr = (3.11)

= ln
(

E
[
1

r

])

− E
[

ln
(

1

r

)]

(3.12)

Applying Proposition 21, Jensen inequality (Proposition 20) and assumptions of the cur-
rent proposition on (3.12) gives that ln (p) + s > 0.

We found unique stationary point. Let us investigate the definiteness of the Hessian.

H =

(

0.5 ν
bdD

2 − 0.5
bdD

− 0.5
bdD

0.25ψ1 (0.5ν)

)

According to Proposition 12, we need to show that

0.5
ν

bdD
2 > 0 (3.13)

∣
∣
∣
∣
∣

0.5 ν
bdD

2 − 0.5
bdD

− 0.5
bdD

0.25ψ1 (0.5ν)

∣
∣
∣
∣
∣
> 0. (3.14)

The inequality (3.13) holds, because ν > 0. The determinant is equal to:
0.25
bdD

2 (0.5νψ1 (0.5ν) − 1), which is positive, because the function νψ1 (ν) > 1, ∀ν > 0

(Proposition 18).
We proved that there is unique local minima. Since the minimization was performed

without constraints, we need tho show, that the resulting bdD and ν are positive. We
already showed that ν is positive. As p is positive, bdD = ν

p
is positive, too. Since the

function G is continuous and has unique local extreme, this extreme is global extreme.

Now we have to do the same work forW (θ̂, C). The used formulas from matrix differential
calculus are summarized in Proposition 8.

∂W

∂θ̂
= −C−1U + pC−1θ̂ (3.15)

∂W

∂C−1
= −0.5C + 0.5Q′ − θ̂U ′ + 0.5pθ̂θ̂′ (3.16)

∂2W

∂θ̂2
= pC−1 (3.17)
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∂2W

∂C−2
= 0.5C ⊗ C (3.18)

∂2W

∂C−1∂θ̂
= I ⊗

(

−U + pθ̂
)

, (3.19)

where ⊗ denotes Kronecker product of matrices.
After a simple manipulation with first derivatives, we get the unique solution (note

that Q is symmetric):

θ̂ =
U

p
(3.20)

C = Q− 2θ̂U ′ + pθ̂θ̂′ = Q− UU ′

p
. (3.21)

We found the stationary point, we need to prove that it is a minimum. For the

stationary point it holds that
(

−U + pθ̂
)

= 0, hence the Hessian matrix

H =





∂2W

∂θ̂2
∂2W

∂C−1∂θ̂

′

∂2W

∂C−1∂θ̂

∂2W
∂C−2



 =

(

pC−1 0
0 C ⊗ C

)

is positive definite, because Kronecker product of positive definite matrices is positive
definite.

As we performed minimization without constraints, we need to prove that the obtained
C is positive definite.

C = Q− UU ′

p

Q =
∫
θθ′

r
f(θ, r)dθdr = pE [θθ′]h

U =
∫
θ

r
f(θ, r)dθdr = pE [θ]h

C = p(E [θθ′]h − E [θ′]h E [θ]′h ) = pcov [θ]h

As p is positive and we assume that cov [θ]h is positive definite, the obtained C is
positive definite. The function W is continuous and has unique local extreme, hence this
extreme is global extreme.

Proposition 2 (Best projection into Gaussian class) Let f(θ) be arbitrary joint
pdf on vector θ with a finite positive definite covariance matrix cov [θ]f . Then the

statistics (M,R) minimizing the KL divergence

D
(

f(θ)
∣
∣
∣

∣
∣
∣ Nθ (M,R)

)

fulfill:

R = cov [θ]f
M = E [θ]f

Proof: The proof is omitted here. It is just simplified version of proof of Proposition 1.



Chapter 4

Problem Formulation

Within this text, we consider the parameterized model of the system in the form of
finite probabilistic mixture with data dependent weights. Here, these mixture models
are defined and the main estimation task is formulated.

4.1 Dynamic Probabilistic Mixture

We consider the parameterized model of the system in the following form:

f(dt|φt−1,Θ) ≡
c̊∑

c=1

αc(φt−1|Ω)fc(dt|φt−1,Θc), c̊ <∞, where (4.1)

c̊ ≡ number of components (4.2)

fc(dt|φt−1,Θc) ≡ c-th component given by the component parameters Θc

αc(φt−1|Ω) ≡ c-th component weighting function (cwf ) given by the parameter Ω

αc(φt−1|Ω) ≥ 0,
c̊∑

c=1

αc(φt−1|Ω) = 1, ∀φt−1, ∀c (4.3)

Θ ≡ {Θ1, · · · ,Θc̊, Ω} is unknown parameter

(4.4)

Verbally: The dynamic probabilistic mixture is a convex combination of several dy-
namic pdfs called components. The actual weights depends generally on the state vec-
tor φt−1. Mixture parameter Θ is formed by the component parameters {Θ1, · · · ,Θc̊}
and by the parameter Ω determining the behavior of component weighting functions.
The parameter Θ represents our only uncertainty about the system model, i.e. we
assume the know functional form of the components fc and component weighting
functions αc. The next simple example illustrates all defined terms.

Example 5 (Dynamic probabilistic mixture)

d̊ ≡ 1 (data are scalar)
c̊ ≡ 2 (2 components)

φt−1 ≡ (dt−1, dt−2) (state of the model)
Ω ≡ (λ1, λ2) (parameter of cwfs)
Θ ≡ (λ1, λ2,Θ1,Θ2) (mixture parameter)

33
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α1(φt−1|Ω) ≡ α1(dt−1, dt−2|λ1, λ2) =
λ2
1
d2t−1

λ2
1
d2

t−1
+λ2

2
d2

t−2

(1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1, dt−2|λ1, λ2) =
λ2
2
d2t−2

λ2
1
d2

t−1
+λ2

2
d2

t−2

(2nd cwf)

f1(dt|φt−1,Θ1) ≡ f1(dt|dt−1, dt−2,Θ1) = 1
(1+(dt−Θ1dt−1)2)×π

(1st component)

f2(dt|φt−1,Θ2) ≡ f2(dt|dt−1, dt−2,Θ2) = 1
(1+(dt−Θ2dt−2)2)×π

(2nd component)

The example presents one dimensional dynamic mixture with dynamic weights. It
has two components with Cauchy distribution. Note that sum of cwfs is always 1.

Before fixing and refining nomenclature related to the mixture, we split the in-
dividual components into so called factors that provide flexibility of the parametric
description. Using the chain rule (Proposition 19), the pdfs fc(dt|φt−1,Θc) can be
written as a product of pdfs of individual entries of dt:

fc(dt|φt−1,Θc) =
d̊∏

i=1

fic(di;t|di+1;t, · · · , dd̊;t, φt−1,Θic). (4.5)

The additional subscript i of the parameter Θic indicates that only some entries of
Θc may occur in i-th pdf (factor) in (4.5).

Before applying the chain rule, entries of dt can be permuted and some permuta-
tions may lead to parameterizations with less parameters. This motivates inclusion
of permutations into the model description. Since each component can generally use
another permutation, we have to add an additional parameter to the data index,
which will determine the component (permutation). More exactly, let dc;t denote
the data record after permutation in c-th component. dic;t is then i-th entry in this
permuted data record. Using this notation, the result of the chain rule reads:

fc(dt|φt−1,Θc) =
d̊∏

i=1

fic(dic;t|d(i+1)c;t, · · · , dd̊c;t, φt−1,Θic) ≡
d̊∏

i=1

fic(dic;t|ψic;t,Θic),

(4.6)
where the regression vector ψic;t is generally a sub-vector of the vector

[d(i+1)c;t, · · · , dd̊c;t, φt−1]
′.

Often, it is reasonable to include constant 1 into the regression vector ψic;t. Hence
we define ψic;t as a sub-vector of the vector

[d(i+1)c;t, · · · , dd̊c;t, φt−1, 1]
′. (4.7)

The next example demonstrates two ways of splitting components into factors.

Example 6 (Parameterized factor)

d̊ ≡ 2 (2-dimensional data ⇒ we have 2 permutations)
Θ1 ≡ (µ, ρ), ρ ∈ (−1, 1) (we are dealing with component 1)
φt−1 ≡ ∅ (for simplicity, we suppose no dependence on past)
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f1(dt|φt−1,Θ1) ≡ Ndt

((

0
µ

)

,

(

1 ρ

ρ 1

))

First Permutation
ψ11;t ≡ d2;t, Θ11 ≡ (µ, ρ), ψ21;t ≡ ∅, Θ21 ≡ µ

f1(dt|φt−1,Θ1) ≡ Nd1;t

(

ρ(d2;t − µ), 1 − ρ2
)

︸ ︷︷ ︸

f11(d11;t|ψ11;t,Θ11)

Nd2;t (µ, 1)
︸ ︷︷ ︸

f21(d21;t|ψ21;t,Θ21)

Second Permutation
ψ11;t ≡ d1;t, Θ11 ≡ (µ, ρ), ψ21;t ≡ ∅, Θ21 ≡ ∅
f1(dt|φt−1,Θ1) ≡ Nd2;t

(

µ+ ρd1;t, 1 − ρ2
)

︸ ︷︷ ︸

f11(d11;t|ψ11;t,Θ11)

Nd1;t (0, 1)
︸ ︷︷ ︸

f21(d21;t|ψ21;t,Θ21)

The example presents two possible ways of splitting two-dimensional normal pdf into
normal factors. Note that the second way of splitting results into empty Θ21 whereas
the first splitting results into nonempty Θ21. This shows that it makes sense to dis-
tinguish the particular permutations.

According to the previous definitions, the parameterized factor fic(dic;t|ψic;t,Θic)
is determined by its parameter Θic, by the index of the channel it acts on and by the
way how the regression vector ψic;t is constructed from d(t).

Now let us summarize the nomenclature related to the mixtures.

Agreement 4 (Nomenclature related to mixtures review)

c̊ is called number of components.

fc(dt|φt−1,Θc) is called parameterized component.

αc(φt−1|Ω) is the component weighting function (cwf) of the c-th parameterized com-
ponent.

fic(dic;t|ψic;t,Θic) is called parameterized factor.

ψic;t is regression vector.

Ψic;t is the coupling Ψic;t ≡ [dic;t, ψ
′
ic;t]

′ and it is called data vector of the factor.

4.2 Form of the Prior and the Posterior Pdfs

According to the general rules in Section 2.3, we need to choose the prior and posterior
pdf in a form that is well manipulable. This motivates us to select this general product
form:

Agreement 5 (Considered forms of pdfs on Θ∗) The prior π(Θ) ≡ π(Θ|G0)
and the posterior π(Θ|d(t)) ≡ π(Θ|Gt) are considered to be of the common form:

π(Θ|Gt) ≡ ρ(Ω|Ht)
d̊,̊c
∏

i,c=1

πic(Θic|Sic;t), t ∈ {0, 1, 2, · · · , t̊}, where (4.8)

ρ(Ω|Ht) is pdf on cwf parameter Ω determined

by the finite-dimensional statistic Ht

πic(Θic|Sic;t) are pdfs on factor parameters Θic;t determined

by the finite-dimensional statistics Sic;t
Gt ≡ (Ht,S••;t).
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Verbally, parameters Θic, i ≡ {1, · · · , d̊}, c ∈ {1, · · · , c̊}, of the individual parame-
terized factors are considered to be conditionally independent, and also, independent
of the parameter Ω of component weighting functions. The posterior statistic Gt is
formed by the statistic Ht determining the pdf of the parameter of cwfs and by the

statistics {Sic;t}d̊,̊ci=1,c=1 determining the pdf of parameters of particular factors.

Remarks 1

1. The independence of the factor parameters is restrictive, but it is the only way
to cope with the high dimensional cases.

2. When the conjugate pdf to the particular factor fic(di|ψic;t,Θic) exists, it is of
course reasonable to select the pdf πic(Θic|Sic;t) as this conjugate one.

Example 7 (Form of the prior and posterior pdf) The posterior pdf of the mix-
ture model from Example 5 could look as follows:

ρ(Ω|Ht) ≡ ρ(λ1, λ2|Mt, Rt) = N(λ1,λ2)′ (Mt, Rt)

π11(Θ11|S11;t) ≡ π11(Θ1|mt) = NΘ1
(mt, 1)

π12(Θ12|S12;t) ≡ π12(Θ2|µt) = NΘ2
(µt, 1)

Ht ≡ (Mt, Rt), S11;t ≡ mt, S12;t ≡ µt

Gt ≡ (Mt, Rt,mt, µt)

π(Θ|Gt) ≡ π(λ1, λ2,Θ1,Θ2|Mt, Rt,mt, µt) = N[λ1,λ2]′ (Mt, Rt)NΘ1
(mt, 1)NΘ2

(µt, 1)

4.3 Addressed Problem

Now, it is time to exactly define the addressed problem. We apply the approximation
from Section 2.3 to the introduced mixture model (4.1) and get the following problem:

Find the statistic Gt, which minimizes KL divergence D
(

π̂t(Θ)
∣
∣
∣

∣
∣
∣ π(Θ|Gt)

)

, where

π̂t(Θ) ≡ f(dt|φt−1,Θ)π(Θ|Gt−1)
∫

f(dt|φt−1,Θ)π(Θ|Gt−1)dΘ
(4.9)

π(Θ|Gt−1) ≡ ρ(Ω|Ht−1)
d̊,̊c
∏

i=1,c=1

πic(Θic|Sic;t−1)

f(dt|φt−1,Θ) ≡
c̊∑

c=1

αc(φt−1|Ω)
d̊∏

i=1

fic(dic;t|ψic;t,Θic).

In other words, we are looking for Gt ≡ (Ht,S••;t) knowing Gt−1 ≡ (Ht−1,S••;t−1) and
dt, φt−1. This optimization task is solved in the next chapter.



Chapter 5

General Solution

In this chapter, we will solve the problem formulated in Section 4.3 as generally as
possible. First let us investigate the form of correct update π̂t(Θ) defined in (4.9).

5.1 Form of Correct Update

Proposition 3 (Form of correct update) The correct update π̂t(Θ) defined by (4.9)
for the mixture model (Section 4.1) has the following form:

π̂t(Θ) =
c̊∑

c=1

wc;t ρ
U
c (Ω|HU

c;t−1)
d̊,̊c
∏

i,r=1

r 6=c

πir(Θir|Sir;t−1)
d̊∏

j=1

πUjc(Θjc|SUjc;t), (5.1)

where the following constituents are used:

data weight wc;t ≡ α̂c;t−1βc;t
∑c̊
c=1 α̂c;t−1βc;t

(5.2)

weight estimate α̂c;t−1 ≡
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ (5.3)

component prediction βc;t ≡
d̊∏

i=1

Iic;t (5.4)

factor prediction Iic;t ≡
∫

fic(dic;t|ψic;t,Θic)πic(Θic|Sic;t−1)dΘic (5.5)

cwf update ρUc (Ω|HU
c;t−1) ≡ αc(φt−1|Ω)ρ(Ω|Ht−1)

α̂c;t−1

(5.6)

factor update πUic(Θic|SUic;t) ≡ fic(dic;t|ψic;t,Θic)πic(Θic|Sic;t−1)

Iic;t
(5.7)

Proof:

f(dt|φt−1,Θ)π(Θ|Gt−1) =

=





c̊∑

c=1

αc(φt−1|Ω)
d̊∏

j=1

fjc(djc;t|ψjc;t,Θjc)



×


ρ(Ω|Ht−1)
d̊,̊c
∏

i=1,r=1

πir(Θir|Sir;t−1)



 =

=
c̊∑

c=1







αc(φt−1|Ω)ρ(Ω|Ht−1)
︸ ︷︷ ︸

α̂c;t−1ρU
c (Ω|HU

c;t−1
)

×
d̊∏

j=1

πjc(Θjc|Sjc;t−1)fjc(djc;t|ψjc;t,Θjc)
︸ ︷︷ ︸

Ijc;tπ
U
jc

(Θjc|SU
jc;t

)

d̊,̊c
∏

i,r=1

r 6=c

πir(Θir|Sir;t−1)








37
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=
c̊∑

c=1

α̂c;t−1βc;t ρ
U
c (Ω|HU

c;t−1)
d̊∏

j=1

πUjc(Θjc|SUjc;t)
d̊,̊c
∏

i,r=1

r 6=c

πir(Θir|Sir;t−1)

︸ ︷︷ ︸

This part is pdf, hence it integrates to 1.

It is clear that the normalizing integral
∫

f(dt|φt−1,Θ)π(Θ|Gt−1)dΘ =
c̊∑

c=1
α̂c;t−1βc;t,

hence

π̂(Θ) =
c̊∑

c=1

α̂c;t−1βc;t
∑c̊
c̃=1 α̂c̃;t−1βc̃;t

︸ ︷︷ ︸

≡ wc;t

ρUc (Ω|HU
c;t−1)

d̊∏

j=1

πUjc(Θjc|SUjc;t)
d̊,̊c
∏

i,r=1

r 6=c

πir(Θir|Sir;t−1).

Remarks 2 It is obvious that if w•;t has only one nonzero element, the form of the
correct update (5.1) is the same as the form of old posterior density π(Θ|Gt−1) (4.8).
This means that in this case no approximation is needed and new posterior density
π(Θ|Gt) equals to the correct Bayesian update π̂t(Θ) (5.1).

5.2 General Minimization

Proposition 4 (Minimization of the KL divergence) For Gt ≡ {S••;t, Ht} min-
imizing

D
(

π̂t(Θ)
∣
∣
∣

∣
∣
∣ π(Θ|Gt)

)

, it holds:

Ht ∈ Arg min
Ht

D
(

c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t−1)
∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

(5.8)

Sic;t ∈ Arg min
Sic;t

D
(

(1 − wc;t)πic(Θic|Sic;t−1) + wc;tπ
U
ic(Θic|SUic;t)

∣
∣
∣

∣
∣
∣ πic(Θic|Sic;t)

)

.

Proof:
Instead of working with KL divergence, we will evaluate the Kerridge divergence

K
(

π̂t(Θ)
∣
∣
∣

∣
∣
∣ π(Θ|Gt)

)

. Details about this divergence, its properties and its relation to

the KL divergence are discussed in Section C.1.2.

K






c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t−1)
d̊,̊c
∏

i,r=1

r 6=c

πir(Θir|Sir;t−1)
d̊∏

j=1

πUjc(Θjc|SUjc;t)
∣
∣
∣

∣
∣
∣ π(Θ|Gt)






Proposition 24
︷︸︸︷
=

=
c̊∑

c=1

wc;tK




ρUc (Ω|HU

c;t−1)
d̊,̊c
∏

i,r=1

r 6=c

πir(Θir|Sir;t−1)
d̊∏

j=1

πUjc(Θjc|SUjc;t)
∣
∣
∣

∣
∣
∣ π(Θ|Gt)






Proposition 26
︷︸︸︷
=

=
c̊∑

c=1

wc;t




K

(

ρUc (Ω|HU
c;t−1)

∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

+
d̊,̊c
∑

i,r=1

r 6=c

K
(

πir(Θir|Sir;t−1)
∣
∣
∣

∣
∣
∣ πir(Θir|Sir;t)

)

+

+
d̊∑

j=1

K
(

πUjc(Θjc|SUjc;t)
∣
∣
∣

∣
∣
∣ πjc(Θjc|Sjc;t)

)



 .
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Let us temporarily denote

Kic = K
(

πic(Θic|Sic;t−1)
∣
∣
∣

∣
∣
∣ πic(Θic|Sic;t)

)

KU
jc = K

(

πUjc(Θjc|SUjc;t−1)
∣
∣
∣

∣
∣
∣ πjc(Θjc|Sjc;t)

)

.

The minimized function gets the form

c̊∑

c=1

wc;tK
(

ρUc (Ω|HU
c;t−1)

∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

+
c̊∑

c=1

wc;t

d̊,̊c
∑

i,r=1

r 6=c

Kir +
d̊,̊c
∑

j,c=1

wc;tKU
jc

Proposition 15
︷︸︸︷
=

=
c̊∑

c=1

wc;tK
(

ρUc (Ω|HU
c;t−1)

∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

+
d̊,̊c
∑

i,c=1

[

wc;tKU
ic + (1 − wc;t)Kic

]

.

Now it is clear that minimization of this expression can be done separately.

Ht ∈ Arg min
Ht

[
c̊∑

c=1

wc;tK
(

ρUc (Ω|HU
c;t−1)

∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)
]

Sic;t ∈ Arg min
Sic;t

[

(1 − wc;t)Kic + wc;tKU
ic

]

=

= Arg min
Sic;t

[

(1 − wc;t)K
(

πic(Θic|Sic;t−1)
∣
∣
∣

∣
∣
∣ πic(Θic|Sic;t)

)

+

+ wc;tK
(

πUic(Θic|SUic;t)
∣
∣
∣

∣
∣
∣ πic(Θic|Sic;t)

)]

Now, after applying Propositions 24 and 23, we obtain directly the statement of the
proposition.

5.3 General Algorithm

Proposition 4 splits the overall problem into two subproblems. The first subproblem
is obtaining the statistic Ht determining the posterior pdf of the parameter Ω of

cwfs. The second subproblem is evaluation of statistics {Sic;t}d̊,̊ci,c=1 determining the
posterior pdf on parameters Θic of particular factors. Important result is that the
minimization can be done factor-wise, which simplifies substantially the optimization.
The two mentioned subproblems are connected through evaluation of weights wc;t,
which are needed in both subproblems.

Now we will specify the tasks, which must be done for particular factors and cwfs
types.

For all factors

• evaluate factor predictions Iic;t (5.5)

• evaluate factor updates πUic(Θic|SUic;t) (5.7)

• perform the minimization

.Sic;t ∈ Arg minSic;t

[

D
(

(1 − wc;t)πic(Θic|Sic;t−1) + wc;tπ
U
ic(Θic|SUic;t)

∣
∣
∣

∣
∣
∣ πic(Θic|Sic;t)

)]

For all cwfs
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• evaluate weight estimates α̂c;t−1 (5.3)

• evaluate cwf updates ρUc (Ω|HU
c;t−1) (5.6)

• perform the minimization

Ht ∈ Arg minHt
D
(
∑c̊
c=1wc;tρ

U
c (Ω|HU

c;t−1)
∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

When we are able to perform all the mentioned steps, we can perform one step
of the projection based estimation according to Algorithm 1. Before specifying this
algorithm, let us summarize some rules of writing algorithms bellow.

Agreement 6

• Each algorithm has unique name.

• Each algorithm begins with specification of its name, input and output parame-
ters.

• Algorithm can contain ”calling” of other algorithms, using their name and lists
of parameters. Neither the order of inputs nor outputs parameters is significant.
The meaning should be clear from the variables names.

• In all algorithms, we expect that the state vectors and regression vectors are
known. Hence they will not be specified as inputs of algorithms.

• In all algorithms, we expect that the functional forms of the parameterized model
and posterior pdf are known. Hence they will not be specified as inputs of algo-
rithms.

Algorithm 1 (General update) (Ht, S••;t)= MIXUPDT(Ht−1, S••;t−1)

1. For each factor ic, evaluate the factor prediction

Iic;t =
∫

fic(dic;t|ψic;t,Θic)πic(Θic|Sic;t−1)dΘic

2. For each component c, evaluate the weight estimate α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ

3. For each component c, evaluate the data weight wc;t =
α̂c;t−1

∏
Iic;t∑

c̃
α̂c̃;t−1

∏
Iic̃;t

4. For each factor ic, evaluate the factor update πUic(Θic|SUic;t) = πic(Θic|Sic;t−1)fic(dic;t|ψic;t,Θic)

Iic

5. For each factor ic, evaluate the updated factor statistic

Sic;t ∈ Arg minSic;t

[

D
(

(1 − wc;t)πic(Θic|Sic;t−1) + wc;tπ
U
ic(Θic|SUic;t)

∣
∣
∣

∣
∣
∣ πic(Θic|Sic;t)

)]

6. For each component c, evaluate the cwf update ρUc (Ω|HU
c;t−1) = ρ(Ω|Ht−1)αt(φt−1|Ω)

α̂c;t−1

7. Evaluate the updated cwf statistic Ht ∈ Arg minHt
D
(
∑c̊
c=1wc;tρ

U
c (Ω|HU

c;t−1)
∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)
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It can be simply seen that the order of steps 1 and 2 can be arbitrary. The steps
can be even performed simultaneously. Similarly, the steps 4, 5 can be performed
simultaneously with steps 6, 7.

Evaluating of the data weights wc;t in the way specified in the previous algo-
rithm would cause numerical problems, because Iic;t can be very very small num-
bers. We need to work with logarithms of them. Let us denote Lic;t ≡ ln (Iic;t),
Zc;t−1 ≡ ln (α̂c;t−1). Now we will rewrite Algorithm 1 using the mentioned logarithms.
Simultaneously, we will replace some steps with ”calling” of algorithms, which were
not defined yet. This can be taken as a ”forward declaration of algorithm” and it
specifies the work, which should be done in next chapters.

Algorithm 2 (General update) (Ht, S••;t)= MIXUPDT(Ht−1, S••;t−1)

1. For each factor ic, evaluate Lic;t = FACNORM(Sic;t)

2. Evaluate Z•;t−1 = WEIGHTNORM(Ht−1)

3. Evaluate w•;t = EV AL WEIGHT (L••;t,Z•;t−1)

4. For each factor ic, evaluate the statistic Sic;t = FACUPDT (Sic;t−1, wc)

5. Evaluate Ht = WEIGHTUPDT (Ht−1, w•)

Remarks 3 The steps 4, 5 (6, 7) of Algorithm 1 were replaced with single step 4(5)
in Algorithm 2, because sometimes it is unnecessary to evaluate SU

ic;t explicitly.

Within Algorithm 2, we formalized all tasks, which have to be solved in the next
work. The algorithms FACNORM, WEIGHTNORM, FACUPDT, WEIGHTUPDT
depend, of course, on the functional form of parameterized factors and cwfs. Hence,
for each considered variant of factor, we need variant of algorithms FACNORM and
FACUPDT and for each variant of cwf we need variant of algorithms WEIGHT-
NORM and WEIGHTUPDT. Important variants of factors and cwfs are proposed in
subsequent chapters.

The algorithm EVAL WEIGHT can be simply written at this general level.

Algorithm 3 (Evaluation of data weight) (w•;t)= EVAL WEIGHT(L••;t,Z•;t−1)

1. For each component c evaluate Qc;t = Zc;t−1 +
∑d̊
i=1 Lic;t

2. Q̄•;t ≡ Q•;t − maxQ•;t

3. w•;t =
exp(Q̄•;t)
∑

c̃
exp(Q̄c̃;t)

Proposition 5 (Correctness of algorithm 3) Algorithm 3 is correct.
Proof:

wc;t =
exp (Qc;t − maxQ•;t)

∑

c̃ (exp (Qc̃;t − maxQ•;t))
=

− exp (Qc;t) exp (maxQ•;t)

− exp (maxQ•;t)
∑

c̃ exp (Qc̃;t)
=

=
exp (Qc;t)

∑

c̃ exp (Qc̃;t)
=

α̂c;t−1
∏ Iic;t

∑

c̃ α̂c̃;t−1
∏ Iic̃;t

.





Chapter 6

Optimization of Statistics for
Normal Factors

In this chapter, we will solve the factor-related problems sketched in Section 5.3 for
dynamic normal models with unknown and known variance. The outcome is design
of variants of algorithms FACNORM and FACUPDT, used in Algorithm 2, for each
factor type.

As this chapter deals with only one factor fic(dic;t|ψic;t,Θic) and with corresponding
part of posterior pdf πic(Θic|Sic;t), we can omit the indexes i and c, i.e. fic(dic;t|ψic;t,Θic) →
f(dt|ψt,Θ), πic(Θic|Sic;t) → π(Θ|St).

6.1 Normal Factors with Unknown Variance

In this section, we assume that the parameterized factor is dynamic normal pdf with
parameters Θ ≡ (θ, r), where θ is vector of regression coefficients and r is noise
variance of the factor.

f(dt|ψt,Θ) = Ndt
(θ′ψt, r) =

1√
2πr

exp

(

−(dt − θ′ψt)
2

2r

)

(6.1)

We do not need to introduce a shift in the mean value, because the regression
vector can contain entry equal to 1 (see (4.7)). The shifting constant is then placed
to the corresponding place of the vector of regression coefficients. Details about
Bayesian estimation of normal factors can be found in Appendix D.

Example 8 (Normal factor)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown factor parameter consists of two scalars)

f(dt|ψt,Θ) ≡ Ndt
(θ, r) (normal static factor)

In this case, the factor is one-dimensional pdf, which can be simply plot when its
parameters are known. Figure 6.1 shows this pdf for θ = 2 and r = 2.

6.1.1 Form of the Posterior Pdf

The parameterized factor (6.1) has conjugated prior pdf [10]. Hence it is advantageous
to use this pdf, when specifying the form of the posterior pdf. (See Remarks 1.) The
mentioned conjugate pdf to this model is the Gauss inverse Wishart pdf with statistics

43
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Figure 6.1: Example 8 : Normal factor with known parameters
The figure shows pdf Ndt

(θ, r) for known parameters θ = 2, r = 2.

St ≡ (νt, Vt) [10], where νt is scalar, called number of degrees of freedom and Vt is so
called extended information matrix (square, symmetric, positive definite matrix with

Ψ̊t rows).

π(Θ|St) = GiWθ,r(Vt, νt) ∝ r−0.5(νt+ψ̊t+2) exp
{

− 1

2r
tr (Vt[−1, θ′]′[−1, θ′])

}

Example 9 (GiW factor) The posterior pdf related to the factor specified in Ex-
ample 8 would be:

Θ ≡ (θ, r) (unknown factor parameter consists of two scalars)
St ≡ (νt, Vt) (statistics of the posterior pdf, scalar and 2×2 matrix)

π(Θ|St) = GiWθ,r(Vt, νt) (GiW posterior)

Since the factor parameter θ was scalar in this case, we can plot the pdf GiWθ,r(Vt, νt)
for given statistics. Figure 6.2 displays this pdf for some given statistics.

Figure 6.2: Example 9 : GiW factor with known statistics

The figure shows pdf GiWθ,r(Vt, νt) for known statistics νt = 6 and Vt =

(
16.3333 1.6667
1.6667 0.3333

)

.

The details and important properties of this pdf are summarized in Appendix D.
Note that the matrix Vt can be equivalently manipulated through its L′DL decompo-
sition. i.e. with lower triangular matrix Lt with unit diagonal and positive diagonal
matrix Dt, which fulfills the relation Vt = L′

tDtLt. Next, the matrices Lt and Dt
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can be equivalently expressed via positive definite matrix Ct, vector θ̂t and scalar
bdDt. This representation determines well-known least squares (LS) statistics. (θ̂t ≡
LS estimate of θ, bdDt ≡ LS remainder,

bdDt

νt−2
Ct ≡ covariance of LS estimates). The

relations between individual representations of V can be found in Section C.5.2.

Agreement 7 Since all three representations described above are equivalent, we will
not formally distinguish them. If Vt is a statistic of GiW factor, the variables
Lt, Dt, θ̂t, Ct,

bdDt automatically mean the parts of corresponding representation of
the matrix Vt.

Example 10 (Different representations of matrix V )

The matrix Vt =

(

16.3333 1.6667
1.6667 0.3333

)

from Example 9 has following alternative rep-

resentations:
bdDt = 8, θ̂t = 5, Ct = 3

or

Lt =

(

1 0
5 1

)

, Dt =

(

8 0
0 1

3

)

.

6.1.2 Factor Prediction

The factor prediction It (5.5) is defined as

It =
∫

f(dt|ψt,Θ)π(Θ|St−1)dΘ =
∫

Ndt
(θ′ψt, r)GiWθ,r(Vt−1, νt−1)dθdr.

According to Proposition 38, for normal factors and conjugate prior, It is evaluated
as:

It =
Γ(0.5(νt−1 + 1))

[
bdDt−1(1 + ζt)

]−0.5

√
πΓ(0.5νt−1)

(

1 +
ê2t

bdDt−1(1+ζt)

)0.5(νt−1+1)
, where (6.2)

êt ≡ dt − θ̂′t−1ψt ≡ prediction error

ζt ≡ ψ′
tCt−1ψt

Remarks 4 We need to evaluate Lt = ln It. It can be done efficiently using the
product form of (6.2). The following algorithm summarizes this task.

Algorithm 4 (Factor prediction) (Lt)= FACNORM(Ct−1, θ̂t−1,
bdDt−1, νt−1)

1. Evaluate ζt = ψ′
tCt−1ψt

2. Evaluate êt ≡ dt − θ̂′t−1ψt

3. Evaluate

Lt = ln It = ln (Γ (0.5(νt−1 + 1))) − ln (Γ (0.5νt−1)) − 0.5 ln
(
bdDt−1

)

−

−0.5 ln (1 + ζt) − 0.5(νt−1 + 1) ln

(

1 +
ê2
t

bdDt−1(1 + ζt)

)

− 0.5 ln (π)
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Remarks 5 Function ln (Γ(x)) can be efficiently evaluated without computing Γ(x)
first [41].

Example 11 (Factor prediction)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown factor parameter consists of two scalars)

f(dt|ψt,Θ) ≡ Ndt
(θ, r) (normal static factor)

π(Θ|St−1) = GiWθ,r(Vt−1, νt−1) (GiW posterior)

Figure 6.3 displays It taken as a function of dt for given values of statistics Vt−1

and νt−1.

Figure 6.3: Example 11 : Factor prediction as a function of dt

The figure shows It taken as a function od dt for νt−1 = 6 and Vt−1 =

(
16.3333 1.6667
1.6667 0.3333

)

.

6.1.3 Factor Update

According to Proposition 35, SUt ≡ [V U
t , ν

U
t ] can be evaluated in the following way:

V U
t = Vt−1 + ΨtΨ

′
t (6.3)

νUt = νt−1 + 1.

Using Proposition 33, the relation (6.3) can be rewritten into the C, θ̂, bdD represen-
tation in the following way :

CU
t = Ct−1 + hcztz

′
t, θ̂Ut = θ̂t−1 + hθzt,

bdDU
t = bdDt−1 +

ê2
t

1 + ζt

zt ≡ Ct−1ψt, hc ≡ − 1

1 + ζt
, hθ ≡

êt

1 + ζt

Example 12 (Factor update)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown parameter)

f(dt|ψt,Θ) ≡ Ndt
(θ, r) (normal static factor)

π(Θ|St−1) ≡ GiWθ,r(Vt−1, νt−1) (GiW posterior pdf)
πU(Θ|SUt ) = GiWθ,r(V

U
t , ν

U
t ) (updated GiW posterior pdf)

The table 6.1 shows statistics of the involved pdfs and some other mentioned aux-
iliary values for two cases.
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a) b)

Vt−1 ≡
(

1.16 0.12
0.12 0.83

)

Vt−1 ≡
(

1.96 −1.47
−1.47 6.07

)

νt−1 ≡ 102.82 νt−1 ≡ 108.06
dt ≡ −0.59 dt ≡ −0.79

θ̂t−1 = 0.14 θ̂t−1 = −0.24
Ct−1 = 1.20 Ct−1 = 0.16

bdDt−1 = 1.14 bdDt−1 = 1.60

V U
t =

(
1.50 0.12
0.12 1.83

)

V U
t =

(
2.58 −2.26
−0.47 7.07

)

νU
t = 103.82 νU

t = 109.06
ζt = 1.20 ζt = 0.16
êt = −0.730 êt = −0.54
zt = −0.73 zt = 0.16
hC = −0.45 hC = −0.86
hθ = −0.33 hθ = −0.47

θ̂U
t = −0.25 θ̂U

t = −0.32
CU

t = 0.54 CU
t = 0.14

bdD
U

t = 1.38 bdD
U

t = 1.86

Table 6.1: Example 12 : Statistics of updated posterior densities
The table shows statistics of posterior pdf and updated posterior pdf for two cases. It also shows
some auxiliary values needed for evaluating the statistics of updated pdf. In subsequent examples,
another computations with the statistics and auxiliary variables will be performed.

6.1.4 Optimization of Statistics

We will use Proposition 1. First we have to check if our case fulfills its assumptions.
The pdf f from Proposition 1 has the form

f(θ, r) = (1 − w)GiWθ,r(Ct−1, θ̂t−1,
bdDt−1, νt−1) + wGiWθ,r(C

U
t , θ̂

U
t ,

bdD
U

t , ν
U
t ).

Using basic properties of GiW pdf (Proposition 31) we get:

p ≡
∫ 1

r
f(θ, r)dθdr = (1 − w)

νt−1

bdDt−1
︸ ︷︷ ︸

≡p0

+w
νUt

bdD
U
t

︸ ︷︷ ︸

≡pu

(6.4)

s ≡
∫

ln (r) f(θ, r)dθdr = (1 − w) ln
(

0.5 bdDt−1

)

+ w ln
(

0.5 bdD
U

t

)

−

− (1 − w)ψ0 (0.5νt−1) − wψ0

(

0.5νUt
)

.

It is clear that both scalars p, s are finite for bdDt > 0, νt > 0. Now let us evaluate
the form of pdf h(θ, r) from Proposition 1. Again, using Proposition 31, we simply
get:

h(θ, r) =
p0

p
GiWθ,r(Ct−1, θ̂t−1,

bdDt−1, νt−1 + 2) +
pu

p
GiWθ,r(C

U
t , θ̂

U
t ,

bdD
U

t , ν
U
t + 2).

The use of Proposition 22 gives:

cov [θ]h =
p0

p

bdDt−1

νt−1

Ct−1 +
pu

p

bdD
U

t

νUt
CU
t +

p0pu

p2
(θ̂t−1 − θ̂Ut )(θ̂t−1 − θ̂Ut )′.

Matrices Ct−1 and CU
t were positive definite, hence cov [θ]h is also positive definite.
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The assumptions of Proposition 1 are hence fulfilled, and we can obtain the opti-
mization result using the definition of p (6.4).

Ct = p cov [θ]h = (1 − w)Ct−1 + w(Ct−1 + hCztz
′
t) +

+
p0pu

p
(θ̂t−1 − θ̂t−1 − hθzt)(θ̂t−1 − θ̂t−1 − hθzt)

′ =

= Ct−1 +

[

whc +
p0pu

p
h2
θ

]

ztz
′
t

θ̂t = E [θ]h =
p0

p
θ̂t−1 +

pu

p
(θ̂t−1 + hθzt) = θ̂t−1 +

[

pu

p
hθ

]

zt

νt = solution of ln (0.5νt) − ψ0 (0.5νt) = ln (p) + s

bdDt =
νt

p

Straightforward application of previous considerations yields the following algorithm.

Algorithm 5 (Optimization of statistics)

(Ct, θ̂t,
bdDt, νt)= FACUPDT(w,Ct−1, νt−1, θ̂t−1,

bdDt−1)

1. êt = dt − θ̂′t−1ψt, ζt = ψ′
tCt−1ψt

2. νUt = νt−1 + 1, bdD
U

t = bdDt−1 +
ê2t

1+ζt

3. p0 = (1 − w) νt−1

bdDt−1
, pu = w

νU
t

bdD
U
t

, p = p0 + pu

4. hθ = êt

1+ζt
, hC = − 1

1+ζt

5. Υ = (1−w)
[

ψ0 (0.5νt−1) − ln
(
bdDt−1

)]

+w
[

ψ0

(

0.5νUt
)

− ln
(
bdDU

t

)]

− ln (0.5p)

6. zt = Ct−1ψt

7. νt = GETNU(Υ) (Algorithm 19, page 94)

8. bdDt = νt

p

9. θ̂t = θ̂t−1 +
[
pu

p
hθ
]

zt

10. Ct = Ct−1 +
[

whc + p0pu

p
h2
θ

]

ztz
′
t

Example 13 (Optimization of statistics)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown parameter)

f(dt|ψt,Θ) ≡ Ndt
(θ, r) (normal static factor)

π(Θ|St−1) ≡ GiWθ,r(Vt−1, νt−1) (GiW posterior)
πU(Θ|SUt ) ≡ GiWθ,r(V

U
t , ν

U
t ) (factor update)

f(θ, r) ≡ (1 − w)GiWθ,r(Vt−1, νt−1) + wGiWθ,r(V
U
t , ν

U
t ) (Bayesian update)
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Statistic St ≡ (Vt, νt) ≡ (Ct, θ̂t,
bdDt, νt) were evaluated using projection based

algorithm for the same two cases as Example 12. Table 6.2 shows statistics of the
involved pdfs and some other mentioned auxiliary values for both cases. Figure 6.4
plots marginal pdfs of some involved pdfs.

a) b)

Vt−1 ≡
(

1.16 0.12
0.12 0.83

)

Vt−1 ≡
(

1.96 −1.47
−1.47 6.07

)

νt−1 ≡ 102.82 νt−1 ≡ 108.06
dt ≡ −0.59 dt ≡ −0.79
w ≡ 0.43 w ≡ 0.39
p0 = 51.29 p0 = 41.09
pu = 32.18 pu = 22.85
p = 83.47 p = 63.94
Υ = −0.0138 Υ = −0.0115
νt = 72.57 νt = 86.93

θ̂t = −0.01 θ̂ = −0.27
Ct = 4.10 Ct = 0.24

bdDt = 0.87 bdDt = 1.36

Table 6.2: Example 13 : Statistics optimized using PB algorithm

case a)

case b)

.
Figure 6.4: Example 13 : Marginal pdfs resulting from PB algorithm

The left part shows marginal pdfs of original factor posterior π(θ|St−1) (dashdot), its update
πU (θ|SU

t )(dotted) and the correct Bayesian update f(θ) (thick), i.e. the mixture of the two men-
tioned factors. The right part shows how the result of PB algorithm (solid) approximates the correct
Bayesian update f(θ) (thick). In the case a), the approximation doesn’t look very nice, but it at
least covers the correct range. In the second case, the approximation looks nice enough.
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6.1.5 Quasi-Bayes as Approximation

According to Propositions 23 and 24, the minimization

(Vt, νt) ∈ Arg min
(Vt,νt)

D
(

(1 − w)GiWθ,r(Vt−1, νt−1) + wGiWθ,r(V
U
t , ν

U
t )

∣
∣
∣

∣
∣
∣ GiWθ,r(Vt, νt)

)

is equivalent to minimization

(Vt, νt) ∈ Arg min
(Vt,νt)

(1 − w)D
(

GiWθ,r(Vt−1, νt−1)
∣
∣
∣

∣
∣
∣ GiWθ,r(Vt, νt)

)

+

+wD
(

GiWθ,r(V
U
t , ν

U
t )

∣
∣
∣

∣
∣
∣ GiWθ,r(Vt, νt)

)

.

If we approximate

D
(

GiWθ,r(Vt−1, νt−1)
∣
∣
∣

∣
∣
∣ GiWθ,r(Vt, νt)

)

→ ||Vt−1 − Vt||2 + ||νt−1 − νt||2

and

D
(

GiWθ,r(V
U
t , ν

U
t )

∣
∣
∣

∣
∣
∣ GiWθ,r(Vt, νt)

)

→ ||V U
t − Vt||2 + ||νUt − νt||2,

we can quickly achieve the result

Vt = Vt−1 + wΨtΨ
′
t, νt = νt−1 + w,

which is exactly the same as the quasi-Bayes algorithm (Section A.1).

Example 14 (QB update) Table 6.3 shows numerical results of the QB algorithm
on the same cases as Example 13. Figure 6.5 shows how the result of QB estimation
differs from the correct Bayesian update.

a) b)
νt = 103.25 νt = 108.45

θ̂t = 0.14 θ̂ = −0.24
Ct = 1.20 Ct = 0.16

bdDt = 1.14 bdDt = 1.60

Table 6.3: Example 14 : Statistics of pdfs updated with QB algorithm

The presented approximation is not important in the sense of a speed increase.
It has almost the same computational complexity as PB algorithm. Just Step 7
of PB algorithm (Algorithm 5) is replaced with simple assignment νt = νt−1 + wt.
This doesn’t bring substantial speed increase, because the one-dimensional nonlinear
equation in Step 7 is solved very fast using Newton method and a good starting point.

It is important, because it explains the well -known heuristic quasi-Bayes algorithm
as an approximation of the general PB approach.

6.2 Normal Factors with Known Variance

In this section, we assume the parameterized factor to be dynamic normal pdf with
a known variance. This factor variant is important, because in some applications
of mixture estimation, we have to assume the knowledge of factor variance [10]. As
the evaluation of all problems related to normal factors with known variance are
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case a) case b)

Figure 6.5: Example 14 : Marginal pdf of QB update
Figure shows how the QB update (solid) approximates the correct Bayesian update f(θ)
(thick). We can compare the result of QB algorithm with the result of PB algorithm displayed
on Figure 6.4. In case a, both approximation are inaccurate, but the PB algorithm at least
covers the correct range. In case b, both approximation gives acceptable results, but it can
be seen that the result of PB algorithms looks better.

simplified cases of those with unknown variance, we will concentrate on showing the
results not on their derivation.

In this case, Θ ≡ (θ), and the form of the factor is the same as in previous case.
The variance r is expected to be known and it is not specified as input to algorithms.

f(d|ψ,Θ) = Nd(θ
′ψ, r) =

1√
2πr

exp

(

−(dt − θ′ψt)
2

2r

)

(6.5)

6.2.1 Form of the Posterior Pdf

The conjugated pdf to factor (6.5) is the Gaussian pdf with statistics St ≡ (Mt, Rt),
where Mt is mean and Rt is covariance matrix. Hence we will use it in the class of
considered mixture posterior pdfs.

π(Θ|St) ≡ Nθ (Mt, Rt) ∝ exp
{

−1

2
(θ −Mt)

′R−1
t (θ −Mt)

}

6.2.2 Factor Prediction

The factor prediction It for normal factor with known variance and conjugate prior
is evaluated as follows:

It =
exp

(

− ê2t
2r(1+ζt)

)

√

2πr(1 + ζt)
, where (6.6)

ζt ≡ ψ′
tRt−1ψt

êt ≡ dt −M ′
t−1ψt

Algorithm 6 (Factor prediction) (Lt)= FACNORM(Mt−1, Rt−1)

1. Evaluate ζt = ψ′
tRt−1ψt
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2. Evaluate êt = dt −M ′
t−1ψt

3. Evaluate

Lt ≡ ln (It) = − ê2
t

2r(1 + ζt)
− 0.5 ln (2πr) − 0.5 ln (1 + ζt)

6.2.3 Factor Update

SUt ≡ [RU
t ,M

U
t ] can be evaluated in the following way:

RU
t = Rt−1 + hRztz

′
t, MU

t = Mt−1 + hMzt

hR ≡ − 1

r + ζ
, hM ≡ êt

r + ζt

6.2.4 Optimization of Statistics

We will use Proposition 2. First we have to check if our case fulfills its assumptions.
The pdf f from the proposition has the form

f(θ, r) ≡ (1 − w)Nθ (Mt−1, Rt−1) + wNθ

(

MU
t , R

U
t

)

.

Now we can use Proposition 22, which yields:

cov [θ]f = (1 − w)Rt−1 + wRU
t + w(1 − w)(Mt−1 −MU

t−1)(Mt−1 −MU
t−1)

′.

Matrices Rt−1 and RU
t were positive definite, hence cov [θ]f is also positive definite.

The assumptions of Proposition 2 are hence fulfilled, and we can obtain the result.

Rt = cov [θ]h = (1 − w)Rt−1 + w(Rt−1 + hRztz
′
t) +

+w(1 − w)(Mt−1 −Mt−1 − hMzt)(Mt−1 −Mt−1 − hθzt)
′ =

= Rt−1 +
[

whR + w(1 − w)h2
M

]

ztz
′
t

Mt = E [θ]h = (1 − w)Mt−1 + w(Mt−1 + hMzt) = Mt−1 + [whM ] zt

Straightforward application of previous results gives the following algorithm.

Algorithm 7 (Optimization of statistics) (Rt,Mt) = FACUPDT(w,Rt−1,Mt−1)

1. êt = dt −M ′
t−1ψt, ζt = ψ′

tRt−1ψt

2. hR = − 1
r+ζ

, hM = êt

r+ζt

3. zt = Rt−1ψt

4. Mt = Mt−1 + [whM ] zt

5. Rt = Rt−1 + [whR + w(1 − w)h2
M ] ztz

′
t



Chapter 7

Optimization of Statistics of
Component Weighting Functions

This chapter deals with general steps from Chapter 5 for some specific types of cwfs.
Specially, we need to perform following tasks:

to evaluate weight estimates α̂c;t−1 (5.3) (page 37),

to evaluate cwf updates ρUc (Ω|HU
c;t−1) (5.6),

to perform minimization

Ht ∈ Arg minHt
D
(
∑c̊
c=1wc;tρ

U
c (Ω|HU

c;t−1)
∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

(5.8).

In other words, we need to design the algorithms proposed in Section 5.3:

(Z•;t−1)= WEIGHTNORM(Ht−1),

(Ht)= WEIGHTUPDT(Ht−1, w•).

The algorithm second algorithm solves the second and third tasks listed above.

7.1 Constant Component Weights

In this section, we examine the simplest case of cwf:

αc(φt−1|Ω) ≡ αc(φt−1|α) ≡ αc, ∀c, (7.1)

where Ω ≡ α is a vector of c̊ nonnegative entries fulfilling the condition
∑c̊
c=1 αc = 1.

7.1.1 Form of Posterior Pdf

It is reasonable to choose the posterior pdf of α as Dirichlet distribution (Section
C.2).

ρ(Ω|Ht−1) ≡ ρ(α|κt−1) ≡ Diα(κt−1), (7.2)

where Ht−1 ≡ κt−1 is a vector with c̊ positive entries.

53
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7.1.2 Weight Estimate

It holds that

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ

(7.1),(7.2)
︷︸︸︷≡

∫

αcDiα(κt−1)dα
(C.2.3)
︷︸︸︷
=

κc;t−1
∑c̊
c̃=1 κc̃;t−1

.

Thus, we can simply formulate the algorithm WEIGHTNORM evaluating loga-
rithm of α̂•;t−1.

Algorithm 8 (Weight estimate) (Z•;t−1)= WEIGHTNORM(κt−1)

1. Evaluate temporary variable Q = ln
(
∑c̊
c=1 κc;t−1

)

2. For each component c evaluate Zc;t−1 = ln (κc;t−1) −Q.

7.1.3 Cwf Update

ρUc (Ω|HU
c;t−1) =

αc(φt−1|Ω)ρ(Ω|Ht−1)

α̂c;t−1

(7.1),(7.2)
︷︸︸︷≡ αcDiα(κt−1)

α̂c;t−1

(C.10)
︷︸︸︷
= Diα(κt−1 + δ•c)

(7.3)

7.1.4 Optimization of Cwf Statistics

We have to perform the following optimization task (5.8):

Ht ∈ Arg min
Ht

D
(

c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t−1)
∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)

)

.

Applied to our task, it reads (using (7.3)):

κt ∈ Arg min
κt

D
(

c̊∑

c=1

wc;tDiα(κt−1 + δ•c)
∣
∣
∣

∣
∣
∣ Diα(κt)

)

. (7.4)

The following proposition converts this task to minimization of an algebraic ex-
pression.

Proposition 6 (Minimization with respect to κt)
For κt minimizing

D
(

c̊∑

c=1

wc;tDiα(κt−1 + δ•c)
∣
∣
∣

∣
∣
∣ Diα(κt)

)

it holds that

κ•;t ∈ Arg min

{
c̊∑

c=1

[

ln (Γ (κc;t)) − κc;tξc;t
]

− ln

(

Γ

(
c̊∑

c=1

κc;t

))}

,

where

ξc;t =

(

ψ0 (κc;t−1) +
wc,t

κc;t−1

− ψ0

(
c̊∑

c=1

κc;t−1 + 1

))

,

Γ(x) is gamma function and ψ0 (x) is digamma function (see Appendix B.3).
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Proof: According to Propositions 23 and 24, we can minimize

c̊∑

c=1

wc;tD
(

Diα(κt−1 + δ•c)
∣
∣
∣

∣
∣
∣ Diα(κt)

)

.

Proposition 27, which evaluates KL divergence of two Dirichlet pdfs, yields the follow-
ing expression to be minimized:

c̊∑

c=1

wc;tZ(κt−1, κt, c), where

Z(κt−1, κt, c) =
c̊∑

j=1

[ln (Γ (κj;t)) − κj;tψ0 (κj;t−1 + δcj)] −

−


ln

(

Γ

(
c̊∑

k=1

κk;t

))

−
c̊∑

j=1

κj;tψ0

(
c̊∑

k=1

κk;t−1 + 1

)

 .

Since ψ0 (κj;t−1 + δcj) = ψ0 (κj;t−1) + δcj

κj;t−1
( Proposition 16) and

∑c̊
j=1 δcj

κj;t

κj;t−1
= κc;t

κc;t−1
:

Z(κt−1, κt, c) =
c̊∑

j=1

[

ln (Γ (κj;t)) − κj;tψ0 (κj;t−1) − κj;tψ0

(
c̊∑

k=1

κk;t−1 + 1

)]

−

− ln

(

Γ

(
c̊∑

k=1

κk;t

))

− κc;t

κc;t−1

.

As the only term depending on c is κc;t

κc;t−1
and

∑c̊
c=1wc;t = 1:

c̊∑

c=1

wc;tZc;t =
c̊∑

j=1

[

ln (Γ (κj;t)) − κj;tψ0 (κj;t−1) − κj;tψ0

(
c̊∑

k=1

κk;t−1 + 1

)]

−

− ln

(

Γ

(
c̊∑

k=1

κk;t

))

−
c̊∑

c=1

wc;tκc;t

κc;t−1

=

=
c̊∑

j=1










ln (Γ (κj;t)) − κj;t

(

ψ0 (κj;t−1) +
wj,t

κj;t−1

− ψ0

(
c̊∑

c=1

κc;t−1 + 1

))

︸ ︷︷ ︸

ξj;t










−

− ln

(

Γ

(
c̊∑

c=1

κc;t

))

Proposition 6 yields the following algorithm.

Algorithm 9 (Optimization of cwf statistics) (κ•;t)= WEIGHTUPDT(w•;t, κ•;t−1)

1. For each component c evaluate ξc;t = ψ0 (κc;t−1) + wc,t

κc;t−1
− ψ0

(
∑c̊
c=1 κc;t−1 + 1

)

2. κ•;t ∈ Arg min
{
∑c̊
j=1

[

ln (Γ (κj;t)) − κj;tξj;t
]

− ln
(

Γ
(
∑c̊
c κc;t

))}
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Remarks 6
The minimization problem in step 2 can be solved numerically or by suitable ap-

proximation.(See the next paragraph) For a detailed solution of this problem, see [42].

7.1.5 Quasi-Bayes as Approximation

Minimization (7.4) can be simply approximated. According to Propositions 23 and
24, the minimization

κt ∈ Arg min
κt

D
(

c̊∑

c=1

wc;tDiα(κt−1 + δ•c)
∣
∣
∣

∣
∣
∣ Diα(κt)

)

reduces to the minimization

κt ∈ Arg min
κt

c̊∑

c=1

wc;tD
(

Diα(κt−1 + δ•c)
∣
∣
∣

∣
∣
∣ Diα(κt)

)

.

By approximating D
(

Diα(κt−1 + δ•c)
∣
∣
∣

∣
∣
∣ Diα(κt)

)

with square of the Euclidean

norm ||κt−1 + δ•c − κt||2, the problem is transformed into minimization of

c̊∑

c=1

wc;t||κt−1 + δ•c − κt||2.

It can be simply shown that the previous expression is minimized by κt = κt−1+wt,
which is identical to the solution obtained using the quasi-Bayes algorithm (Appendix
A).

The approximation replaced the problem of finding minimizer of a convex function
with c̊ variables with a simple assignment. It was shown [42] that results obtained us-
ing the approximation are in fact almost the same as results using numerical solution.
Hence, in the resulting PB algorithm, this approximation is used. Although there
exist a good approximation of the starting point for iterative numerical algorithm,
which guarantees relatively quick solution of this task [42], it pays back to use the
mentioned approximation.

7.2 Dynamic Weights

We will try to derive algorithms for updating the statistics Ht as general as possi-
ble. Hence we will not specify the precise form of component weighting functions in
following evaluations, but we will make some assumption about the parameter Ω.

Since some variables and statistics introduced in the following text have the same
names as the variables and statistics related to factors and their posteriors, the vari-
ables and statistics related to cwfs are prefixed by the sign bα, e.g. bαθ̂.

7.2.1 Form of Posterior Pdf

Let us assume that Ω consists of n conditionally independent parts Ω ≡ (Ω1, · · · ,Ωn).
The posterior pdf on Ω is then equal to

ρ(Ω|Ht) =
n∏

k=1

ρk(Ωk|Hk;t), Ht ≡ (H1;t, · · · ,Hn;t). (7.5)

The particular pdfs ρk(Ωk|Hk;t) will be assumed to be either GiW or Gaussian pdfs.
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GiW

In the case, when the parameter Ωk consists of a pair (vector,scalar), Ωk ≡ ( bαθk,
bαrk),

we can consider the posterior pdf on ( bαθk,
bαrk) to be GiW pdf given by the statistics

( bαVk;t
bανk;t).

ρk(Ωk|Hk;t) ≡ GiW bαθk,
bαrk

( bαVk;t,
bανk;t), Hk;t ≡ ( bαVk;t

bανk;t)

Gaussian

In the case, when the parameter Ωk is a vector (Ωk ≡ bαθk), we can consider the
posterior pdf on bαθk to be Gaussian pdf given by the statistics (Mk;t, Rk;t).

ρk(Ωk|Hk;t) ≡ N bαθk
(Mk;t, Rk;t) , Hk;t ≡ (Mk;t, Rk;t)

For formal purposes, let us define two sets: GA ⊂ {1, · · · , n}, GI ⊂ {1, · · · , n}, GA
contains all indexes for which ρk(Ωk|Hk;t) is Gaussian pdf, GI is complement of GA,
GI = {1, · · · , n} −GA , i.e. indexes in GI pointing to GiW pdfs.

7.2.2 Weight Estimate

The weight estimate α̂c;t−1 is defined as follows:

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ.

It can not be simplified at this general level, we can just recall that we are looking
for an algorithm:

ln (α̂•;t−1) ≡ Z•,t−1 = WEIGHTNORM(Ht−1).

7.2.3 Cwf Update

We have to evaluate the expression

ρUc (Ω|HU
c;t−1) ∝ αc(φt−1|Ω)ρ(Ω|Ht−1),

but at this general level, we cannot proceed similarly as in previous section. This
form will be used in the next computations.

7.2.4 Optimization of Cwf Statistics

We have to minimize:

Ht ∈ Arg min
Ht

D










c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t−1)

︸ ︷︷ ︸

≡h(Ω)

∣
∣
∣

∣
∣
∣ ρ(Ω|Ht)










. (7.6)

According to Propositions 25 and 23, for the selected form of posterior pdf (7.5),
the previous problem reduces to subproblems:

Hk;t ∈ Arg minD
(

h(Ωk)
∣
∣
∣

∣
∣
∣ ρk(Ωk|Hk;t)

)

, ∀k ∈ n̂,
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where h(Ωk) are corresponding marginal pdfs of h(Ω) in (7.6).
For our case, it means that we need to solve subproblems of type

Arg min
Mk;t,Rk;t

D
(

h( bαθk)
∣
∣
∣

∣
∣
∣ N bαθk

(Mk;t, Rk;t)
)

∀k ∈ GA and (7.7)

Arg min
bαVk;t,

bανk;t

D
(

h( bαθk,
bαrk)

∣
∣
∣

∣
∣
∣ GiW bαθk,

bαrk
( bαVk;t,

bανk;t)
)

∀k ∈ GI. (7.8)

According to Proposition 2 (assuming its assumptions hold), the subproblems (7.7)
have solution:

Mk;t = E
[
bαθk

]

h
=
∫

bαθkh(Ωk)d
bαθk =

∫

bαθkh(Ω)dΩ,

Rk;t = cov
[
bαθk

]

h
=
∫

bαθk
bαθ′kh(Ωk)d

bαθk −Mk;tM
′
k;t.

Solution of the subproblems (7.8) is more complicated. The resulting expression

are in C, θ̂, bdD representation again. According to Proposition 1 (assuming its as-
sumptions hold):

bαθ̂k;t = E
[
bαθk

]

gk

=
1

pk

∫ bαθk
bαrk

h(Ωk)dΩk

bαCk;t = cov
[
bαθk

]

gk

= pk

(
∫ bαθk

bαθ′k
pk bαrk

h(Ωk)dΩk − θ̂k;tθ̂
′
k;t

)

bανk;t solves ln
(

0.5 bανk;t
)

− ψ0

(

0.5 bανk;t
)

= ln (pk) + sk

bαdDk;t =
bανk;t

pk
, where

pk ≡
∫ 1

bαrk
h(Ωk)dΩk

sk ≡
∫

ln
(
bαrk

)

h(Ωk)dΩk

gk(
bαθk,

bαrk) ≡ h( bαθk,
bαrk)

pk bαrk

Remarks 7

• The assumption of Proposition 1 must be checked during the use of this algorithm.
Nevertheless, they will almost sure never be violated.

• These results are very important, because they converted the problem of mini-
mization and divergence evaluation into the evaluation of moments ”only”. Un-
fortunately, these moments can be rarely evaluated analytically.

7.2.5 Approximation

Our ability to obtain feasible algorithms depends on the ability to evaluate the integral
(5.3)

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ

and integrals of type
∫

K(Ωk)h(Ω)dΩ, where
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h(Ω) =
c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t) = ρ(Ω|Ht−1)
c̊∑

c=1

wc;t

α̂c;t
αt(φt−1|Ω).

We need to evaluate the mentioned integrals for the following forms of function
K:

K(Ωk) ≡ bαθk
bαrk

, K(Ωk) ≡
bαθk

bαθ′
k

bαrk
, K(Ωk) ≡ bαθk,

K(Ωk) ≡ bαθk
bαθ′k, K(Ωk) ≡ 1

bαrk
, K(Ωk) ≡ ln

(
bαrk

)

.

The simplest and universal approximation of all the mentioned integrals is Monte
Carlo integration. Hence it was used on the examined cases. In future research,
other approximations of the integral have to be used.

Let us generate N samples from ρ(Ω|Ht−1) and denote them (Ω1, · · ·ΩN). Then,
the mentioned integrals can be approximated as follows:

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ ≈ 1

N

N∑

l=1

αc(φc;t−1|Ωl)

∫

K(Ω)h(Ω)dΩ ≈ 1

N

N∑

l=1

K(Ωl)
c̊∑

c=1

wc;t

α̂c;t
αc(φc;t−1|Ωl)

︸ ︷︷ ︸

≡N×υl

≡
N∑

l=1

υlK(Ωl). (7.9)

The vector υ of length N defined above will be called MC weights.
To apply this approximation, we need to be able to take efficiently samples from

ρ(Ω|Ht−1) and to evaluate αc(φt−1|Ω) for given φt−1 and Ω. For detailed description
of Monte-Carlo methods see e.g [43].

Sample Generation

Thanks to the selected form of pdf

ρ(Ω|Ht−1) =
n∏

k=1

ρk(Ωk|Hk;t−1), Ht−1 ≡ (H1;t−1, · · · ,Hn;t−1),

the sample Ωl ≡ (Ωl
1, · · · ,Ωl

n) consists of samples Ωl
k from ρk(Ωk|Hk;t−1), ∀k ∈

{1, · · · , n}. As we consider two possible types of densities ρk(Ωk|Hk;t−1), the gen-
eration of samples Ωl

k is performing either for Gaussian pdf (Ωl
k ≡ bαθlk) or for GiW

pdf Ωl
k ≡ ( bαθlk,

bαrlk). The following algorithm summarizes the sample generation.

Algorithm 10 (Sampling from posterior pdf) (Ω1, · · ·ΩN)= SAMPLE(Ht−1, N)

FOR l = 1 : N

FOR k = 1 : n

if k ∈ GA

(Ωl
k ≡ ( bαθlk))= GAUSSGEN(Mk;t−1, Rk;t−1) (Algorithm 23, page 102)

if k ∈ GI

(Ωl
k ≡ ( bαθlk,

bαrlk))= GIWGEN( bαCk;t−1,
bαθ̂k;t−1,

bαdDk;t−1,
bανk;t−1) (Algo-

rithm 22, page 101)

END FOR

END FOR
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Weight-evaluating

We expect that for each type of cwf there exist an algorithm (Q•)= EVAL CWFS(Ωl),
evaluating

Qc = αc(φc;t−1|Ωl).

This algorithm is in-fact the only connection to the form of cwfs. This means, that
we can simply use the presented approach with various types of cwfs specifying only
corresponding variant of algorithm EVAL CWFS for each cwf type.

Weight Estimate

Using the algorithms defined above, it is easy to create an algorithm for approximate
evaluation of α̂•;t−1

Algorithm 11 (Weight estimate) (Z•;t−1)= WEIGHT NORM(Ht−1)

1. Choose N

2. α̂•;t−1 = 0

3. (Ω1, · · ·ΩN)= SAMPLE(Ht−1,N) (Algorithm 10)

4. FOR l=1:N

5. (Q•)= EVAL CWFS(Ωl)

6. α̂•;t−1 = α̂•;t−1 + 1
N
Q•

7. END FOR

8. Z•;t−1 = ln (α̂•;t−1)

Pre-computation

For simplifying the algorithms, let us design a special algorithm for computing the
MC weights υl (defined in (7.9)).

Algorithm 12 (MC weights) (υ)= MC WEIGHTS(Ω1, · · · ,ΩN , w•;t, α̂•;t−1)

1. FOR l = 1 : N

2. (Q•)= EVAL CFWS(Ωl) (Algorithm 3)

3. υl =
∑c̊
c=1

wcQc

α̂c;t−1

4. END FOR

Optimization of Cwf Statistics

We are now also able to design an algorithm WEIGHTUPDT for approximate update
of cwf statistics. Before specifying the algorithm, let us recall the structure of Ω and
Ht.

∀l ∈ {1, · · · , N} Ωl ≡ (Ωl
1, · · ·Ωl

n) Ht ≡ (H1;t, · · · ,Hn;t)
∀l ∈ {1, · · · , N}, ∀k ∈ GA : Ωl

k ≡ bαθlk, Hk;t−1 ≡ (Mk;t−1, Rk;t−1)

∀l ∈ {1, · · · , N}, ∀k ∈ GI : Ωl
k ≡ ( bαθlk,

bαrlk), Hk;t−1 ≡ ( bαCk;t−1,
bαθ̂k;t−1,

bαdDk;t−1,
bανk;t−1)

The main algorithm for optimization of cwf statistics reads:
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Algorithm 13 (Optimization of cwf statistics) Ht=WEIGHTUPD(Ht−1,wt)

1. (Ω1, · · ·ΩN)= SAMPLE(Ht−1, N) (Algorithm 10, page 59 )

2. (α̂•;t−1)= WEIGHT NORM(Ht−1) (Algorithm 8, page 54)

3. (υ•)= MC WEIGHTS(Ω1, · · ·ΩN , w•;t, α̂•;t−1) (Algorithm 12, page 60)

4. FOR k ∈ GA:
(Mk;t, Rk;t)= GAUSSUPD( bαθ1

k, · · · bαθNk , υ•) (Algorithm 14, page 61)

5. FOR k ∈ GI:
( bαCk;t,

bαθ̂k;t,
bαdDk;t,

bανk;t)= GIWUPD(( bαθ1
k,

bαr1
k), · · · ( bαθNk ,

bαrNk ), υ•)
(Algorithm 15, page 61)

Algorithm 14 (Gaussian updating) (Mk;t, Rk;t)= GAUSSUPD( bαθ1
k, · · · bαθNk , υ•)

1. Mk;t =
∑N
l=1 υl

bαθlk

2. Rk;t =
∑N
l=1 υl

bαθlk
bαθl

′

k −MkM
′
k

Algorithm 15 (GiW updating)

( bαCk;t,
bαθ̂k;t,

bαdDk;t,
bανk;t)= GIWUPD(( bαθ1

k,
bαr1

k), · · · ( bαθNk ,
bαrNk ), υ•)

1. pk =
∑N
l=1

1
bαrl

k

υl

2. sk =
∑N
l=1 ln

(
bαrlk

)

υl

3. bαθ̂k;t = 1
pk

∑N
l=1

bαθl
k

bαrl
k

υl

4. bαCk;t =
∑N
l=1

bαθl
k
bαθl′

k
bαrl

k

υl − pk
bαθ̂k;t

bαθ̂′k;t

5. ( bανk;t)= GETNU(ln (pk) + sk) (Algorithm 19, page 94)

6. bdDk;t =
bανk;t

pk

Remarks 8

• The software realization of all algorithms can be done in a bit more clever way.
For example, the weight estimate α̂t−1 need not to be computed twice.

• Evaluation of matrices bαCk should be of course realized in L’DL decomposition
(Section C.5.2).

• For achieving of feasibility, effective stopping rules [44] should be designed so
that the number of simulated samples needed for each step is minimized.
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7.2.6 Specific Forms of Component Weighting Functions

Switching Weight

In the case when φt−1 is scalar and c̊ = 2, we can use this type of cwf. It has low
practical applicability. It illustrates the derived relations and serves for checking the
Monte-Carlo evaluation, because the result can be found even analytically here.

α1(φt−1|Ω) =

{

1 φt−1 > Ω
0 φt−1 ≤ Ω

, α2(φt−1|Ω) =

{

0 φt−1 > Ω
1 φt−1 ≤ Ω

The cwf parameter Ω is scalar in this case. The class of posterior pdfs on this
parameter can be chosen as Gaussian pdf with mean Mt and variance Rt.

ρ(Ω|Ht) ≡ NΩ (Mt, Rt) , Ht ≡ (Mt, Rt)

For this case, we are able to evaluate the weight estimate more or less analytically.

α̂1;t−1 =
∫

α1(φt−1|Ω)ρ(Ω|Ht−1)dΩ =

φt−1∫

−∞

NΩ (Mt−1, Rt−1) dΩ = J (Mt−1, Rt−1,−∞, φt−1)

α̂2;t−1 = 1 − α̂1;t−1,

where J (µ,R, a, b) is normalization integral of so called Truncated Gaussian Distri-
bution (C.3). The updated pdfs ρU1 (Ω|HU

1;t−1) and ρU2 (Ω|HU
2;t−1) are itself Truncated

Gaussian distributions:

ρU1 (Ω|HU
1;t−1) =

α1(φt−1|Ω)ρ(Ω|Ht−1)

α̂1;t

= T NΩ (Mt−1, Rt−1,−∞, φt−1)

ρU2 (Ω|HU
2;t−1) =

α2(φt−1|Ω)ρ(Ω|Ht−1)

α̂2;t

= T NΩ (Mt−1, Rt−1, φt−1,∞)

The function h(Ω) defined in (7.6) (page 57) reads:

h(Ω) ≡
c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t−1) =

= w1;tT NΩ (Mt−1, Rt−1,−∞, φt−1) + w2;tT NΩ (Mt−1, Rt−1, φt−1,∞) .

According to the results presented in Section 7.2.4, the new values of statistics Mt

and Rt can be evaluated as follows:

Mt = E [Ω]h = w1;tE [Ω]ρU
1

+ w2;tE [Ω]ρU
2

Rt = cov [Ω]h = w1;tcov [Ω]ρU
1

+ w2;tcov [Ω]ρU
2

+ w1;tw2;t

(

E [Ω]ρU
1
− E [Ω]ρU

2

)2
.

We need to compute mean values, variances and normalizing integral of Truncated
Gaussian Distribution. This will be done with algorithms TRUNCSTAT (Algorithm
21) and TRUNCNORM (Algorithm 20). Using these algorithms, we can formulate
the algorithms for weight update WEIGHTNORM and WEIGHTUPDT.

Algorithm 16 (Switching-weight normalizing) (Z•,t−1)= WEIGHTNORM(Mt−1, Rt−1)

1. (α̂1;t−1)= TRUNCNORM(Mt−1, Rt−1,−∞, φt−1)(Algorithm 20, page 98)
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2. α̂2;t−1 = 1 − α̂1;t−1

3. Z•,t−1 = ln (α̂•,t−1)

Algorithm 17 (Switching-weight Updating)

(Mt, Rt)= WEIGHTUPDT(Mt−1, Rt−1, wt)

1. (E1, C1)= TRUNCSTAT(Mt−1, Rt−1,−∞, φt−1) (Algorithm 21, page 98)

2. (E2, C2)= TRUNCSTAT(Mt−1, Rt−1, φt−1,+∞)

3. Mt = w1;tE1 + w2;tE2

4. Rt = w1;tC1 + w2;tC2 + w1;tw2;t(E1 − E2)
2

Example 15 (Updating of truncated Gaussian distribution ) Let us suppose
the following case:

φt−1 = 3,Mt−1 = 2, Rt−1 = 1, w = [0.75, 0.25].

Old posterior pdf on cwf parameter Ω is Gaussian pdf. Its updates ρU1 (Ω|HU
1;t−1) and

ρU2 (Ω|HU
2;t−1) are truncated normal distributions. Function h(Ω) is mixture of the

updates. Figure 7.1 shows all involved pdfs in details.

Figure 7.1: Example 15 : Updating of truncated gaussian distribution
The left hand part shows old posterior pdf ρ(Ω|Ht−1)(thin) and updates ρU

1 (Ω|HU
1;t)(dotted)

and ρU
2 (Ω|HU

2;t)(thick). The right hand part shows how the result of optimization ρ(Ω|Ht)
(thick) approximates the pdf h(Ω) (thin).

Remarks 9 It is not possible to generalize this type of cwf to multiple component
case, because it doesn’t allow permutation of components during estimation and hence
it is very sensitive on initial conditions.

Gaussian Ratio

We have to define more general cwfs than the specified ones. In general, it suffice to
select c̊ nonnegative functions gc(φt−1|Ωc), each parameterized by own parameter Ωc.
Then the cwfs can be defined as

αc(φt−1|Ω) ≡ gc(φt−1|Ωc)
∑c̊
c=1 gc(φt−1|Ωc)

, Ω ≡ (Ω1, · · · ,Ωc),

which guarantees that
∑c̊
c=1 αc(φt−1|Ω) = 1, ∀φt−1, ∀Ω.
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We will deal with gc(φt−1|Ωc) defined as a value of factorized multivariate Gaussian
distribution. (This approach has a good justification. See [10].) The factorization
is performed in the same way as in Section 4.1. It is usual to denote the factorized
elements with two indices, but the theory presented in this chapter indexes the parts
of Ω and related pdfs with only one index. We will face this problem by defining
operator <>, which uniquely converts two indexes into one:

< oc >= (o− 1) × c̊+ c.

Using the mentioned notation, we can define function gc(φt−1|Ωc) Analogical to
factors defined in Section 4.1:

gc(φt−1|Ωc) =
φ̊
∏

i=1

Nφi;t−1

(
bαθ′<ic>

bαψ<ic>;t−1,
bαr<ic>

)

, where bαψ<ic>;t−1

is a subvector of vector [φi+1,···,φ̊;t−1, 1] and Ωc ≡ {( bαθ<ic>,
bαr<ic>)|i ∈ {1, · · · , φ̊}}.

Hence, the cwfs are defined as follows::

αc(φt−1|Ω) =

∏φ̊
i=1 Nφi;t−1

(
bαθ′<ic>

bαψ<ic>;t,
bαr<ic>

)

∑c̊
c̃=1

∏φ̊
i=1 Nφi;t−1

( bαθ′<ic̃>
bαψ<ic>;t, bαr<ic>)

,

Ω ≡ { bαθk,
bαrk|k ∈ {1, · · · , c̊× φ̊}}.

If we want to use the numeric approximations derived in Section 7.2, we have only
to design specific version of algorithm EVAL CWFS.

Algorithm 18 (Cwf evaluation) (Q•)= EVAL CWFS(Ω)

1. For each component c, evaluate lc =
∑φ̊
i=1

(

− ln( bαr<ic>)
2

− ( bαθ′
<ic>

ψ<ic>;t−φi;t−1)2

2 bαr<ic>

)

2. l• = exp (l• −max(l•))

3. Q• = l•
sum(l•)

Remarks 10 Examples of this cwf type are plotted in Sections 8.2.2 and 8.2.3.



Chapter 8

Experiments

This chapter illustrates the developed theory on several examples. Mostly, it shows
evolution of the estimates over time to demonstrate the algorithms behavior. In
section dealing with constant-weights mixtures, the PB algorithm is compared with
classical QB algorithm (Appendix A).

8.1 Normal Mixtures with Constant Weights

This section deals with normal factors (Section 6.1) and constant component weight-
ing functions (Section 7.1). First, the behavior of the algorithm is demonstrated on
simple examples. Then, the comparison of the PB and QB algorithms is performed.

8.1.1 The Simplest Case

Model

Let us have a 2-component static mixture defined on scalar data. For a better read-
ability, the index denoting the data channel is omitted here.(It is 1 in all cases.)

d̊ = 1 (data are scalar)
c̊ = 2 (2 components)

φt−1 ≡ (1) (system is static)
Ω ≡ (α1, α2), αi > 0,

∑2
i=1 αi = 1 (parameter of cwfs)

Θ ≡ (θ1, θ2, r1, r2, α1, α2) (mixture parameter)

α1(φt−1|Ω) ≡ α1(1|α1, α2) = α1 (1st cwf)
α2(φt−1|Ω) ≡ α2(1|α1, α2) = α2 (2nd cwf)

f1(dt|φt−1,Θ1) ≡ f1(dt|Θ1) = Ndt
(θ1, r1) (1st component)

f2(dt|φt−1,Θ2) ≡ f2(dt|Θ2) = Ndt
(θ2, r2) (2nd component)

f(dt|φt−1,Θ) ≡ α1Ndt
(θ1, r1) + α2Ndt

(θ2, r2) (mixture)

65
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Form of the Prior and the Posterior pdf

ρ(Ω|Ht) ≡ ρ(α1, α2|κ1;t, κ2;t) = Diα1,α2
(κ1;t, κ2;t)

π1(Θ1|S1;t) ≡ π1(θ1, r1|V1;t, ν1;t) = GiWθ1,r1(V1;t, ν1;t)
π2(Θ2|S2;t) ≡ π2(θ2, r2|V2;t, ν2;t) = GiWθ2,r2(V2;t, ν2;t)

Ht ≡ (κ1;t, κ2;t), S1;t ≡ (V1;t, ν1;t), S2;t ≡ (V2;t, ν2;t)
Gt ≡ (κ1;t, κ2;t, V1;t, ν1;t, V2;t, ν2;t)

π(Θ|Gt) ≡ π(θ1, θ2, r1, r2, α1, α2|κ1;t, κ2;t, V1;t, ν1;t, V2;t, ν2;t) ≡
≡ GiWθ1,r1(V1;t, ν1;t)GiWθ2,r2(V2;t, ν2;t)Diα1,α2

(κ1;t, κ2;t)

Posterior pdf on Ω ≡ (α1, α2) was chosen as Dirichlet pdf. Posterior pdfs on factor
parameters were selected as GiW pdfs. The overall posterior pdf is thus product
of two GiW pdfs and one Dirichlet pdf. The posterior statistic Gt is formed with
statistics of Dirichlet pdf and GiW pdfs. Of course, equivalent representations of
GiW statistics V are considered. (See Agreement 7)

The True Value of Parameter and the Initial Statistics

Θtrue ≡ (θ1true ≡ 2.5, θ2true ≡ 1, r1true ≡ 0.005, r2true ≡ 0.001,

α1true ≡ 0.3333, α2true ≡ 0.6666)

G0 ≡ (κ1;0 ≡ 6, κ2;0 ≡ 6,

C1;0 ≡ 1000, θ̂1;0 ≡ 0.0401, bdD1;0 ≡ 0.022, ν1;0 ≡ 4.20,

C2;0 ≡ 1000, θ̂2;0 ≡ −0.6209, bdD2;0 ≡ 0.022, ν2;0 ≡ 4.20)

The true system model f(dt|Θ = Θtrue), and initial point estimate f(dt|Θ =

Θ̂0), Θ̂0 = E [Θ]π(Θ|G0) are depicted on Figure 8.1.

Figure 8.1: Experiment 8.1.1 : The true system model and initial mixture

The left hand part of this figure shows the true system model f(dt|Θ = Θtrue). It is a
scalar 2-component static Gaussian mixture. The right hand part shows point estimate of
the system f(dt|Θ = Θ̂0) based on the prior pdf given by the statistic G0. It can be seen that
this initial point estimate is completely different then the true system model.
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Processing

We simulated 60 data records generated by the true system and estimated their model
using PB algorithm. The simulated data are depicted on Figure 8.2.

Figure 8.2: Experiment 8.1.1 : Simulated data

The figure shows 60 data records generated by the true system model f(dt|Θ = Θtrue).
According to the form of the system model (see Figure 8.1), it is clear that data must be
concentrated in regions near by θ1true ≡ 2.5 and θ2true ≡ 1.

We want to show behavior of PB algorithm in details, hence evolutions of im-
portant statistic during estimation are displayed. The most important statistics
θ̂1;t, θ̂2;t, C1;t, C2;t are depicted on Figure 8.3. (They are scalars in this case.) Since

the statistic θ̂c;t represents a point estimate of θc
(

θ̂c;t = E
[

θc| θ̂c;t
])

, we can simply

observe the quality of the estimation. According to Proposition 31, the covariance

cov
[

θc| νc;t, bdDc;t, Cc;t
]

= r̂c;tCc;t. It means that covariance of the point estimate is

direct proportional to the value of statistic Cc;t.
Also the evolution of statistics νc;t and bdDc;t should be displayed. Instead, we

display point estimates r̂c;t of rc and variance sc;t of this estimate. According to
Proposition 31,

r̂c;t ≡ E
[

rc| νc;t, bdDc;t

]

=
bdDc;t

νc;t − 2
, sc;t = cov

[

rc| νc;t, bdDc;t

]

=
r̂2
c;t

νc;t − 4
.

Evolution of statistics r̂c;t and sc;t can be seen on Figure 8.4.
Figure 8.5 shows, how the point estimates of the component weights α̂c;t evolve

during estimation.
Another significant indicator of the estimation quality is the difference from the

correct Bayesian estimation. Of course, we are not able to perform correct Bayesian
estimation of a mixture model, unless we know the relation of each data record to the
component it was generated from. This is possible for simulated systems. We can
simply remember active components during the simulation and then confront this
information with the weights wc;t from PB algorithm. It is obvious (See Remarks 2)
that Bayesian estimation can be formulated as PB estimation with w•;t having the
only one nonzero element on the position which corresponds to the component being
active in time t. Such weight is called Bayesian weight. Of course, the numbering of
components in estimated mixture need not be the same as the numbering in simulated
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mixture, hence we may need to permute the Bayesian weights to be comparable with
the PB weights. Let us denote the permuted Bayesian weights as wB•;t. Then the
quality of estimating each particular component during the time can be measured as
Qc;t = abs(wc;t − wBc;t). It is clear that in ideal case Qc;t is zero for all c, t. It is also
clear that in our case of two component mixture, Q1;t = Q2;t ∀t. Hence it suffice to
display Q1;t only.

The QB algorithm (Appendix A) uses the weights wc;t analogically to the PB al-
gorithm. Hence we can define QB quality indicator Qc;t as analogy to Qc;t. Evolution
of Q1;t and Q1;t during the estimation is depicted on Figure 8.5.

Resulting point estimate of the mixture parameters obtained using PB estimation
and resulting point estimate obtained using QB estimation are depicted on Figure
8.6.

Figure 8.3: Experiment 8.1.1 : Evolution of statistics θ̂c;t and Cc;t

The left hand part of this figure shows how the point estimates of factor means θ̂1;t, θ̂2;t
approach the true values θ1true, θ2true. It can be seen that after processing approximately
16 data records, the point estimates started to be almost perfect. The right hand part of
this figure shows evolution of statistics C1;t, C2;t. Since covariance of point estimates θ̂c;t

depends proportionally on Cc;t, the decreasing trends of C1;t, C2;t indicates increasing quality
of the point estimate.

Figure 8.4: Experiment 8.1.1 : Evolution of point estimates of factor variances rc;t

The left hand part of this figure shows how the point estimates of factor variances r̂1;t, r̂2;t approach
the true values r1true, r2true. It can be seen that estimating the factor variance is more complex
problem than estimating the means, but it can be seen that the estimates are slowly approaching
the true values. The right hand part of this figure shows evolution of variances of point estimates
r̂c;t, which are quickly decreasing.
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Figure 8.5: Experiment 8.1.1 : Evolution of point estimate of component weights κ
The left hand part of this figure shows how the point estimates of component weights α̂1;t, α̂2;t

approach the true values α1true, α2true. The right hand part of this figure shows evolution of quality
indicators Q1;t determining the quality of PB estimation and Q1;t determining the quality of QB
estimation. It can be seen that after some time both indicators Q1;t and Q1;t approach zero. This
means that after some time, both algorithms perform almost exactly as the Bayesian estimation in
this case.

Figure 8.6: Experiment 8.1.1 : Resulting point estimates
Resulting point estimate f(dt|Θ = Θ̂60) of the mixture is depicted on left hand part of this figure.
Point estimate of the same system obtained through QB algorithm f(dt|Θ = Θ̂QB;60) is depicted on
right hand part of this figure. If we compare these results with the true system model from Figure
8.1, we can see that both algorithms estimated the parameters θ1, θ2 well. But the estimates of
parameters r1, r2 determining the factors variances are much better in PB estimation.

Conclusions

The presented example shows that PB algorithm behaves reasonably. On this simple
example it gives a very good result, better than the result of QB algorithm.



70 CHAPTER 8. EXPERIMENTS

8.1.2 Banana Shape

This example belongs to the set of classical examples for testing of mixture estimation.
System is a two-dimensional static mixture with 32 components. Figure 8.7 shows
the true system f(dt|Θ = Θtrue) and 1500 data records generated.

We modelled this system with 20-component mixture. Initial statistics of the PB
estimation were selected randomly. Figure 8.8 shows the mixture f(dt|Θ = Θ̂0) with
the point estimate of Θ based on initial statistics. Second part of this figure shows the
mixture f(dt|Θ = Θ̂1500) with point estimate based on statistics obtained with PB
algorithm. For comparison, Figure 8.9 shows point estimate based on QB algorithm
f(dt|Θ = Θ̂QB;1500).

Figure 8.7: Experiment 8.1.2 : System and simulated data
Left hand part of this figure shows the true system f(dt|Θ = Θtrue). It is a two-dimensional
function and it is displayed as so called contour plot, i.e. the value in a point on the grid is
given by the color of this point. The right hand part of this figure shows the data generated
by the system. These data are then used for estimating the model.

Figure 8.8: Experiment 8.1.2 : Initial mixture and result of estimation
Left hand part of this figure shows the point estimate of the system f(dt|Θ = Θ̂0) based on
the initial statistics. It can be seen that this initial estimate is completely different from the
true system. The right hand part of this figure shows the point estimate based on statistics
obtained from the PB algorithm. It can be seen that the result is similar to the true system.
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Figure 8.9: Experiment 8.1.2 : Result of QB estimation
The figure shows the point estimate of the system f(dt|Θ = Θ̂QB;1500) based on the statistics
obtained from the QB algorithm. It can be seen that the result is worse than the result of
the PB algorithm.

Conclusions

The presented example shows estimation results with PB algorithm on a more com-
plex example. It can be seen that again very good result was obtained. The result
of QB algorithm is worse. If we would use initial statistic obtained using algorithm
mixinit (See Appendix A) instead of random ones, even the QB algorithm would
get very good result.
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8.1.3 Comparison on ”Classical” Examples

Intensive tests consisting of 1396 data sets were performed. Data used for this test
represent various types of systems (static, dynamic, multidimensional) and are a
part of standard testing procedure of new algorithms within Mixtools system [45].
As a quality measure, the v-loglikelihood [11] of the estimated model was used. For
each set, criterion h was evaluated, which is the difference between the loglikelihood
obtained by the PB algorithm and the QB algorithm. Thus, h > 0 if the PB algorithm
was better. Table 8.1 shows the results. Mean value of h over all sets is 6.18. The
cases where likelihood of one result is not greater than exp (2)× likelihood of the
second are taken as a draw. This leads to condition abs(h) < 2 on the draw cases.
The overall computing time spent by this testing was approximately 20 hours.

condition number of cases percentage
h > 0 1125 80.6%
h < 0 271 19.4%

abs(h) < 2 1126 80.6%
h > 2 251 18.0%
h < −2 19 1.4%

Table 8.1: Experiment 8.1.3 : Results of experimental comparison
The table shows the number of cases fulfilling several conditions for h. Since the values with
abs(h) < 2 are taken as a draw, we can conclude that the PB algorithm was worse than the
QB algorithms in only 1.4% of cases. Without this condition, the PB algorithm improves
(slightly) the QB result in 80% of cases.

8.1.4 Comparison on Randomly Generated Examples

In order to compare the PB algorithm on other than the classic examples, random
generator was used to generate stable systems. We generated 497 mixtures with
dimension from 1 to 20, with 2 to 10 components and with order 0 to 5. Number of
data generated from each of these systems was selected randomly between 1000 and
3000 and increased by 400-multiple of the system dimension. Histograms showing the
frequencies of used dimensions, orders etc. are displayed on Figures 8.10 and 8.11.

Initial estimate and model structure was obtained using the algorithm mixinit.
(See Appendix A.) Since the mixinit algorithm is based on repetitive using of mixture
estimation, we can speak about QB and PB variant of mixinit. Hence we tested two
versions:

• QB variant of mixinit, QB variant of mixture estimation.

• PB variant of mixinit, PB variant of mixture estimation.

Results of estimation were processed in the same way as in previous section. Table
8.2 shows them. Mean value of h over all sets is 36854.3961. The overall computing
time spent by this testing was approximately 1 month.
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condition number of sets percentage
h > 0 492 99%
h < 0 5 1%

abs(h) < 2 3 0.6%
h > 2 490 98.6%
h < −2 4 0.8%

Table 8.2: Experiment 8.1.4 : Results of experimental comparison
The table shows the number of cases fulfilling several conditions for h. Since values with
abs(h) < 2 are taken as a draw, we can conclude that PB algorithm was worse than QB
algorithm in approximately 1% of cases and was better in 98.5% cases.

Figure 8.10: Experiment 8.1.4 : Histograms of systems characteristics
The left hand part of this figure shows histogram of dimensions of generated systems. The
right hand part shows histogram of numbers of components.

Figure 8.11: Experiment 8.1.4 : Histograms of systems characteristics
The left hand part of this figure shows histogram of orders of generated systems. The right
hand part shows histogram of the numbers of data. Note that system order is defined as the
maximal order of all its parts. Orders of particular components were selected uniformly from
{0,1,2,3,4,5}.
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8.1.5 Comparison on Cluster-Analysis Examples

In order to be able to compare our algorithm with a plethora of others, we apply it
in the field of cluster analysis. Cluster analysis can be viewed as estimation of static
mixture on features-space and then predicting the value of the cluster label. The
following text describes the mixture-based clustering in detail.

The mixtures can be used for clustering tasks in the following way:

1. Include the class label into the data records as its last item dd̊;t.

2. Choose structure of static mixture f(dt|Θ) and construct initial estimate π(Θ|G0).

3. Estimate static mixture f(dt|Θ), i.e obtain π(Θ|Gt̊).
4. Construct the predictive pdf f(dt) =

∫

f(dt|Θ)π(Θ|Gt)dΘ.

5. Construct the conditional pdf f(dd̊;t|d1;t · · · dd̊−1;t).

The resulting pdf is our classifier. Knowing the values of features d1;t · · · dd̊−1;t it

gives distribution on the class labels f(dd̊;t). As a class label, we can select a label
with the highest probability.

Remarks 11

• In fact, the class label need not be on the last position of dt. It can be placed
on arbitrary position. Naturally, the resulting classifier must be pdf on the class
label determined by the other channels.

• Since we are not able to model efficiently dependency of discrete data on con-
tinuous data, the discrete data are modelled as continuous ones. The resulting
class label is then selected as the mean value of the pdf f(dd̊;t) rounded to the
nearest discrete value of class label.

• The step 2 can of course significantly influence the clustering quality. The struc-
ture must be rich enough, but it must not be richer than the number of training
samples allows to estimate. The algorithm mixinit (See Appendix A) solves this
problem. Its result is both, the mixture structure and the initial estimate. The
algorithm mixinit performs mixture estimation as its subtask. Hence we have
two variants of mixinit: mixinit with PB and mixinit with QB.

• In the tests performed, we distinguished two variants of classifiers:

Mix PB Step 2 performed using PB variant of mixinit, step 3 performed using
PB estimation.

Mix QB Step 2 performed using QB variant of mixinit, step 3 performed using
QB estimation.

The data and results of other algorithms come from [46]. Authors of the referred
paper adopted majority of the data sets from repository of University of California
(http://www.ics.uci.edu/ mlearn/MLSummary.html). The paper provides clustering
results for following methods:

RBF Radial Based Functions Network, classical neural networks method [18].

AdaBoost Adaptive boosting [46]. The mentioned paper describes several variants
of AdaBoost. We are comparing only the best one.
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SVM Support Vector Machine [47].

KFD Kernel Fisher Discriminant [48].

The tested data consist of several data-sets. Each data-set has 100 realizations and
each realization consists of training data, training labels, test data and test labels.
Detailed information about each data-set is in Table 8.3. For each realization, the
classifier is built using the training data and training labels. Then, the classifier
assigns a label to each data record in test data. Percentual number of misclassified
data records is then evaluated. Its mean value and standard deviation over all 100
realizations is taken as the result for each classification method.

Table 8.4 shows the results for all investigated data-sets. We can see that mixture-
based classifier is comparable with other methods. It confirms that PB estimation
gives reasonable results.

data-set name twonorm flare-solar heart german ringnorm
training data records 400 666 170 700 400
test date records 7000 400 100 300 7000
data dimension 20 9 13 20 20

data-set name titanic thyroid diabetis breast-cancer
training data records 150 140 468 200
test date records 2051 75 300 77
data dimension 3 5 8 9

Table 8.3: Experiment 8.1.5 : Characteristics of data sets

twonorm
method mean std

Mix QB 2.58 0.20
Mix PB 2.60 0.22
KFD 2.61 0.15
AdaBoost 2.70 0.24
RBF 2.85 0.28
SVM 2.96 0.23

flare-solar
method mean std

SVM 32.43 1.82
KFD 33.16 1.72
AdaBoost 34.20 2.18
RBF 34.37 1.95
Mix PB 35.49 1.38
Mix QB 36.66 1.98

heart
method mean std

SVM 15.95 3.26
KFD 16.14 3.39
AdaBoost 16.47 3.51
RBF 17.55 3.25
Mix PB 21.51 3.94
Mix QB 21.69 3.77

german
method mean std

SVM 23.61 2.07
KFD 23.71 2.20
AdaBoost 24.34 2.08
RBF 24.71 2.38
Mix PB 25.95 2.86
Mix QB 26.49 3.27

ringnorm
method mean std

KFD 1.49 0.12
AdaBoost 1.58 0.12
SVM 1.66 0.12
Mix QB 1.69 0.23
Mix PB 1.69 0.27
RBF 1.70 0.21

titanic
method mean std

SVM 22.42 1.02
Mix PB 22.43 1.31
Mix QB 22.45 1.44
AdaBoost 22.64 1.20
KFD 23.25 2.05
RBF 23.26 1.34

thyroid
method mean std

Mix PB 3.39 1.78
Mix QB 3.51 1.92
KFD 4.20 2.07
RBF 4.52 2.12
AdaBoost 4.55 2.19
SVM 4.80 2.19

diabetis
method mean std

KFD 23.21 1.63
SVM 23.53 1.73
AdaBoost 23.79 1.80
RBF 24.29 1.88
Mix QB 26.58 2.17
Mix PB 26.66 2.72

breast-cancer
method mean std

KFD 24.77 4.63
Mix PB 25.66 4.74
SVM 26.04 4.74
AdaBoost 26.51 4.47
Mix QB 27.17 4.86
RBF 27.64 4.71

Table 8.4: Experiment 8.1.5 : Results of cluster analysis examples
Although the mixture based clustering is not the best one in all cases, it can be seen that it
gives reasonable results. The PB variant seems to behave a little better than the QB variant.
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Conclusions

The presented results shows that the mixture-based clustering gives results compa-
rable with other methods. It shows that the estimation algorithms works well.

8.1.6 Conclusions

Behavior of the PB estimation was illustrated on simple examples. On more complex
examples, the PB algorithm was compared with the current QB algorithm. It was
shown that using the PB estimation instead of the QB estimation brings significant
quality increase. Moreover, it was shown that probabilistic mixtures can be success-
fully used in cluster analysis. Consequently, the PB estimation was selected as the
default estimation method in MATLAB toolbox Mixtools.
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8.2 Normal Mixtures with Dynamic Weights

This section deals with normal factors (Section 6.1) and various types of compo-
nent weighting functions. The aim of this section is to present behavior of the PB
estimation of mixtures with dynamic weights.

8.2.1 Switching Weights

Here, the cwfs of type ”hard bounded” (Section 7.2.6) are considered. As the data
are scalar, we can omit the channel index 1 again.

Model

d̊ = 1 (data are scalar valued)
c̊ = 2 (2 components)

φt−1 ≡ (dt−1, 1) (state of the model)
Ω ≡ (scalar) (parameter of cwfs)
Θ ≡ (θ1, θ2, r1, r2,Ω) (mixture parameter)

α1(φt−1|Ω) ≡ α1(dt−1, 1|Ω) =

{

0 if dt−1 > Ω
1 if dt−1 ≤ Ω

(1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1, 1|Ω) =

{

1 φt−1 > Ω
0 φt−1 ≤ Ω

(2nd cwf)

f1(dt|φt−1,Θ1) ≡ f1(dt|φt−1,Θ1) = Ndt
(θ′1φt−1, r1) (1st component)

f2(dt|φt−1,Θ2) ≡ f2(dt|φt−1,Θ2) = Ndt
(θ′2φt−1, r2) (2nd component)

f(dt|φt−1,Θ) ≡
{

Ndt
(θ′2φt−1, r2) if dt−1 > Ω

Ndt
(θ′1φt−1, r1) if dt−1 ≤ Ω

(Mixture)

Form of the Prior and the Posterior Pdf

ρ(Ω|Ht) ≡ ρ(Ω|Mt, Rt) = NΩ (Mt, Rt)

π1(Θ1|S1;t) ≡ π1(θ1, r1|V1;t, ν1;t) = GiWθ1,r1(V1;t, ν1;t)

π2(Θ2|S2;t) ≡ π2(θ2, r2|V2;t, ν2;t) = GiWθ2,r2(V2;t, ν2;t)

Ht ≡ (Mt, Rt), S1;t ≡ (V1;t, ν1;t), S2;t ≡ (V2;t, ν2;t)

Gt ≡ (Mt, Rt, V1;t, ν1;t, V2;t, ν2;t)

π(Θ|Gt) ≡ π(θ1, θ2, r1, r2,Ω|Mt, Rt, V1;t, ν1;t, V2;t, ν2;t) ≡
≡ NΩ (Mt, Rt)GiWθ1,r1(V1;t, ν1;t)GiWθ2,r2(V2;t, ν2;t)

The True Value of Parameter and the Initial Statistics

Θtrue ≡ (θ1 ≡ [0.200, 0.300], θ2 ≡ [0.200,−0.300],

r1 ≡ 0.200, r2 ≡ 0.100, Ω ≡ −0.108)

G0 ≡ (M0 ≡ −2.000, R0 ≡ 40.000,

C1;0 ≡ diag([2.000, 2.000]), θ̂1;0 ≡ [1.000, 1.000],
bdD1;0 ≡ 0.315, ν1;0 = 4.100,

C2;0 ≡ diag([2.000, 2.000]), θ̂2;0 ≡ [1.000,−1.000],
bdD2;0 ≡ 0.315, ν2;0 = 4.100)
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We simulated 500 data records. The simulated data and diagram of the corre-
spondence of each data record to the component it was generated from are depicted
on Figure 8.12. Figure 8.13 shows evolution of statistics Mt and Rt during the esti-
mation. Since Mt is in fact a point estimate of the unknown cwf parameter Ω, we
can simply see that the point estimate approaches the true value.

Figure 8.14 shows the quality measure Q, discussed in Section 8.1.1. For compari-
son, Q is displayed even for the case of treating this model as a mixture with constant
weights. It just illustrates the obvious fact, that mixtures with dynamic weights can
not be simply approximated by static-weights mixtures of the same complexity.

For estimation of this model, analytical expressions derived in Section 8.1.1 were
used. For debugging purposes, we also tried to estimate the same model using the
general Monte-Carlo approximation from Section 7.2.5. For N ≡ 10000 MC samples
per approximation, we obtained exactly the same result as the presented one.

Figure 8.12: Experiment 8.2.1 : Data generated and active component
The figure shows the data generated from the mixture with true parameters. The small
crosses underneath the figure denotes which component was active in each particular time.

Figure 8.13: Experiment 8.2.1 : Evolution of statistics Mt and Rt

The left hand part of this figure shows how the point estimate of cwf parameter Mt approaches
the true value Ωtrue. The right hand part of this figure shows evolution of statistics Rt. Since the
statistic Rt is in fact variance of point estimate Mt, the decreasing trend of Rt indicates increasing
quality of the point estimate.
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Figure 8.14: Experiment 8.2.1 : Quality of estimation
The left hand part of this figure shows evolution of the quality indicator Q1;t determining the
quality of the PB estimation. It can be seen that the quality is increasing during time. After
some time the algorithm performs almost exactly as the Bayesian estimation. The right hand
part of this figure shows evolution of quality indicator Q1;t determining the quality of the PB
estimation with the static-weights model. It just illustrates the obvious fact, that mixtures
with dynamic weights can not be simply approximated by static-weights mixtures of the same
complexity.
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8.2.2 Gaussian Ratio Dynamic Weights

Here, the cwfs of type Gaussian ratio (Section 7.2.6) are considered. As the data are
scalars, we can omit the channel index 1 again.

Model

d̊ = 1 (data are scalars)
c̊ = 2 (2 components)

φt−1 ≡ (dt−1, 1) (state of the model)
Ω ≡ ( bαθ1,

bαθ2,
bαr1,

bαr2) (parameter of cwfs)
Θ ≡ (θ1, θ2, r1, r2,Ω) (mixture parameter)

α1(φt−1|Ω) ≡ α1(dt−1| bαθ1,
bαθ2,

bαr1,
bαr2) =

=
Ndt−1(

bαθ1,
bαr1)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)
(1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1| bαθ1,
bαθ2,

bαr1,
bαr2) =

=
Ndt−1(

bαθ2,
bαr2)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)
(2nd cwf)

f1(dt|φt−1,Θ1) ≡ Ndt
(θ′1φt−1, r1) (1st component)

f2(dt|φt−1,Θ2) ≡ Ndt
(θ′2φt−1, r2) (2nd component)

f(dt|φt−1,Θ) ≡
Ndt−1(

bαθ1,
bαr1)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)
Ndt

(θ′1φt−1, r1) +

+
Ndt−1(

bαθ2,
bαr2)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)
Ndt

(θ′2φt−1, r2)
(Mixture)

Form of the Prior and the Posterior Pdf

ρ(Ω|Ht) ≡ ρ( bαθ1,
bαθ2,

bαr1,
bαr2| bαV1;t,

bαν1;t,
bαV2;t,

bαν2;t) ≡
≡ GiW bαθ1, bαr1

( bαV1;t,
bαν1;t)GiW bαθ1, bαr2

( bαV2;t,
bαν2;t)

π1(Θ1|S1;t) ≡ π1(θ1, r1|V1;t, ν1;t) = GiWθ1,r1(V1;t, ν1;t)

π2(Θ2|S2;t) ≡ π2(θ2, r2|V2;t, ν2;t) = GiWθ2,r2(V2;t, ν2;t)

Ht ≡ ( bαV1;t,
bαV2;t,

bαν1;t,
bαν2;t), S1;t ≡ (V1;t, ν1;t), S2;t ≡ (V2;t, ν2;t)

Gt ≡ ( bαV1;t,
bαV2;t,

bαν1;t,
bαν2;t, V1;t, ν1;t, V2;t, ν2;t)

π(Θ|Gt) ≡ π(θ1, θ2, r1, r2,
bαθ1,

bαθ2,
bαr1,

bαr2| bαV1;t,
bαV2;t,

bαν1;t,
bαν2;t, V1;t, ν1;t, V2;t, ν2;t) ≡

≡ GiWθ1,r1(V1;t, ν1;t)GiWθ2,r2(V2;t, ν2;t) ×
×GiW bαθ1, bαr1

( bαV1;t,
bαν1;t)GiW bαθ1, bαr2

( bαV2;t,
bαν2;t)

The True Value and the Initial Statistics

Θtrue ≡ (θ1 ≡ [0.200, 0.300], θ2 ≡ [0.200,−0.300], r1 = 0.200, r2 = 0.100,
bαθ1 ≡ 1.000, bαθ2 ≡ −1.000, bαr1 = 1.500, bαr2 = 2.000)

G0 ≡ (

C1;0 = diag([2.000, 2.000]), θ̂1;0 ≡ [1.000, 1.000],
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bdD1;0 = 0.315, ν1;0 = 4.100,

C2;0 = diag([2.000, 2.000]), θ̂2;0 ≡ [1.000,−1.000],
bdD2;0 = 0.315, ν2;0 = 4.100
bαC1;0 ≡ 40.000, bαθ̂1;0 ≡ 0.000, bαdD1;0 ≡ 6.600, bαν1;0 ≡ 4.200
bαC2;0 ≡ 40.000, bαθ̂2;0 ≡ 0.000, bαdD2;0 ≡ 6.600, bαν2;0 ≡ 4.200)

Figure 8.15 shows the data generated and active components in each time. Right
hand part of this figure shows the true cwfs α(dt−1|Ω = Ωtrue). Evolution of sta-

tistics bαθ̂1;t,
bαθ̂2;t and bαC1;t,

bαC2;t is depicted on Figure 8.16. Since the statistics
bαθ̂1;t,

bαθ̂2;t are also point estimates of cwf parameters bαθ1,
bαθ2, we can confront

them with the true values bαθ1true,
bαθ2true. We can see that the estimates are close

to the true value, but they are not approaching it. This is still reasonable behavior,
because for this type of cwfs, different values of parameters can give very similar
forms of cwfs. Hence we should look on another quality indicators.

Figure 8.17 displays the indicator of estimation quality Q (see Section 8.1.1) and

point estimate of cwfs α(dt−1|Ω = Ω̂500). Also the difference from the correct cwfs

E(dt−1) = abs
(

α1(dt−1|Ω = Ω̂500) − α1(dt−1|Ω = Ωtrue)
)

is displayed there.

Figure 8.15: Experiment 8.2.2 : Data generated and true cwf

Left hand part of this figure shows the data generated and active components in each time.
Right hand part of this figure shows the true cwfs. It can be seen how the last data record dt−1

influences the active component in the next step. If dt−1 is near to zero, both components
have approximately the same chance to become active. With dt−1 receding from zero, chances
of one of the components to be active are increasing.
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Figure 8.16: Experiment 8.2.2 : Evolution of statistics during estimation

Left hand part of this figure shows evolution of the statistics bαθ̂1;t,
bαθ̂2;t. Since these sta-

tistics are also point estimates of cwf parameters bαθ1,
bαθ2, we can confront them with the

true values bαθ1true,
bαθ2true. Right hand part of this figure shows evolution of statistics

bαC1;t,
bαC2;t. Since the covariance of point estimates bαθ̂c;t is proportional to bαCc;t, the

decreasing trends of bαC1;t,
bαC2;t indicates increasing quality of the point estimates.

Figure 8.17: Experiment 8.2.2 : Estimation quality and point estimate of cwf
Left hand part of this figure displays the estimation quality Qt (see section 8.1.1). It
can be seen, that the value of Qt is very low, which indicates that almost correct
Bayesian estimation was performed. Right hand part of this figure shows the point es-
timate of cwfs α(dt−1|Ω = Ω̂500). Also the difference from the correct cwfs E(dt−1) =

abs
(

α1(dt−1|Ω = Ω̂500) − α1(dt−1|Ω = Ωtrue)
)

is displayed here. It can be seen, that the

estimated cwf is very close to the true one.
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8.2.3 Gaussian Ratio Weights II

As the data are scalars, we can omit the channel index 1 again.

Model

d̊ = 1 (data are scalar)
c̊ = 3 (3 components)

φt−1 ≡ (dt−1, 1) (state of the model)
Ω ≡ ( bαθ1,

bαθ2,
bαθ3,

bαr1,
bαr2,

bαr3) (parametrs of cwfs)
Θ ≡ (θ1, θ2, θ3, r1, r2, r3,Ω) (mixture parameter)

αc(φt−1|Ω) ≡ Ndt−1(
bαθc,

bαrc)
Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)+Ndt−1( bαθ3, bαr3)

(c-th cwf)

fc(dt|φt−1,Θc) ≡ Ndt
(θ′cφt−1, rc) (c-th component)

f(dt|φt−1,Θ) ≡ ∑3
c=1 αc(φt−1|Ω)Ndt

(θ′cφt−1, rc) (Mixture)

Form of the Prior and the Posterior Pdf

ρ(Ω|Ht) ≡ ρ(Ω| bαV1;t,
bαν1;t,

bαV2;t,
bαν2;t,

bαV3;t,
bαν3;t) ≡

≡
3∏

c=1

GiW bαθc, bαrc
( bαVc;t,

bανc;t)

πc(Θc|Sc;t) ≡ πc(θc, rc|Vc, νc) = GiWθc,rc(Vc;t, νc;t)

Ht ≡ ( bαV1;t,
bαV2;t,

bαV3;t,
bαν1;t,

bαν2;t,
bαν3;t)

Sc;t ≡ (Vc;t, νc;t)

Gt ≡ ( bαVc;t,
bανc;t, Vc;t, νc;t, c ∈ (1, 2, 3))

π(Θ|Gt) ≡
3∏

c=1

GiW bαθc, bαrc
( bαVc;t,

bανc;t)
3∏

c=1

GiWθc,rc(Vc;t, νc;t)

The True Value and the Initial Statistics

Θtrue ≡ (θ1 ≡ −0.300, θ2 ≡ −1.300, θ3 ≡ 1.000,

r1 ≡ 0.100, r2 ≡ 0.050, r3 ≡ 0.040,
bαθ1 ≡ 0.000, bαθ2 ≡ −3.000, bαθ3 ≡ 2.000,
bαr1 ≡ 0.100, bαr2 ≡ 0.500, bαr3 ≡ 0.500)

G0 ≡ (

C1;0 ≡ 20.000, θ̂1;0 ≡ 0.000, bdD1;0 ≡ 0.1050, ν1;0 ≡ 4.100,

C2;0 ≡ 20.000, θ̂2;0 ≡ −4.000, bdD2;0 ≡ 2.1, ν2;0 ≡ 4.100

C3;0 ≡ 20.000, θ̂3;0 ≡ −2.000, bdD3;0 ≡ 0.1050, ν3;0 ≡ 4.100
bαC1;0 ≡ 40.000, bαθ̂1;0 ≡ 0.000, bαdD1;0 ≡ 0.220, bαν1;0 ≡ 4.200
bαC2;0 ≡ 40.000, bαθ̂2;0 ≡ 0.000, bαdD2;0 ≡ 0.220, bαν2;0 ≡ 4.200
bαC3;0 ≡ 40.000, bαθ̂3;0 ≡ 0.000, bαdD3;0 ≡ 0.220, bαν3;0 ≡ 4.200)

Figure 8.18 shows the data generated and active components in each time. Right
hand part of this figure shows the true cwfs.
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Evolution of statistics bαθ̂1;t,
bαθ̂2;t,

bαθ̂3;t and bαC1;t,
bαC2;t,

bαC3;t is depicted on
Figure 8.19. Figure 8.20 displays the estimation quality Q (see Section 8.1.1) and the

point estimate of cwfs. Evolution of statistics θ̂1;t, θ̂2;t, θ̂3;t is displayed on Figure
8.21.

Figure 8.18: Experiment 8.2.3 : Data generated and original cwfs
Left hand part of this figure shows the data generated and active components in each time.
Right hand part of this figure shows the true cwfs. Note that the third component was not
active roughly in initial 200 time moments.

Figure 8.19: Experiment 8.2.3 : Evolution of statistics during estimation

Left hand part of this figure shows evolution of statistics bαθ̂1;t,
bαθ̂2;t,

bαθ̂3;t. Right hand part
of this figure shows evolution of statistics bαC1;t,

bαC2;t,
bαC3;t. It should be also mentioned

that components 2 and 3 are permuted in the estimated mixture. It can be seen that bαC2;t

is relatively high and bαθ̂2;t completely bad for time moments lower than 200. After that

time moment, the third component started to be active for the first time and both bαθ̂2;t and
bαC2;t have reasonable values almost immediately.
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Figure 8.20: Experiment 8.2.3 : Estimation quality and point estimate of cwf
Left hand part of this figure shows point estimate of cwfs. It can be seen that this estimate
is similar tu the true cwfs up to the fact that cwf 3 and 2 are permuted. Right hand part
of this figure shows the quality indicators Q1;t, Q2;t, Q3;t. It can be seen that the estimation
was very good during almost all the time. The several time moments with big values of Qt

can not influence the overall result.

Figure 8.21: Experiment 8.2.3 : Evolution of statistics θ̂1;t, θ̂2;t, θ̂3;t
This figure shows evolution of statistics θ̂1;t, θ̂2;t, θ̂3;t, which represent point estimates of the
component parameters. It can be seen how the estimates approach the true values. It can
also be seen that components 3 and 2 are switched.



86 CHAPTER 8. EXPERIMENTS

8.2.4 Conclusions

On three examples, we showed that the estimation of mixtures with dynamic weights
using the presented algorithm gives reasonable results. Of course, use of Monte-
Carlo integral approximation is limited to low-dimensional cases only. Alternative
approximations are needed for high dimensional cases.



Chapter 9

Conclusions

Within this work, estimation of dynamic probabilistic mixtures was improved by
designing new projection based (PB) algorithm. Moreover, the dynamic probabilistic
mixtures were generalized to work with data-dependent component weights. Here,
the main outcomes of the work are summarized:

• Dynamic probabilistic mixture model with dynamic weights was defined as a
generalization of the current dynamic mixture with static weights. (Chapter 4)

• General algorithm for recursive estimation of the generalized model was elabo-
rated. Problem of minimization of KL divergence was converted into a simpler
task of evaluation of moments of pdfs involved. Monte-Carlo integration was suc-
cessfully used for evaluating these moments in low-dimensional cases. (Chapters
5,3,7)

• The algorithm was applied to components composed of normal factors with
known or unknown variance. Two types of component weighting functions were
defined, one of them is very general. (Chapters 6,7)

• The algorithm was specialized for mixtures with static weights. (Chapter 7)

• All algorithms were implemented in MATLAB.

• Algorithms for static-weights mixtures were implemented in C and integrated
into MATLAB toolbox Mixtools.

• Quality of the new algorithm was compared with the current quasi-Bayes al-
gorithm on a large set of examples of estimation of a static-weights mixtures.
Results of the comparison show that PB algorithm is better. Consecutively, PB
estimation was selected as a default estimation method in the Mixtools toolbox.
(Chapter 8)

• Static probabilistic mixtures were successfully used on the field of cluster analy-
sis.(Chapter 8)

• Reliability of the estimation of mixture with dynamic weights was demonstrated
on several simple examples.(Chapter 8)

• Results of the work were continuously published.([49, 50, 51, 52, 53, 54, 45, 55])
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Significance for Science

Possibility of using approximations based on correct argument order of Kullback-
Leibler divergence was shown on important class of models.

The work opened a new way of working with data dependent weights as it con-
verted the problem of approximation of Bayesian estimation into approximation
of moments of complex probability density functions.

The work contributed to improvement of Bayesian decision-making with probabilis-
tic mixture models.

Significance for Applications

There exist many applications based on Bayesian decision making with probabilistic
mixtures [56]. As the estimation forms one of the keystones of all such ap-
plications, its improvement has to have positive impact on them. Preliminary
experiments confirm the overall improvement.

In the cases, where the mixtures with static weights were unsuccessfully applied,
there is a chance that mixtures with dynamic weights can be successful.

Open Problems

The Monte-Carlo evaluation of pdf moments needed in the general version of PB es-
timation is applicable only to low-dimensional cases. The task of future research
is to approximate the moments with another method, so that mixtures with
dynamic weights can be estimated for high-dimensional component weighting
functions.

The correct posterior pdf connected with the mixture model is a mixture with
number of components growing up exponentially with number of data samples.
Within this work, we approximate this mixture by one component only. In fu-
ture, we should try to approximate this mixture by mixture with predefined fixed
number of components. This will open new problems, because KL divergence of
two mixtures cannot be simply evaluated.



Appendix A

The Quasi-Bayes Algorithm and
Mixinit

Here, we will briefly describe the quasi-Bayes (QB) estimation algorithm and algo-
rithm mixinit for initialization of mixture estimation. The QB algorithm has been
used extensively in real-life applications [10], and it is proven to be reasonably reli-
able and computationally efficient. This text refers to it as a standard, which is to
be improved. It was designed for mixtures with constant weights.

A.1 The Quasi-Bayes Algorithm

The general QB algorithm uses the following rule, see [21]:

κt = κt−1 + wt

πic(Θic|Sic;t) ∝ [fic(dic;t|ψic;t,Θic)]
wc;t πic(Θic|Sic;t−1),

where wt is defined in the same way as in PB algorithm (5.2). Application of this
general algorithm to normal factors yields:

Vic;t = Vic;t−1 + wcΨic;tΨ
′
ic;t, νic;t = νic;t−1 + wc, κ•;t = κ•;t−1 + w•;t, (A.1)

where Vic;t, νic;t are defined in Section 6.1.1. We would receive exactly this result, if
we used the PB algorithm with approximations from Sections 6.1.5 and 7.1.5.

A.2 Mixinit

In AS department ÚTIA, algorithm mixinit for initialization of mixture estimation
was developed. It takes set of data records, maximum order of the system and prior
information as the input. Result of this algorithm is estimated structure of the system
in form of dynamic probabilistic mixture with static weights and prior pdf, which can
be used for consequent mixture estimation.

Mixinit consists of repetitional calls of mixture estimation algorithm. Roughly
speaking, it selects system structure and prior pdf in a sophisticated way and then
performs mixture estimation. This is repeated many times until the best v-likelihood
[10] is achieved. As the mixinit algorithm consists of many mixture estimation
steps, increase of quality of mixture estimation will also induce increase of quality of
initialization.
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Appendix B

Exploited Calculus and Linear
Algebra

This chapter collects the most important exploited results from matrix calculus and
algebra. The missing proofs can be found e.g. in [57, 41].

B.1 Matrix Calculus

Proposition 7 (Integral formulas with trace)

x′Ax = tr (x′Ax) = tr (Axx′)
∫

AXdX = A

∫

XdX
∫

tr (AX) dX = tr
(

A

∫

XdX

)

∫

x′Axdx = tr
(

A

∫

xx′dx

)

Proposition 8 (Differential formulas for scalar functions of matrices)
Derivatives of scalar function of matrix arguments are defined element-wise, i.e.
{
∂f
∂x

}

ij
= ∂f

∂xij

∂x′b

∂x
= b

∂x′Cx

∂x
= 2Cx, for symmetric C

∂tr (XA)

∂X
= A′

∂ ln (|X|)
∂X

= X−1

∂a′Xb

∂X
= ab′

Proposition 9 (Differential formulas for matrix functions of matrices)

Derivatives of vector function of vector arguments is defined as follows.
{
∂f
∂x

}

ij
= ∂fi

∂xj
.
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Derivatives of matrix functions of matrix arguments are defined on vectors constructed
from columns of the matrices.

∂Cx

∂x
= C

∂C−1

∂C
= −C−1 ⊗ C−1

∂Cx

∂C
= I ⊗ x, where I denotes identity matrix and ⊗ denotes Kronecker product.

Proposition 10 (Minimization) Let f(x) be 2-times continuously differentiable
multivariate function. Then f has local minimum (maximum) in point x0 iff

∂f

∂x
(x0) = 0

∂2f

∂x∂x
(x0) is positive (negative) definite

B.2 Matrix Algebra

Proposition 11 (Kronecker product) Let C be positive definite matrix. Then,
the Kronecker product C ⊗ C is positive definite.

Proposition 12 (Silvester’s criterion) The matrix C is positive definite iff all
main minors of its determinant are positive.

Proposition 13 (Positive definiteness) Let matrix C be regular and matrix A be
symmetric and positive definite. Then the matrix C ′AC is symmetric positive definite.

Proof:
The matrix A is positive definite, i.e for each y 6= 0 it holds: y ′Ay > 0. We want to show
that for each x 6= 0, x′C ′ACx > 0.
C is regular, hence Cx 6= 0 for x 6= 0, hence x′C ′ACx = (Cx)′

︸ ︷︷ ︸

z′

A (Cx)
︸ ︷︷ ︸

z

= z′Az > 0

Proposition 14 (Determinant of the matrix I+xx’) Let x be a column vector
of the length n. Then

|I + xx′| = 1 + x′x

Proof: First, we will prove that x is eigenvector of the matrix (I + xx′) with eigenvalue
1 + x′x.

(I + xx′)x = x+ xx′x = x(1 + x′x) = (1 + x′x)x

Let’s now take such linear independent vectors y1, · · · , yx̊−1, so that x′yi = 0, ∀i. We
will prove, that such vectors are eigenvectors of the matrix (I + xx′) with eigenvalues 1.

(I + xx′)yi = yi + xx′yi = yi + x(x′yi) = yi
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B.3 Other Relations

Proposition 15 (Simple algebraic manipulation)

Let
∑c̊
c=1wc;t = 1 and Kjc,KU

jc, j ∈ {1, · · · , d̊}, c ∈ {1, · · · , c̊} be arbitrary constants.
It holds:

d̊,̊c
∑

j,c=1

wc;tKU
jc +

c̊∑

c=1

wc;t

d̊,̊c
∑

j,r=1

r 6=c

Kjr =
d̊,̊c
∑

j,c=1

[

wc;tKU
jc + (1 − wc;t)Kjc

]

(B.1)

Proof:

d̊,̊c
∑

j,c=1

wc;tKU
jc +

c̊∑

c=1

wc;t

d̊,̊c
∑

j,r=1

r 6=c

Kjr =
d̊,̊c
∑

j,c=1

wc;tKU
jc +

c̊∑

c=1

wc;t





d̊,̊c
∑

j,r=1

Kjr −
d̊∑

j=1

Kjc



 =

=
d̊,̊c
∑

j,c=1

wc;tKU
jc +

d̊,̊c
∑

j,r=1

Kjr −
d̊,̊c
∑

j,c=1

wc;tKjc =
d̊,̊c
∑

j,c=1

[

wc;tKU
jc + (1 − wc;t)Kjc

]

B.4 Properties of the Digamma and Trigamma Functions

This part summarizes some special properties of digamma and trigamma functions.
Although these functions can be defined both for positive and negative values, we deal
only with the part defined on (0,+∞). For a detailed description of these functions
and for proofs see e.g.[42].

digamma ψ0 (x) = d ln(Γ(x))
dx

trigamma ψ1 (x) = dψ0(x)
dx

Figure B.1: Digamma and trigamma functions

Proposition 16 (Recursion for the function ψ0 (x))

ψ0 (x+ 1) = ψ0 (x) +
1

x
, ∀x > 0
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Proposition 17 (Properties of the function ψ0 (x) − ln (x))

Let the function h(x) ≡ ψ0 (x) − ln (x) be considered on (0,+∞). Then, it holds:

• h(x) is increasing and negative,

• lim
x→+∞

= 0,

• lim
x→0+

= −∞,

• h(x) is depicted in Figure B.2.

Figure B.2: Functions h(x) ≡ ψ0 (x) − ln (x) and ψ1 (x)

Algorithm 19 (Solving equation ψ0 (x) − ln (x) = z ) (x)= GETNU(z)
This algorithm numerically solves the equation ψ0 (x)− ln (x) = z. The starting point
of used Newton iterative method is selected using approximations of ψ0 (x) so that the
solution is very fast. For a detailed description of the numerical solution see [42].

Proposition 18 (Properties of the function ψ1 (x))

• ψ1 (x) is decreasing and positive for positive arguments.

• xψ1 (x) > 1,∀x > 0.

• ψ1 (x) is depicted in Figure B.2



Appendix C

Calculus with Pdfs

C.1 General Propositions

Proposition 19 (Calculus with pdfs) For any (α, β, γ) ∈ (α, β, γ)∗, the following
relationships between pdfs hold.

Non-negativity f(α, β|γ), f(α|β, γ), f(β|α, γ), f(β|γ) ≥ 0.

Normalization
∫

f(α, β|γ) dαdβ =
∫

f(α|β, γ) dα =
∫

f(β|α, γ) dβ = 1.

Chain rule f(α, β|γ) = f(α|β, γ)f(β|γ) = f(β|α, γ)f(α|γ).
Marginalization f(β|γ) =

∫

f(α, β|γ) dα, f(α|γ) =
∫

f(α, β|γ) dβ.

Bayes rule f(β|α, γ) =

=
f(α|β, γ)f(β|γ)

f(α|γ) =
f(α|β, γ)f(β|γ)

∫

f(α|β, γ)f(β|γ) dβ ∝ f(α|β, γ)f(β|γ).
(C.1)

Proposition 20 (Jensen inequality) Let h be strictly concave function, let f(x)

be a pdf with a nonzero variance. Then E [h(x)]f < h
(

E [x]f

)

.

Proposition 21 (Mean value transformation) Let x be random quantity with a
pdf fx. Let y be random quantity obtained as a result of transformation y = g(x), fy
is pdf of y. Then E [g(x)]fx

= E [y]fy

Proposition 22 (Covariance matrix of a mixture) Let pdf f be a mixture of
pdfs f1 and f2,

f(x) ≡ αf1(x) + (1 − α)f2(x), α ∈ (0, 1), then

cov [x]f = αcov [x]f1 + (1−α)cov [x]f2 +α(1−α)(E [x]f1 −E [x]f2)(E [x]f1 −E [x]f2)
′

C.1.1 Kullback-Leibler Divergence

Kullback-Leibler divergence measures well proximity of a pair of pdfs. Let f, g be
a pair of pdfs acting on a common set x∗. Then, the Kullback-Leibler divergence
D(f ||g) is defined by the formula

D(f ||g) ≡
∫

x∗
f(x) ln

(

f(x)

g(x)

)

dx. (C.2)

For conciseness, the Kullback-Leibler divergence is referred to as the KL divergence.
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C.1.2 Kerridge Divergence

We can rearrange the expression of KL divergence:
∫

x∗
f(x) ln

(

f(x)

g(x)

)

dx =
∫

x∗
f(x) ln (f(x)) dx−

∫

x∗
f(x) ln (g(x)) dx (C.3)

It is clear that the first element does not influence the result when minimizing the
KL divergence with respect to the function g(x). It leads to the notion. Kerridge
divergence:

Let f, g be a pair of pdfs acting on a common set x∗. Then, the Kerridge divergence
K(f ||g) is defined by the formula

K(f ||g) ≡ −
∫

x∗
f(x) ln (g(x)) dx. (C.4)

Proposition 23 (Kerridge and Kullback-Leibler divergence ) Let
∫

flnf < +∞,
then it holds:

Arg min
g

D(f ||g) = Arg min
g

K(f ||g) (C.5)

Proof:

min
g

D(f ||g) = min
g

∫

f ln
f

g
= min

g

{∫

f ln f −
∫

f ln g
}

=
∫

f ln f + min
g

{

−
∫

f ln g
}

Proposition 24 (Kerridge divergence of a weighting sum of pdfs)

K
(

c̊∑

c=1

αcfc(x)
∣
∣
∣

∣
∣
∣ g(x)

)

=
c̊∑

c=1

αcK
(

fc(x)
∣
∣
∣

∣
∣
∣ g(x)

)

(C.6)

Proof:

K
(

c̊∑

c=1

αcfc(x)
∣
∣
∣

∣
∣
∣ g(x)

)

= −
∫ c̊∑

c=1

αcfc(x) ln(g(x)) =
c̊∑

c=1

αc

{

−
∫

fc(x) ln(g(x))
}

Proposition 25 (Kerridge divergence of a product of pdfs)

K
(

f(x, y)
∣
∣
∣

∣
∣
∣ g(x)v(y)

)

= K
(

f(x)
∣
∣
∣

∣
∣
∣ g(x)

)

+ K
(

f(y)
∣
∣
∣

∣
∣
∣ v(y)

)

, (C.7)

where f(x), f(y) are marginal probability densities of f(x, y).

Proof:

K
(

f(x, y)
∣
∣
∣

∣
∣
∣ g(x)v(y)

)

= −
∫

f(x, y) ln
(

g(x)v(y)
)

dxdy =

= −
∫

f(x, y)
(

ln(g(x)) + ln(v(y))
)

dxdy =

= −
∫

f(x, y) ln(g(x))dxdy −
∫

f(x, y) ln(v(y))dxdy =

= −
∫

f(x) ln(g(x))dx−
∫

f(y) ln(v(y)dy
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Proposition 26 (Kerridge divergence of product of independent pdfs)

K
(

w(x)h(y)
∣
∣
∣

∣
∣
∣ g(x)v(y)

)

= K
(

w(x)
∣
∣
∣

∣
∣
∣ g(x)

)

+ K
(

h(y)
∣
∣
∣

∣
∣
∣ v(y)

)

(C.8)

Proof: Simple consequence of the previous Proposition 25, with

f(x, y) ≡ w(x)h(y), f(x) ≡ w(x), f(y) ≡ h(y)

C.2 Dirichlet Multivariate Pdf

C.2.1 Definition

Diα(κ) denotes Dirichlet pdf of α ∈ α∗ ≡
{

αc ≥ 0 :
∑c̊
c=1 αc = 1

}

in the form :

Diα(κ) ≡
∏c̊
c=1 α

κc−1
c

B(κ)
, B(κ) ≡

∏c̊
c=1 Γ(κc)

Γ(
∑c̊
c=1 κc)

.

Agreement 8 We use notion ”statistics” instead of ”parameters” to avoid misun-
derstanding with unknown parameter Θ. Moreover, statistics are often used as para-
meters of pdfs within this text.

C.2.2 Statistics

The statistic κ is a vector with c̊ positive entries.

C.2.3 Properties

E [αc|κ] = α̂c (C.9)

αcDiα(κ) = α̂cDiα(κ+ δ•,c) (C.10)

α̂c =
κc

∑c̊
c=1 κc

(C.11)

Proof:

B (κ+ δ•,c) =

Γ(κc + 1)
∏

k=1,k 6=c
Γ(κk)

Γ (
∑
κk + 1)

=
κc

∏

k=1
Γ(κk)

Γ (
∑
κk)

∑
κk

= B (κ) α̂c

αcDiα(κ) = αc

c̊∏

k=1
ακk−1
k

B (κ)
= α̂c

c̊∏

k=1
α
κk−1+δk,c

k

B (κ+ δ•,c)
= α̂cDiα(κ+ δ•,c)

E [αc|κ] =
∫

αcDiα(κ)dα = α̂c

∫

Diα(κ+ δ•c)dα = α̂c
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Proposition 27 (KL divergence of Di pdfs) Let f(α) = Diα(κ), f̃(α) = Diα (κ̃)
be a pair of Dirichlet pdfs of parameters α ≡ (α1, . . . , αc̊) ∈ α∗ = {αc > 0,

∑

c∈c∗ αc = 1},
c∗ ≡ {1, . . . , c̊}.

Their KL divergence is given by the formula

D(f ||f̃) =
c̊∑

c=1

[

(κc − κ̃c)ψ0 (κc) + ln

(

Γ (κ̃c)

Γ (κc)

)]

− (ν − ν̃)ψ0 (ν) + ln

(

Γ(ν)

Γ(ν̃)

)

ν ≡
c̊∑

c=1

κc, ν̃ ≡
c̊∑

c=1

κ̃c. (C.12)

Moreover it holds:

Arg min
κ̃

D(f ||f̃) = Arg min
κ̃

c̊∑

j=1

[ln (Γ (κ̃j)) − κ̃jψ0 (κj)] − [ln(Γ(ν̃) − ν̃ψ0 (ν)](C.13)

C.3 Truncated Gaussian Distribution

C.3.1 Definition

T N x (M,R, a, b) denotes Truncated Gaussian pdf of scalar x of the form :

T N x (M,R, a, b) ≡
{

Nx(M,R)
J (M,R,a,b)

for x ≥ a and x ≤ b

0 otherwise

The normalizing integral J (M,R, a, b) will be discussed bellow. Truncated Gaussian
distribution is obtained from Gaussian distribution by restricting its support to some
interval (possibly infinite).

C.3.2 Statistics

Statistic M is scalar, Statistic R is positive scalar. Statistics a and b are (possibly
infinite) scalars, fulfilling a < b.

C.3.3 Properties

We do not need to describe this pdf in details. There exists a simple algorithm for
computing the normalizing integral J (M,R, a, b).

Algorithm 20 (Normalization integral of truncated Gaussian distribution)

(J )= TRUNCNORM(M,R, a, b)

There also exist a simple algorithm for evaluating mean value and variance of this
distribution:

Algorithm 21 (Mean and variance of truncated Gaussian distribution)

(E,C)= TRUNCSTAT(M,R, a, b)

For more detailed description of truncated Gaussian distribution and for the for-
mulas for evaluating normalizing integral and the moments, see e.g. [39].
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C.4 Inverse Gamma Distribution

C.4.1 Definition

IGx (α, β) denotes Inverse gamma pdf of positive scalar x of the form:

IGx (α, β) ≡
x−(α+1) exp

(

−β
x

)

Γ (α) β−α

C.4.2 Statistics

Statistics α and β are positive scalars.

C.4.3 Sampling

Sampling from inverse gamma distribution can be simply done using sampling from
gamma distribution. For detailed expressions see e.g. [58].

C.5 Gauss-inverse-Wishart Pdf

C.5.1 Definition

GiWθ,r(V, ν) denotes Gauss-inverse-Wishart pdf of a vector θ and a positive scalar r
of in form:

GiWθ,r(V, ν) ≡
r−0.5(ν+ψ̊+2)

I(V, ν)
exp

{

− 1

2r
tr (V [−1, θ′]′[−1, θ′])

}

. (C.14)

The value of the normalization integral I(V, ν) is described below, together with
other properties of this important pdf.

C.5.2 Statistics

The statistic ν is positive scalar. The statistic V is square, symmetric, positive
definite, extended information matrix with Ψ̊ rows. We often manipulate the matrix
V through its L′DL decomposition. (i.e. with lower triangular matrix L with unitary
diagonal and diagonal matrix D, which fulfill the relation V = L′DL)

Let us split the information matrix V and its L′DL decomposition as follows:

V =

[
bdV bdψV ′

bdψV bψV

]

, bdV is scalar, (C.15)

L =

[

1 0
bdψL bψL

]

, D =

[
bdD 0
0 bψD

]

, bdD is scalar. (C.16)

Next, the matrices L and D can be equivalently expressed with help of the matrix
C, vector θ̂ and scalar bdD as follows:

θ̂ ≡ bψL−1 bdψL ≡ least-squares (LS) estimate of θ (C.17)

C ≡ bψL−1 bψD−1
(
bψL′

)−1 ≡ covariance factor of LS estimate (C.18)
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Proposition 28 (Relation between C and bψV ) It holds:

C = bψV −1 (C.19)

θ̂ = bψV −1 bdψV (C.20)

C.5.3 Properties

Proposition 29 (Alternative expressions of the GiW pdf) GiWΘ(V, ν) has the
following alternative expressions

GiWθ,r(V, ν) ≡ r−0.5(ν+ψ̊+2)

I(L,D, ν)
exp

{

− 1

2r

[(
bψLθ − bdψL

)′ bψD
(
bψLθ − bdψL

)

+ bdD

]}

≡

≡ r−0.5(ν+ψ̊+2)

I(C, bdD, ν)
exp

{

− 1

2r

[

(θ − θ̂)′C−1(θ − θ̂) + bdD
]}

Proposition 30 (Normalization integral)
The normalization integral can be evaluated as follows:

I(L,D, ν) = Γ(0.5ν) bdD−0.5ν
∣
∣
∣
bψD

∣
∣
∣

−0.5
20.5ν(2π)0.5ψ̊ (C.21)

I(C, bdD, ν) = Γ(0.5ν) bdD−0.5ν |C|0.5 20.5ν(2π)0.5ψ̊. (C.22)

Proposition 31 (GiW moments)

cov
[

θ|C, θ̂, ν, bdD
]

=
bdD

ν − 2
C

E
[

θ

r

∣
∣
∣
∣
∣
C, θ̂, ν, bdD

]

=
ν

bdD
θ̂

E
[
1

r

∣
∣
∣
∣C, θ̂, ν,

bdD

]

=
ν

bdD

E
[

r|C, θ̂, ν, bdD
]

=
bdD

ν − 2
≡ r̂

cov
[

r|C, θ̂, ν, bdD
]

=
2r̂2

ν − 4

E
[

ln (r)|C, θ̂, ν, bdD
]

= ln
(

0.5 bdD
)

− ψ0 (0.5ν)

GiWθ,r(C, θ̂,
bdD, ν)

r
=

ν
bdD

GiWθ,r(C, θ̂,
bdD, ν + 2)

Proposition 32 (Update of matrix V ) Let the matrices C, θ̂, L,D, V be defined
according to (C.16), (C.17), (C.18). Then, the operation

bψṼ = bψV + w1ψψ
′, bdψṼ = bdψV + w2dψ

can be rewritten to

C̃ = C − w1

1 + w1ζ
zz′

˜̂
θ = θ̂ +

w2d+ w1(ê− d)

1 + w1ζ
z, where

z = Cψ, ê = d− ψ′θ̂, ζ = ψ′Cψ.
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Proposition 33 (Update of matrix V ) Let the matrices C, θ̂, L,D, V be defined
according to (C.16),(C.17), (C.18). Then the operation

Ṽ = V + wΨΨ′

can be rewritten to

C̃ = C − w

1 + wζ
zz′

˜̂
θ = θ̂ +

wê

1 + wζ
z

bdD̃ = bdD +
wê2

1 + wζ
, where

z = Cψ, ê = d− ψ′θ̂, ζ = ψ′Cψ.

C.5.4 Sampling

Sampling from arbitrary pdf f(θ, r), can be split into two subproblems. According
to the chain rule (Proposition 19):

f(θ, r) = f(θ|r)f(r).

First, we will generate samples from f(r) and the generated samples are then used
in the condition of f(θ|r).

In the case of GiW distribution, f(r) is inverse gamma distribution (Section C.4),
and f(θ|r) is multivariate Gaussian distribution (Section C.6).

f(r|C, θ̂, bdD, ν) = IGr
(

0.5 bdD, 0.5ν
)

(C.23)

f(θ|r, C, θ̂, bdD, ν) = Nθ

(

θ̂, rC
)

(C.24)

Algorithm 22 (Sampling from GiW) (rs, θs)= GIWGEN(C, θ̂, bdD, ν)

1. Take sample from inverse gamma distribution. rs ∼ IG(0.5 bdD, 0.5ν)

2. Take sample from multivariate Gaussian distribution.
(θs)= GAUSSGEN(rs × C, θ̂) (Algorithm 23)

Remarks 12 We store the matrix C in L′DL decomposition. The operation rs × C

then simply consist in multiplying diagonal matrix D with rs.

C.6 Gaussian Multivariate Pdf

C.6.1 Definition

Nθ (M,R) denotes Gaussian pdf of vector θ of the form :

Nθ (M,R) ≡ (2π)−0.5θ̊|R|−0.5 exp {−0.5(θ −M)′R(θ −M)}

C.6.2 Statistics

The statistic M is vector of length θ̊. The statistic R is square, symmetric, positive
definite matrix with θ̊ rows.
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C.6.3 Properties

E [θ|M,R] = M

cov [θ|M,R] = R

Proposition 34 (Transformation of random variable) Let θ be distributed with
N (0, I), then random variable Aθ +B is distributed with N (B,AA′).

C.6.4 Sampling

According to Proposition 34, we can generate sample from N (0, I) (let us denote
it θs0) and than transform it to be sample from N (M,R). The transformation is:

θs =
√
Rθs0 +M

Taking square roots of a matrix can be computationally intensive. We obviously
store the matrix R in its L′DL decomposition. Then

√
R = L′

√
D.

Algorithm 23 (sampling from Gaussian pdf) (θs)= GAUSSGEN(R ≡ L′DL,M)

1. Take sample from Gaussian distribution. θs0 ∼ N (0, I)

2. evaluate θs = L′
√
Dθs0 +M



Appendix D

Estimation of Normal Factors

As this chapter deals with only single factor at a specific time moment, we can omit
the indexes ic;t, i.e.

fic(dic;t|ψic;t,Θic) ≡ f(d|ψ,Θ).

Here only the properties needed in Chapter 6 are mentioned. For a detailed descrip-
tion of this topic see e.g. [10].

D.1 Factor Definition

The normal parameterized factor predicts a real-valued variable d by the pdf

f(d|ψ,Θ) = Nd(θ
′ψ, r), where (D.1)

Θ ≡ [θ, r] ≡ [regression coefficients, noise variance]

Nd(θ
′ψ, r) ≡ (2πr)−0.5 exp

{

−(d− θ′ψ)2

2r

}

(D.2)

= (2πr)−0.5 exp
{

− 1

2r
tr (ΨΨ′[−1, θ′]′[−1, θ′])

}

. (D.3)

Normal factors belong to the exponential family, so that they possess conjugate
prior. This pdf is known as Gauss-inverse-Wishart pdf (GiW ). In the case of known
noise variance r, the conjugate pdf is multivariate Gaussian pdf.

D.2 Form of Posterior Pdf

Gauss-inverse-Wishart pdf is conjugate pdf to normal factors.

π(θ, r|St) ≡ GiWθ,r(Vt, νt)

D.3 Properties

Proposition 35 (Estimation of the normal factor) Let the function

GiWθ,r(V, ν) [Nd(θ
′ψ, r)]

w

have a finite integral, then it holds:
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GiWθ,r(V, ν) [Nd(θ
′ψ, r)]

w
=

I(V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
GiWθ,r(V + wΨΨ′, ν + w) (D.4)

Proof:

GiWθ,r(V, ν) [Nd(θ
′ψ, r)]

w
=

r−0.5(ν+ψ̊+2)

I(V, ν)
exp

{

− 1

2r
tr (V [−1, θ′]′[−1, θ′])

}

×

×(2πr)−0.5w exp
{

− 1

2r
tr (wΨΨ′[−1, θ′]′[−1, θ′])

}

=

=
r−0.5(ν+w+ψ̊+2)

(2π)0.5wI(V, ν)
exp

{

− 1

2r
tr ([V + wΨΨ′][−1, θ′]′[−1, θ′])

}

=

=
I(V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
GiWΘ(V + wΨΨ′, ν + w)

Proposition 36 (Finiteness of integral) The function GiWθ,r(V, ν) [Nd(θ
′ψ, r)]w

has finite integral, iff

w > −ν, w > −1

ζ
, w > −

bdD

ê2 + ζ bdD
, where

ê = d− ψ′θ, ζ = ψ′Cψ.

Proof: It is simple observation that GiWθ,r(V, ν) [Nd(θ
′ψ, r)]w has finite integral, iff

V +wΨΨ′ is positive definite and ν+w > 0. According to Proposition 33, the operation
V + wΨΨ′ can be expressed as

bdD +
wê2

1 + wζ
, C + wczz

′, z = Cψ, wC = − w

1 + wζ
.

The first expression must be positive. bdD+ wê2

1+wζ
> 0, which leads to w > − bdD

ê2+ζ bdD
.

The second expression must be positive definite. C is symmetric and positive definite,
hence there exists the square root C

1
2 : C = C

1
2C

1
2 , which is symmetric and regular. The

second expression can be rewritten to

C
1
2

(

I + wCC
− 1

2 zz′C− 1
2

)

C
1
2 .

Thanks to Proposition 13, it suffices to prove only the positive definiteness of the matrix:

(

I + wCC
− 1

2 zz′C− 1
2

)

.

According to proof of Proposition 14, the condition for the previous matrix to be positive
definite is

0 < 1 + wCz
′C− 1

2C− 1
2 z = 1 + wCz

′C−1z = 1 + wCζ.

Substituting wC = − w
1+wζ

into it, we get expression 1 + wζ > 0.
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Proposition 37 (General factor prediction)

I(V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
=

Γ(0.5(ν + w)) bdD
−0.5w

(1 + wζ)−0.5

π0.5wΓ(0.5ν)
(

1 + wê2
bdD(1+wζ)

)0.5(ν+w)
, where (D.5)

ê ≡ d− θ̂′ψ ≡ prediction error

ζ ≡ ψ′Cψ,

Proof:
According to Proposition 30, the normalizing integral can be evaluated as follows:

I(L,D, ν) = Γ(0.5ν) bdD−0.5ν
∣
∣
∣
bψD

∣
∣
∣

−0.5
20.5ν(2π)0.5ψ̊.

According to Proposition 33, the operation Ṽ = V + wΨΨ′ can be rewritten to

bdD̃ = bdD + w
ê2

1 + wζ
.

We need to evaluate the determinant

| bψD̃| = | bψṼ | = | bψV + wψψ′| =

= | bψL′
√

bψD||I + w bψD−0.5 bψL′−1ψψ′ bψL−1 bψD−0.5||
√

bψD bψL|
Prop.14
︷︸︸︷
=

= (1 + wψ′ bψL−1 bψD bψL′−1ψ) =
∣
∣
∣
bψD

∣
∣
∣ (1 + wψ′Cψ) =

∣
∣
∣
bψD

∣
∣
∣ (1 + wζ)

Now we can use the obtained results in evaluation of the normalizing constant.

J =
I (V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
=

=
Γ(0.5ν + 0.5w)( bdD + wê2

1+wζ
)−0.5ν−0.5w

∣
∣
∣
bψD

∣
∣
∣

−0.5
(1 + wζ)−0.520.5ν+0.5w(2π)0.5ψ̊

(2π)wΓ(0.5ν) bdD−0.5ν | bψD|−0.5
20.5ν(2π)0.5ψ̊

=

=
Γ(0.5ν + 0.5w)

(2π)0.5wΓ (0.5ν)
bdD

−0.5w
(

1 +
wê2

bdD(1 + wζ)

)−0.5ν−0.5w

(1 + wζ)−0.520.5w =

=
Γ(0.5(ν + w)) bdD

−0.5w
(1 + wζ)−0.5

π0.5wΓ(0.5ν)
(

1 + wê2
bdD(1+wζ)

)0.5(ν+w)

Proposition 38 (Factor prediction I)

Iic;t =
Γ(0.5(ν + 1))

[
bdD(1 + ζ)

]−0.5

√
πΓ(0.5ν)

(

1 + ê2
bdD(1+ζ)

)0.5(ν+1)
, where (D.6)

ê ≡ d− θ̂′ψ ≡ prediction error

ζ ≡ ψ′Cψ,

Proof: Simple use of the previous proposition with w=1.
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posterior pdf, 24, 25, 39
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t̊, 23
Θ, 23
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[49] J. Andrýsek, “On identification of probabilistic mixture models with dynamic
weights”, in Proceedings of Abstracts of the 6th International PhD Workshop on
Systems and Control a Young Generation Viewpoint, Ljubljana, October 2005,
p. 8, Josef Stefan Institute.
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