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Space-Variant Restoration of Images
Degraded by Camera Motion Blur

Michal Sorel and Jan Flusser, Senior Member, IEEE

Abstract—We examine the problem of restoration from multiple
images degraded by camera motion blur. We consider scenes with
significant depth variations resulting in space-variant blur. The
proposed algorithm can be applied if the camera moves along an
arbitrary curve parallel to the image plane, without any rotations.
The knowledge of camera trajectory and camera parameters is not
necessary. At the input, the user selects a region where depth vari-
ations are negligible. The algorithm belongs to the group of varia-
tional methods that estimate simultaneously a sharp image and a
depth map, based on the minimization of a cost functional. To ini-
tialize the minimization, it uses an auxiliary window-based depth
estimation algorithm. Feasibility of the algorithm is demonstrated
by three experiments with real images.

Index Terms—Camera shake, deblurring, depth from motion,
image stabilization, multichannel (MC) blind deconvolution,
passive ranging, point spread function (PSF), regularization,
shift-variant, space-variant restoration.

I. INTRODUCTION

UBIJECT to physical and technical limitations, the output
of digital cameras is not perfect and a substantial part of
image processing research focuses on removing various types
of degradations.
One of the frequent degradations is the blur caused by camera
motion, which can be described by the linear relation

z(x,y) = /u(:): — s,y —th(z — s,y —t;s,t)dsdt (1)

where u is an original image, h is called point-spread function
(PSF) or mask, and z is the blurred image. If the PSF does not
depend on the position (z,y) in the image, i.e., h(z,y;s,t) =
h(s,t), the integral becomes convolution and we speak about
space-invariant PSF. In this situation the discrete representation
of h by a matrix is called convolution mask or simply mask.
We will use this term in the general space-variant case, as well
in the sense that the mask is considered for each image pixel
separately.

If we assume a planar scene perpendicular to the optical axis
and steady motion of the pinhole camera! in a plane parallel
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IPinhole camera is an approximation that assumes infinitely small aperture
and neglects diffraction effects. This model is often used in computer vision.

to the scene, it is well known that the PSF is a space-invariant
1-D rectangular impulse in the direction of camera motion. In
general cases, the PSF can be very complex depending on the
camera motion, depth of scene and parameters of the optical
system.

The important task to find the original image u when we know
the blurred image z and possibly the PSF h is called restora-
tion, deblurring or, if h is space-invariant, deconvolution. If
even the PSF is not known, we speak about blind restoration
or deconvolution. Blind restoration from only one image is an
ill-posed problem. However, if we have at least two observations
of the same scene, it gives us additional information that makes
this problem tractable. This situation is denoted as multichannel
(MC) restoration or deconvolution.

In this paper, we solve the problem of multichannel restora-
tion from images blurred by camera motion. We consider the
special case where the camera moves in only one plane parallel
to the image sensor and does not rotate.

In the rest of this section, we give a survey of relevant liter-
ature and at the end we explain the idea behind so called varia-
tional methods we use in our algorithm.

There are many methods for the restoration of a single image
degraded by known space-invariant blur, so called space-in-
variant single channel (SC) nonblind restoration techniques
[1]. Many of them are formulated as linear problems that can
be efficiently solved by elementary numerical algorithms,
some others including important anisotropic regularization
techniques [2], [3] can be reduced to a sequence of linear
problems. Extension of these methods to a multichannel case is
straightforward and many of them can be used in space-variant
situations as well. An application of nonblind restoration in
conjunction with the extraction of so called optical flow for
motion deblurring can be found in [4].

Blind restoration requires more complicated algorithms as we
need to estimate the unknown degradation.

Although a number of SC blind deconvolution algorithms
were proposed [5], [6], their use is very limited even in space-in-
variant case because of a severe lack of information contained
in just one image. Astronomy is a typical application area of
these methods. Recently, a promising approach appeared em-
ploying statistics of the distribution of gradients in natural im-
ages [7]. In the MC blind space-invariant case, i.e., when we
know two or more degraded images and the degradation does
not change throughout the image, much more information is
available. There are a number of methods successfully solving
this issue [8]-[10].

If there are no constraints on the shape of the PSF and the
way it can change throughout the image (general space-variant
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blind restoration), the task is strongly underdetermined. A few
results on this subject reported in literature followed the idea of
sliding-window—PSF must be approximately space-invariant
in a window of reasonable size and the result of identification
is used as a starting point for the identification in subsequent
windows [11]-[13].

In the case of space-variant motion blur, we know more about
the shape of the PSF and so the number of unknowns can be
reduced. The vast majority of algorithms still assumes that the
PSF is space-invariant in a window of reasonable size [14]-[16].
This assumption was also used in algorithms for optical flow
estimation from motion blur, for example, [17] and [18].

If we consider scenes with significant depth variations and
space-variant blur caused by camera motion, these methods are
not suitable as the condition of space-invariance is not satisfied,
especially at the edges of objects. For this case, so far, the only
approach that seems to give relatively precise results are mul-
tichannel variational methods that first appeared in the context
of out-of-focus images in [19]. This approach was adopted by
Favaro et al. [20], [21] who modeled camera motion blur by
Gaussian PSF, locally deformed according to the direction and
extent of blur. This model can be appropriate for small blurs.
Relevant papers using variational techniques can be found also
in the context of optical flow estimation, such as [22].

The idea behind variational methods [19], [20] is as follows.
We know how to describe mathematically (that is how to sim-
ulate) the process of blurring according to (1). In this formula,
the blur is characterized by a PSF that depends on camera set-
tings, depth map of scene and camera motion and we assume
that this relation as well as camera motion and camera settings
are known. The algorithm is looking for such a sharp image and
depth map that after the blurring of the image using the depth
map, give images as similar as possible to the blurred images
at the input of the algorithm. The “similarity” of images is ex-
pressed by a functional that should achieve as small a value as
possible. Thus, the solution of the problem is equivalent to the
minimization of the functional.

Unfortunately, it is by no means easy to apply this idea in
practice. In the case of camera motion blur, we must solve the
following issues.

1) How to express the PSF as a function of depth. For this pur-
pose, we need either to get a description of camera motion
and camera settings at the input or to be able to recover
both from the blurred images themselves

2) Design an efficient algorithm to minimize nonconvex func-
tional we derive

3) We need a reasonable initial estimate of the solution to pre-
vent the algorithm from getting trapped in a local minimum

It turns out that it is especially difficult in the case of a more
general camera motion. This is probably the reason why there
are so few papers considering camera motion blur in this frame-
work. In [20], the authors consider only very simple case of
linear translation. In addition, this translation must be very short
so that the true rectangular impulse could be modeled by the
Gaussian function and the minimization does not get trapped in
a local minimum. The use of the Gaussian is indispensable for
their minimization method and we cannot see any straightfor-
ward way to extend it to the situations where the PSF cannot be
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Fig. 1. Unlike existing methods (left), in the proposed algorithm, the camera
can move along an arbitrary curve in one plane perpendicular to the optical axis
(right).

modeled by the Gaussian; [21] is an extension of [20] to seg-
mentation of moving objects but it keeps the limitations of the
original paper concerning the shape of the PSF.

Our motivation was to enlarge the class of camera motions
where the variational approach can be used. The results are out-
lined in Section II (Contributions).

Next, Section IIT explains how we model camera motion blur.
Section IV introduces notation used for two important linear op-
erations. Then, in several sections, we proceed to the description
of the algorithm, including comments upon the practical issues
associated with its implementation. In Section VI, we discuss
the extension of the algorithm to general camera motion. Fi-
nally, we present three experiments with real images.

II. CONTRIBUTIONS

In this paper, we present a novel algorithm for restoration
from multiple images blurred by camera motion.

We consider the special case when the camera moves along
an arbitrary curve lying in one plane parallel to the image sensor
without any rotations (Fig. 1). This plane must remain the same
for all the input images, which ensures that also the depth map
is common for all of them. On the other hand, the algorithm is
able to deal with a change of camera position between images
(unlike [20]).

We do not consider depth of field effects explicitly. Never-
theless, if the camera settings are the same for all the images,
we can consider depth-of-field effects as part of the “original
image” u. Then our algorithm removes the motion blur and pre-
serves the depth of field. The only condition is that there exist a
flat part of scene in focus (See Section V-A). We also neglect oc-
clusions at depth discontinuities originating in nonzero (finite)
aperture.

At the input, the algorithm needs the blurred images and se-
lection of a window of approximately constant depth by user
input. On the other hand, it needs to know neither how the
camera moves Nor camera parameters.

The proposed algorithm belongs to the group of variational
methods, the idea of which was indicated at the end of the pre-
vious section. The algorithm does not rely on any parametric
shape of the PSF and works for motions along an arbitrary curve
parallel to the image sensor (figure-eight and V-shaped trajec-
tories can be seen in the second and third experiments). This a
significant improvement over previous methods described at the
end of the introduction.

To estimate the camera trajectory that corresponds to to the
shape of PSF, we apply the blind deconvolution algorithm [10]
(Section V-A). We also address the problem that the functional
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we minimize has many local minima and no gradient based al-
gorithm can guarantee global convergence on its own. To solve
this issue, we propose the use of an auxiliary algorithm de-
scribed in Section V-A to get a reasonable initial estimate of
the depth map.

The behavior of the algorithm is demonstrated by three ex-
periments with real images.

III. MODELING OF CAMERA MOTION BLUR

In the proposed algorithm, we use the pinhole camera model
mentioned in the introduction.

To model camera motion blur according to (1), we need to
express the PSF as a function of camera motion and depth of
scene. In case of general camera motion, it can be computed
from the formula for velocity field [23], [20] that gives apparent
velocity of the scene for the point (z,y) of the image at time
instant 7 as
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where d(z,y, 7) is the depth corresponding to point (z,y) and
Q(r)and T(7) = [Tx(7), T, (7), To(7)]T are 3-D vectors of ro-
tational and translational velocities of the camera at time 7. Both
vectors are expressed with respect to the coordinate system orig-
inating in the optical center of the camera with axes parallel to
x and y axes of the sensor and to the optical axis. All the quanti-
ties, except §(7), are in focal length units. The depth d(z,y, )
is measured along the optical axis, the third axis of the coordi-
nate system. The function d is called depth map.

The apparent curve [Z(x,y, ), §(z,y, )] drawn by the given
point (z,y) can be computed by the integration of the velocity
field over the time when the shutter is open. Having the curves
for all the points in the image, the 2-D space-variant PSF can be
expressed as

h(z,y;s,t) = /5(8 —Z(x,y,7),t — y(z,y,7))dr  (3)

where 6 is the 2-D Dirac delta function.

We will show that in the considered special case, the PSF can
be expressed explicitly using the knowledge of the PSF for one
fixed depth of scene.

If the camera does not rotate, thatis 2 = [0, 0, 0], and moves
in only one plane perpendicular to the optical axis (1. (7) = 0),

(2) becomes
1 { —T.(7) } . @)

V@) = g [T ()

In other words, the velocity field has the direction opposite to
camera velocity vector and the magnitudes of velocity vectors
are proportional to inverse depth. Moreover, depth for the given
part of the scene does not change during such a motion (depth is
measured along the optical axis and the camera moves perpen-
dicularly to it), d(x,y,7) is a constant, and consequently the
PSF simply follows the (mirrored because of the minus sign)
curve drawn by the camera in image plane. The curve only
changes its scale proportionally to the inverse depth.

The same is true for the corresponding PSFs we get according
to relation (3). Let us denote the PSF corresponding to an object
of the depth equal to the focal length as h. Note that this “pro-
totype” PSF also corresponds to the path covered by the camera.
Recall that the depth is given in focal length units. After linear
substitution in the integral (3), we get

h(z,y;s,t) = d*(z,y)ho(sd(z, y), td(z, y)). 3)

Equation (5) implies that, if we recover the PSF for an ar-
bitrary fixed depth, we can compute it for any other depth by
simple stretching in the ratio of the depths.

IV. NOTATION

In the case of the general space-variant linear degradation
according to (1), we can look at the involved linear operation as
convolution with PSF that changes with its position in the image
and speak about space-variant convolution. For this operation,
we introduce notation

ux, hz, y] = / u(z—s,y—t)h(z—s,y—t;s,t) dsdt. (6)

Note that we use subscript v to distinguish from ordinary space-
invariant convolution often denoted by asterisk.

We will also need the operator adjoint to space-variant con-
volution that can be written as

u®,hz,y = /u(:v — s,y —t)h(z,y; —s,—t) dsdt. (7)

V. ALGORITHM

In this and the following sections, we detail the proposed al-
gorithm.
At the input, the algorithm requires multiple blurred images
and specification of a region of approximately constant depth by
user input. The user must also specify an upper-bound for the
size of the PSF. The algorithm works in three phases.
1) PSF estimation at fixed depth using the blind deconvolu-
tion algorithm [10] (Section V-A).

2) Depth map estimation using the method described in Sec-
tion V-B.

3) Variational minimization to get the sharp image and a more
precise depth map (Sections V-C to V-G).

Recall that the camera does not rotate and moves in only one
plane parallel to the image sensor. This plane is common for
all the images, which ensures that the depth map is common,
as well. We need to know neither how the camera moves nor
camera parameters.

A. PSF Estimation at Fixed Depth

In the first phase of the proposed algorithm, the user chooses
a section of the image where depth variations are negligible.
It implies that the blur is approximately space-invariant within
this section and can be modeled by convolution. We apply the
blind deconvolution method [10] to estimate the PSF valid for
the depth corresponding to this part of the scene. This method
requires an upper-bound for the size of the PSF at the input.

Let us denote this depth as dy. Since we usually do not know
its real value, the depth map estimate we are getting in the fol-
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lowing phases of the algorithm is relative, that is correct up to a
scale factor. This relative inverse depth map will be denoted as
w, with values

do
d(z,y)

In other words, its values give the ratio of the depth of the section
the user chose and the true depth for the point (z,y). We will
see later that for restoration purposes the relative depth map is
sufficient.

Suppose for the moment that we know a correct depth map
w. We can use the relation between PSFs for different depths (5)
and get the space-variant PSF for the whole image. We denote
this by the operator h,(w), where p is an image number. Thus,
using notation (6), u %, h,(w) simulates the blurring of the
image p.

To conclude the description of the first phase of the algo-
rithm, we should remark that for numerical reasons, the user
should choose a section that is as close to the camera as pos-
sible. Otherwise, the matrix representing PSF must be enlarged
by a large factor for close objects and we loose precision. An-
other important consideration is that this section should be in
focus, that is blurred only by camera motion. If it is simultane-
ously out-of-focus, the algorithm [10] does not work properly.
The reason is that the PSFs have a common factor with respect to
convolution and the deconvolution is ambiguous. Consequently,
we are not able to separate motion and out-of-focus blur, which
is crucial for our algorithm. On the other hand, the scene can
have a small depth of field as illustrated in the third experiment.
The only condition is that there must be a suitable flat part of
the scene which is in focus.

W(:I?y) =

B. Window-Based Estimation of the Depth Map

In the second phase of the algorithm, we compute an initial
rough estimate of the depth map using a simple method based on
the assumption that blur is space-invariant in a neighborhood of
each pixel. In other words, the scene is assumed to be piecewise
planar. The method we used can be described, as follows.

Let us denote the blurred images at the input as z,,. Suppose
we are able to compute 1 (w) and ho(w) for an arbitrary inverse
depth w. Now we take w as scalar value and h; are space-in-
variant PSFs. Then, we compute

(21 % ha(w) — 22 % hy (w)]? (8)
for a sequence of values w covering the interval of possible in-
verse depths. Experiments have shown that it is sufficient to take
the step corresponding to change in the support of the PSF of
about 0.1 pixel. Obviously, if there is no noise and w is cor-
rect, the value of (8) should be zero because z; = u * hy(w),
zy = u * ho(w) and convolution is commutative. In practice,
for every pixel, the algorithm simply takes w minimizing the
average value of (8) over some finite window. Note that the size
of the window must be significantly larger than considered max-
imal support of PSF. In addition, if we have an estimate of noise
levels o1 and o9 in images z; and z, it proved beneficial to sub-
tract o3 ||hq (w)]|*+0%||h2(w)||? from (8), to compensate for the
bias produced by the noise. Details can be found in [24].
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We can ask whether it is possible to use the depth map we
have got directly for restoration. The answer is that in most sit-
uations it results in unacceptable artifacts, as shown later in our
experiments [Fig. 4(a)]. Nevertheless, this depth map can be
used as a reasonable initial position for the minimization de-
scribed in the following sections.

C. Variational Minimization

Recall that the process of blurring can be modeled using
space-variant convolution, which can be written in simplified
manner as (6). Then the third phase of the proposed algorithm
can be described as minimization of cost functional

P

B, w) = 3 3 [l by (w) = 2, + 2 Q1) + A B(w)
p=1

)

with respect to sharp image u and the relative inverse depth map
w defined in Section V-A. As we already mentioned, the depth
map is the same for all the images, because of the constraints
placed on the camera motion.

The first term of (9), called error term in the rest of this paper,
is a measure of difference between the inputs, i.e., blurred im-
ages z,, and the image u blurred according to blurring model
using information about depth of scene w. The size of the dif-
ference is measured by Lo norm ||.||. The inner part of the error
term

ep = Wy hy(W) — 2, (10)
is nothing else than the matrix of error at the individual points
of the image p.

For image p, operator h,(w) gives the space-variant PSF cor-
responding to camera motion and to the depth map represented
by w as described in Section V-A. Note that k), incorporates a
possible shift of the camera between the images.

Regularization is a standard method to achieve satisfactory
solution of problems involving inversion of ill-conditioned op-
erators such as the convolution with space-variant PSF. The role
of regularization terms is to make the problem well-posed and
incorporate prior knowledge about the solution [25].

Thus, Q(u) is an image regularization term which can be
chosen to properly represent the expected character of the image
function. For the majority of images a good choice is total vari-
ation (TV) Qrv (u) = [ ||Vu]|, where Vu denotes the gradient
of u. The size of the gradient is integrated over the whole area
of the image. Very good anisotropic denoising properties of the
total variation were shown by Rudin et al. [2]. A reason why TV
works so well for real images is that the total variation favors
piecewise constant functions and in real images object edges
create sharp steps that appear as discontinuities in the intensity
function.

Tikhonov regularization term Q>(u) = [||Vul|? can be
more appropriate for scenes without sharp edges. In turn, an
issue with Tikhonov regularization is that it tends to oversmooth
sharp edges because of the square of the image gradient that
penalizes too much the gradients corresponding to edges. For
more detailed discussion of image regularization, see [1], [26],
and [27].
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(a) 870 x 580 image blurred by periodic horizontal motion

e

(c) ground truth image

Fig. 2. We took two images from the camera mounted on device vibrating in
(a) horizontal and (b) vertical directions. For both images, the shutter speed was
set to 5 s and aperture to F/16. For comparison, the third image was taken
without vibrations serving as a “ground truth.”

Similarly, we can choose a convenient depth map regulariza-
tion term R(w) according to the character of the depth map.
Again TV and Tikhonov regularization are good candidates.

D. Gradient of the Cost Functional

In theory, to minimize the cost functional (9), we could apply
simulated annealing [19], which guarantees global convergence.
In practice, however, it would be prohibitively slow. For efficient
minimization, we need to know at least the gradient (Fréchet

(a) sections of images Fig. 2(a) and (b) used for the estimate of PSFs
were taken from areas at the juice box on the right (50 X 54 pixels,

5X enlarged)

(b) 11 x 11 PSFs computed from images (a)

(c) another section from the proximity of image center used for
computation of PSFs (d) (46 x 59 pixels, 5X enlarged)

(d) 11 x 11 PSFs computed from images (c)

Fig. 3. Algorithm needs an estimate of PSFs for at least one distance from
camera. For this purpose, we cropped a section from the right part of images
Fig. 2(a) and (b), where the distance from camera was constant and computed
PSFs (b) using blind space-invariant restoration method [10]. For comparison,
we computed (d) PSFs from (c) sections taken from the image center. We can
see that, in agreement with our model, (d) the PSFs are a scaled down version
of (b) PSFs.

derivative) of the functional. It equals the sum of the gradients
of individual terms. First, we cover the gradients of the regular-
ization terms.

The gradient of any functional of form [ x (||Vul|), where &
is an increasing smooth function, can be expressed [28] as

—div (Mvu) .

11
[Vl (an

In this equation, the function x’ is the derivative of x. For Q2
and Qrvy, we get

% = —divVu = —V?u (12)
Qrv . Vu
ou — W (nwn) (%

where the symbol V2 denotes Laplacian operator and div the
divergence operator. The gradient of R(w) we get by simply
replacing u with w in (11)—(13).

To express gradients of the error term, now denoted as ®, we
take advantage of the notation (7). The gradients of the error
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(b) depth map got by auxiliary algorithm (8), error averaged by 7 X 7
window, depth map finally smoothed by 23 X 23 median filter

Fig. 4. Tllustration of the fact that we cannot use simple depth recovery methods
directly for restoration. We can see many visible artifacts in all parts of the image
despite of the heavy smoothing of the depth map.

term ® in subspaces corresponding to image u and depth map
represented by w can be expressed as

00 &

$=2 » @ h (14)
o r Ol )

e =1 Z ” 15)

where (Oh,(w)/Ow)[z,y; s,t] is the derivative of the PSF re-
lated to image point (z, y) with respect to the value of w(z,y).
The proof of these formulas can be found in [24].

Notice that the computation of gradients (14) and (15) does
not take much longer than the computation of the cost functional
itself. They consist only of point-wise multiplication, point-wise
subtraction and two types of linear matrix operations (6) and (7).
These two linear operations themselves consist only of scalar
products of vectors. All these operations can be highly paral-
lelized since basically the value can be computed in each pixel
separately.

We should mention the actual implementation of h,(w)
and Oh,(w)/Ow we used. For the considered special case
of camera motion, space-variant PSF h,(w) consists of the
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values of h,(w) standing for space-invariant PSF (mask) for
given inverse depth w. These masks are precomputed for a
sequence of values of w with constant step A, i.e., we store
hp(kAy) for an interval of indices k. During the minimization,
intermediate masks are computed by linear interpolation as

(2] 2w (|
() o

Thanks to linearity, the computation of (6) and (7) for an arbi-
trary mask takes only about twice the amount of time than for a
mask we have stored.

Similarly, dh,(w)/Ow is based on dh,(w)/Ow which is
computed from masks stored in another array generated from
hp (k) by taking symmetrical differences of adjacent entries.
Again, we use linear interpolation to get the derivatives that
are not stored. With higher precision, we can get them directly
by application of third-order polynomial fitting filters [29]
on hy(ka,). Note that the derivatives could by computed
analytically using (5) but the way we have just described turned
out to be simpler to implement and faster.

Both types of arrays are precomputed for all the images.

E. Minimization of the Cost Functional

Finding the minimum of the cost functional is a high-dimen-
sional nonlinear problem with a huge amount of local minima,
especially in the subspace corresponding to variable w.

Our experiments confirmed that a reasonable choice of initial
depth map estimate is essential to prevent the algorithm from be-
coming trapped in a local minimum. For this purpose we used
the algorithm described in Section V-B. Let us denote its re-
sult as w”. Note that we also tested random initialization of the
depth map but as a rule the minimization resulted in a number
of artifacts. Constant initialization did not work at all.

Next, we make use of a sort of alternating minimization (AM)
algorithm [13], which basically iterates through minimizations
in subspaces corresponding to unknown matrices u and w. For
reasons explained later, another minimization over the image
subspace with different image regularization constant A/ and a
higher number of iterations follows at the end of the algorithm.

Algorithm
1)forn =1:N,

2) u" = arg min, E(u,w" 1)

"w)

3) w" = argminy E(u
4) end for

5) uMNotl = arg min, E(u, wv)

Note that steps 2), 3), and 5) itself consist of a sequence of
iterations.

In the following paragraph, we will discuss the minimization
methods used in respective subspaces.

Minimization of functional (9) with respect to u is the well
known and well examined problem of nonblind restoration
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[1], [13]. If the regularization term @Q(u) is quadratic as in the
Q- case, the whole problem is linear and we use simple and
relatively fast conjugate gradient method [gradients (12) and
(14) are obviously linear with respect to u]. In case of Qrv,
matters become more complicated. However, even for this
case there are sufficiently efficient algorithms which usually
reduce the problem to a sequence of linear problems. We have
chosen the approach described in [3]. Note that the authors
originally designed their algorithm for denoising and space-in-
variant restoration problems. Nevertheless, the space-invariant
convolution is treated as an almost general linear operator and
since the space-variant convolution satisfies assumptions of
their method as well, all the arguments are valid and all the
procedures can be modified to work with the space-variant case,
as well. In a very simplified manner, the idea is as follows.

Let u,, be the current estimate of the image minimizing the
cost functional (9) for a fixed w™~!. We will replace the regu-
larization term @ = Qry = [ ||V(u)|| by quadratic term

1 1

3 | T IV + 9l )
Obviously, it has the same value as )7y in u,,. The right term
of (17) is constant for now and consequently it does not take part
in actual minimization. We have got a “close” linear problem

1 2 1 2

W41 = argmin o pz::l llep |l +/\u/ M [Vul|? (18)
which becomes a new estimate u,,,1. It can be shown [3] that
u,, converges to the desired minimum for m — oo. For nu-
merical reasons, we take max(e, ||Vu,||) in place of ||[Vu,,||
in (18). The minimization is not very sensitive to the choice of
¢ and for common images with values in the interval [0,1] can
be set to something between 0.001 and 0.01.

Here, we should stress that the use of the conjugate gradient
method is crucial for the success of the minimization.

In turn, in the subspace corresponding to depth map we can
afford to apply simple steepest descent algorithm. The optimum
step length in one direction can be found by the interval bisec-
tion method. In this subspace, the convergence turned out to be
sufficient to get satisfactory results.

Note that, in both subspaces, we can use TV regularization
with very little slowdown since the additional cost of the matrix
norm computation is not high compared to space-variant con-
volution in each step of the minimization algorithm.

Finally, we should mention that we carried out experiments
with both types of regularization (Tikhonov and TV) in both
subspaces. The choice of image regularization term Q(u) does
not seem to have much influence on convergence properties of
the minimization and we can freely choose the type that works
better for our application. In turn, the use of TV regularization
for depth map seems to slow down the convergence to some
extent. In most cases we can recommend TV regularization for
the image and Tikhonov regularization for the depth map.

F. Scheme of Iterations

First note that this section can be skipped in the first reading
as it describes some details of our implementation.

The algorithm consists of three levels of iterations. Experi-
ments showed that the result of minimization and the speed of
convergence depends on the number and order of these itera-
tions. To describe the whole sequence, we introduce notation
for the number of iterations of particular subproblems.

The outermost level is given by the number of times, the al-
gorithm alternates between the subspaces u and w. Recall that
it is denoted as N, in the description of the algorithm.

The minimization over the image u depends on the type of
regularization. In case of Tikhonov regularization, we apply the
conjugate gradient method consisting of a certain number of it-
erations denoted as N,,. If we use TV regularization, the min-
imization consists of the sequence of linear subproblems (18)
solved again by conjugate gradient method. Then, Ny refers
to the length of this sequence and N, relates to the number of
iterations of conjugate gradient method used for the minimiza-
tion of the subproblems.

As regards the subspace corresponding to unknown w, N,
stands for the number of direction changes of the steepest decent
algorithm.

Finally, we can see that at the end of the algorithm (line 5)
we repeat certain number of iterations over the image subspace,
this time with the different value of image regularization con-
stant Af. Analogously to line 2, we will denote the number of
iterations as N, and NJ.

Put together, the whole sequence of iterations will be de-
scribed as

N, x (Npy x Ny + N,,) + Ni,, x N/

We tested a large amount of possible combinations of these
parameters and deduced several general rules. First, it is not effi-
cient to simply minimize over image subspace as far as possible,
then over depth map subspace, etc. It has turned out that the min-
imization is much faster if we make only some small number of
iterations in each subspace. A good choice that worked for all
our experiments (even for those not included in this paper) was
N, = 8 and N,, = 10. Interestingly, in the case of TV image
regularization it is sufficient to set Npy = 1.

The reason why we need the final minimization over the
image subspace, is that the alternating minimization is faster if
used with more image regularization. Therefore, we can use a
larger value of )., which naturally results in somewhat “softer”
image and finally sharpen the image by running another mini-
mization over the image subspace with less regularization A7
and a higher number of iterations. We stress that this time it is
necessary to repeat the minimization (18) several times to get
what we want.

Thus, a typical description of iterations can look like 20 x
(1x8+10)+5 x 25. We use it in all the experiments presented
in this paper.

G. Choice of Regularization Parameters

Unfortunately, it seems difficult to apply known approaches
for estimation of regularization parameters [30] directly to our
problem. Nevertheless, a possible direction of future research
could be the application of generalized cross-validation (GCV)
similarly to [31] and [32]. GCV is based on the “leave-one-
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(b) Ay = 1072

Fig. 5. Depth maps produced for two different levels of depth map regulariza-
tion. In both cases, minimization started from depth map Fig. 4(b) with image
regularization constant A,, = 104,

out” principle which basically takes the regularization param-
eter which is most successful in guessing adjacent points. The
difficult part is the estimation of eigenvalues of the operator cor-
responding to space-variant convolution.

Selection of depth map regularization parameter seems to be
even harder to solve due to the nonlinearity of the problem.

The papers working along similar lines [19]-[21] do not ad-
dress the problem of regularization parameters at all.

In our implementation, we set the parameters by trial and
error method as well. Fortunately, the algorithm is not very sen-
sitive to the choice of these constants and if they work for one
image with given noise level and amount of blur, it will prob-
ably work for other images in the same application, as well.

Another aspect of the issue with the regularization parameters
is that we do not have just one correct answer as to what the
best solution is. There is always a trade-off between sharpness
of the image and noise reduction. We can choose sharper and
more noisy (smaller values of \,,) or softer and less noisy image
(larger values of A,).

VI. EXTENSION TO GENERAL CAMERA MOTION

If the camera motion and camera parameters (focal length,
resolution of the sensor) are known, the proposed algorithm
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(b) restoration using depth map 5(b)

Fig. 6. Results of restoration. We can see that we can get good restoration for
different degrees of depth map regularization. For comparison, see ground truth
image Fig. 2(c). In both cases Af = 107%.

seems to be extendible to the case of general camera motion
where it is necessary to consider all six possible degrees of
freedom (DOF) [24]. As this case requires further investigation,
we just summarize very briefly the main differences with respect
to the special case we have described in this paper. We include
it mainly to illustrate a possible direction of future research.
The functional remains the same, except the PSFs h,,(w). The
main issue arises from the fact that h,, is a function of not only
depth but also of coordinates (x,¥). In other words, different
points of the scene draw different apparent curves during the
motion even if they are of the same depth. In addition, the depth
map is no longer common for all the images and consequently,
for p > 1, it must be transformed to the coordinate system of
the image p before computing h,, using (2) and (3). The same is
true in the auxiliary algorithm for the estimation of initial depth
map, where the convolution becomes space-variant convolution.
The formulas (14) and (15) hold, in general cases, as well
[24], and so the main issue remains how to compute h,, and its
gradient for arbitrary (z,y). Since we cannot store it for every
possible (z,y), a reasonable solution seems to store them only
on a grid of positions and compute the rest by interpolation.
The density of this grid will depend on application. However,
the numerical integration of the velocity field can be quite time-
consuming even for a moderate size set of coordinates.
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(a) 800x 500 image blurred by space-variant motion blur (first image)

(b) 800 x 500 image blurred by space-variant motion blur (second
image)

Fig. 7. We took two images from the camera mounted on the framework lim-
iting camera motion to one vertical plane (red channel). For both images, the
shutter speed was set to 1.3 s and aperture to F'/22.

In turn, a nice property of this approach is that, once all the
PSFs are precomputed, both the depth map estimate and mini-
mization do not take much longer than in the case of the trans-
lational motion described in previous sections.

VII. EXPERIMENTS

We present three experiments with real images. All of them
were taken as RAW files by a digital SLR camera mounted
on a framework that limits motion or vibrations to one vertical
plane. We work with red channel (the first experiment) or green
channel (the second and third experiments), scaled down by a
factor of four.

The first experiment documents behavior of our algorithm
for images blurred by 1-D harmonic motion of the camera. The
scene was chosen relatively simple but so that the extent of blur
varies significantly throughout the image.

We took two images [Fig. 2(a) and (b)] (red channel) from
a camera mounted on the device vibrating approximately in
(a) horizontal and (b) vertical directions, both with shutter speed
T = 5 s. Note that such 1-D motions were considered in [14] for
flat scenes. To achieve a large depth-of-field, we set f-number to
F/16. The third image [Fig. 2(c)] was taken without vibrations
and we use it as ground truth.

In the first phase of the algorithm, we took two small sections
[Fig. 3(a)] from the right part of the input images and com-

(a) sections of images Fig. 7(a) and (b) used for the estimate of
PSFs taken from the foreground part of the image (353 X 167
pixels, 2x enlarged)

(b) 15 x 15 PSFs computed from images (a)

(c) another section from the upper-right corner of the LCD screen in
the background (67 x 54 pixels, 3 enlarged)

(d) 15 x 15 PSFs computed from image sections (c)

Fig. 8. Algorithm needs an estimate of PSF for at least one distance from
camera. We took a central part of the images in Fig. 7(a) and (b) where the de-
gree of blur was approximately constant and computed PSFs (b) using space-in-
variant blind restoration method [10]. For comparison, we computed (d) PSFs
from (c) background sections. We can see that in agreement with our model, (d)
the PSFs are a scaled down version of (b) PSFs.

puted PSFs [Fig. 3(b)] using space-invariant blind restoration
algorithm [10] (with parameters A = 1000, ¢ = 0.1, v = 10,
support of both PSFs was set to 11 x 11 pixels). Then, we pre-
computed PSFs using relation (5) for w = 0..1 with step 1/500,
that is we store altogether 501 PSFs.

To demonstrate the space-variance of the blur in our images
we took another section [Fig. 3(c)] from the image center (bear
in waterfall) and computed PSFs [Fig. 3(d)], again using the
method [10]. We can see that the extent of the blur is about half
compared to the PSFs [Fig. 3(b)] which is in agreement with our
model.

In the second phase, we got an initial estimate of depth map
[Fig. 4(b)]. In the algorithm, the error was averaged by a 7 x 7
window. Afterward, the result was smoothed by 23 x 23 median
filter. Direct restoration using this depth map results in strong
artifacts in the whole area of the image, as shown in Fig. 4(a).

Next, we applied the minimization procedure from Section
V-E. Figs. 5 and 6 show depth maps and restored images for two
different levels of depth map regularization. In both cases, we
used the same image regularization constant \,, = 10~ for the
alternating minimization and \{ = 10~* for final restoration.
The image regularization constant does not have much influ-
ence on the produced depth map. The influence on the restored
image is well described in literature [1]. We have visually al-
most undistinguishable results for different depth maps. In the
following experiment, we will show that in case of more com-
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(@ Ay =106
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Fig. 9. Depth maps computed from the blurred images of Fig. 7(a) and (b) for
two different levels of Tikhonov depth map regularization.

plex scene we must choose the depth map regularization con-
stant more carefully.

The second experiment was set up to show limitations of the
proposed algorithm. The scene is much more complex with a
lot of small details and there are many depth discontinuities.
Also the camera motion is more complex. It consists of a flower
placed in front of an LCD. There is a white wall with almost
no texture in the background. The structure of the experiment is
similar to the previous one.

Images [Fig. 7(a) and (b)] (green channel) were taken from
the same device as in the previous experiment. This time the
shutter speed was set 77 = 1.3 s and f-number to F'/22. We
made the framework quiver by a random impulse of hand and
took two images in a rapid sequence. Again, the third image
[Fig. 10(c)] was taken by motionless camera and we use it as
ground truth.

The same way as in the previous experiment, we computed
the PSFs for one distance from camera using algorithm [10]
(with parameters A = 1000, e = 0.1 and v = 10 for the larger
mask of size 15 x 15and A = 10%, ¢ = 0.1 and ~v = 10 for the
smaller mask of size 11 x 11). For this purpose, we chose the
area close to the image center with the most blurred blossoms
Fig. 8(a). Resulting masks are in Fig. 8(b). For comparison, we
cropped sections Fig. 8(c) and computed masks Fig. 8(d) cor-
responding to the upper-right corner of the LCD screen in the
background part of the image. Again, we can see that (5) ap-
proximately holds.
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(a) restoration using depth map 9(a)

(b) restoration using depth map 9(b)

(c) ground truth image

Fig. 10. Results of restoration. We can see that (a) lesser depth map regulariza-
tion may result in artifacts in the areas of weak texture (wall in the background).
A higher degree of (b) regularization caused more visible artifacts on the edges
(edge between blossoms near the right edge of the LCD screen). For compar-
ison, the third image was taken at rest serving as “ground truth.”

Then we applied (8) to get an initial estimate of depth map
for the minimization. Figs. 9 and 10 give results of the whole
algorithm for two degrees of depth map regularization. Again,
in both cases, we used the same image regularization constant
Au = 1073 for the alternating minimization and A/ = 10~* for
final nonblind restoration.

We can see that if we use less regularization, there are vis-
ible wave-like artifacts on the wall in the background. On the
other hand, if we use more regularization, it pronounces visible
ringing effects in the places where the distance from the camera
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(a) sections of images Fig. 12(a) and (b) used for the estimate of PSFs
were taken from the blossom close to the image center (83 X 73 pixels)

(b) 11 x 11 PSFs computed from imageg (a)

(c) Depth maps computed from blurred images Fig. 12(a) and (b) using
Aw = 1076

Fig. 11. PSFs computed in the first phase of the algorithm from sections of
images Fig. 12(a) and (b) using the blind space-invariant restoration method
[10].

suddenly changes. Sometimes we must make a compromise ac-
cording to the situation. Note that some error cannot be avoided
in principle without taking into account occlusions present on
the edges of objects [33], [34]. It is probably one of reasons why
there are some visible artifacts close to the edges.

We should also remark that the depth map estimate is not very
good in this case. The main reason is the complexity of the scene
that results in poor performance of the auxiliary algorithm for
initial depth map estimation. Fortunately, in most cases, it does
not affect restoration seriously.

In the third experiment, we consider the interesting case of
large aperture (F/4), which results in small depth-of-field. The
scene, as well as camera motion, are again quite complex. We
work with green channels, reduced in half to 870 x 580 pixels.
The scene contains blossoms in focus and some leaves around it
that are out-of-focus. It is a setup typical for macro photography.
Our goal is to remove camera shake but to preserve the depth of
field.

The experiment was carried out the same way as the previous
one. The PSF is recovered from the blossom area [Fig. 11(a)].
Remark that this is the only area we can use since this is the only
area in focus as discussed in Section V-A. Here, we present the
result of minimization with A, = 10~ and \,, = 10~5.

(a) image blurred by both out-of-focus and motion blur (first image)

(b) image blurred by both out-of-focus and motion blur (second
image)

(c) motion blur was removed, depth-of-field is preserved

(d) ground truth image

Fig. 12. We took images (a) and (b) with the aperture set to F'/4 to achieve
small depth-of-focus. (c) The algorithm removed the motion blur. The image
(d) was taken without vibrations.

An important conclusion is that the depth map estimate is
sufficiently precise even in the out-of-focus areas. It may be
less precise than in the areas in focus but the human eye is less
sensitive to small deviations in the blurred parts of the image.

VIII. CONCLUSION

We have presented an algorithm for image restoration and
simultaneous estimation of depth map from multiple images of
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the same scene blurred by camera motion. We considered the
special case where the camera moves in one plane perpendicular
to the optical axis. This type of motion is significantly more
complex than those considered in previous literature. We have
shown that the algorithm works well with real images.

There are two important directions of future research.

First, we have not considered finite-aperture effects in a full
scale. As discussed in Section V-A, in the case of limited depth
of field, the algorithm works only if there is a convenient flat
part of the scene in focus. In this case, the algorithm removes
the camera shake but preserves the depth of field. A possible
direction of future research would be to remove the out-of-focus
blur as well.

Another interesting problem is the extension to general
camera motion. Some ideas on this subject were discussed in
Section VI.
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