
The European Logarithmic Microprocessor
J. Nicholas Coleman, Chris I. Softley, Member, IEEE, Jiri Kadlec, Rudolf Matousek,

Milan Tichy, Member, IEEE, Zdenek Pohl, Antonin Hermanek, Member, IEEE, and Nico F. Benschop

Abstract—In 2000 we described a proposal for a logarithmic arithmetic unit, which we suggested would offer a faster, more accurate

alternative to floating-point procedures. Would it in fact do so, and could it feasibly be integrated into a microprocessor so that the

intended benefits might be realized? Here, we describe the European Logarithmic Microprocessor, a device designed around that unit,

and compare its performance with that of a commercial superscalar pipelined floating-point processor. We conclude that the

experiment has been successful, and that for 32-bit work, logarithmic arithmetic may now be the technique of choice.

Index Terms—High-speed arithmetic, emerging technologies, instruction-set design, SIMD processors, design studies, logarithmic

number system.

Ç

1 INTRODUCTION

A new microprocessor has been developed. Reliant for
the execution of 32-bit real operations on a logarithmic

arithmetic unit, such operations are performed substantially
faster and also somewhat more accurately than with the
floating-point (FLP) system. An operand is represented as its
base-2 logarithm, itself a fixed-point value and so capable of
multiplication, division, and square root in minimal time, and
in the case of multiplication and division with no rounding
error. Using an original approximation technique, addition
and subtraction are carried out with speed and accuracy
similar to that of FLP arithmetic. We described these
techniques in [1], [2], to which reference should be made as
the background to this work.

This device has been manufactured, integrated into a
development system, and comprehensively evaluated. We
envisage that applications for it will be in embedded
systems of some numerical complexity, such as the more
advanced digital filters and graphics systems. Inferences
from [1] were that a significant reduction in cycle count may
be expected in scalar codes, with about 6 dB better accuracy.
However, a great many other factors will impinge in
practice. Will the expected results be obtained in reality,
and indeed will the new techniques work at all?

We begin, for completeness, with a short restatement of
the techniques on which the device is based. It will be

evident that a logarithmic ALU has little in common with
an FLP one, and it is also true that conventional micro-
processor architecture is adapted to deploy an FLP unit to
best advantage. This raises a dilemma: does one simply take
an FLP microprocessor and substitute a logarithmic ALU,
forgoing some significant advantages that the logarithmic
number system (LNS) may offer, or should one invest the
substantial effort of reworking the microprocessor design
accordingly? Among the few authors, including ourselves,
who have considered this issue, the consensus is for the
latter, and we next discuss the architectural issues relevant
to the integration of the new ALU in the most favorable
way.

With regard to accuracy, we had presented in [1] a series
of simulations of the proposed ALU, in which we predicted
its maximum and average error, and illustrated its typical
performance on arithmetic kernels. We now revisit this
experiment, this time running on the microprocessor itself,
and show an almost identical set of results to that predicted.

Regarding speed, we had made crude predictions based
on the cycle counts of the basic operations, but had not
considered the many additional factors coming into play
when the arithmetic unit is integrated into a processor. As
we now have such a device, we are in a position to evaluate
these practicalities, and for this purpose we chose an
industry-standard superscalar pipelined FLP processor for
comparison. Although the two devices had different
arithmetic systems and supporting architectures, they were
otherwise, so far as possible, similar. We present a simple
analysis of the two devices to show that the predictions in
[1] regarding scalar and peak vector performance are likely
to hold in practice.

Theoretical processing rates, however, are an unreliable
indicator of the behavior of a real device. We finish,
therefore, with two case-study applications, both on a
substantial scale and representative of real-world problems.
Each application is programmed in optimized assembly
language and run on the two processors. After measuring
the speed and accuracy of each implementation, we analyze
the dynamics of the architectural complex in order to isolate
the contribution made by the different arithmetic systems to
the results.

We show that the logarithmic arithmetic system used on
the ELM has been instrumental in delivering an overall

532 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

. J.N. Coleman is with the School of Electrical, Electronic and Computer
Engineering, The University, Newcastle upon Tyne, NE1 7RU, UK.
E-mail: j.n.coleman@ncl.ac.uk.

. C.I. Softley is with Photonfocus AG, Bahnhofplatz 10, CH-8853 Lachen,
Switzerland. E-mail: softley@photonfocus.com.

. J. Kadlec, M. Tichy, Z. Pohl, and A. Hermanek are with the Institute of
Information Theory and Automation, Academy of Sciences of the Czech
Republic, Pod Vodárenskou v�e�zı́ 4, PO Box 18, 182 08 Praha 8, Czech
Republic. E-mail: {kadlec, tichy, xpohl, hermanek}@utia.caz.cz.

. R. Matousek is with Acision, Villa J, Spielberg Office Centre, Holandská 5,
639 00 Brno, Czech Republic. E-mail: rudolf.matousek@acision.com.

. N.F. Benschop was with Philips Research, Eindhoven, The Netherlands. He
is now retired and resides at Drossaardstraat 71, 5663 GJ Geldrop, The
Netherlands. E-mail: n.benschop@chello.nl.

Manuscript received 13 Feb. 2007; accepted 13 June 2007; published online
2 Aug. 2007.
Recommended for acceptance by B. Veeravalli.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0058-0207.
Digital Object Identifier no. 10.1109/TC.2007.70791.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

increase in speed and improvement in accuracy. The higher
speed has permitted a trade-off with reduced architectural
complexity. The other relevant issues are silicon area and
power dissipation. Although preliminary results suggest a
broadly comparable area and a significant reduction in
power, space does not permit an adequate treatment of these
factors here, and in any case our results are not yet complete.
We will therefore deal with these issues in a sequel to this
paper. On the basis of the evidence currently presented,
however, we conclude that, for 32-bit work, logarithmic
arithmetic may now be the technique of choice.

2 LNS ARITHMETIC

In a logarithmic number system, a number x is represented
as the fixed-point value i ¼ log2 x, with a special arrange-
ment to indicate zero x and an additional bit to show its
sign. For i ¼ log2 x and j ¼ log2 y, and assuming without
loss of generality that, in dyadic operations, j � i, LNS
arithmetic involves the following computations:

log2ðxþ yÞ ¼ iþ log2ð1þ 2j�iÞ;
log2ðx� yÞ ¼ iþ log2ð1� 2j�iÞ;
log2ðx� yÞ ¼ iþ j;
log2ðx� yÞ ¼ i� j;
log2ð

p
xÞ ¼ i� 2:

Although multiplication, division, and square root are
straightforward, and implemented with simple modifica-
tions to the fixed-point unit, addition and subtraction require
the evaluation of a nonlinear function, F ¼ log2ð1� 2rÞ, as
illustrated in Fig. 1 for r ¼ j� i.

Early proposals for short-word-length systems, for
example, [3] at 20 bits, suggested implementation with a
lookup table containing all possible values of F . Beyond
about 20 bits, the exponentially increasing storage require-
ments render this approach impractical and the function is
better stored at intervals through r, with intervening values
obtained by some interpolation procedure. This introduces
inaccuracy and increases the delay time. Subsequent work
therefore focused on finding an acceptable compromise
between the two. The first interpolators had order-of-
magnitude differences between multiplication and addition
times. A first-order Taylor method [4] was fabricated in
3� CMOS [5]. At 28-bits plus sign and accuracy within FLP
error bounds, multiplications completed with 55 ns latency
and additions with 1.4 �s. A higher order polynomial
method at 31-bits plus sign [6] also offered better accuracy
than FLP. A lower accuracy variant of it, which did not, was

fabricated in 1:2� CMOS [7]. Multiplication latency here
was 13 ns and addition 158 ns. Both designs exposed a
difficulty in subtractions when r! 0, where the rapidly
changing derivative demands successively narrower inter-
vals and a vast increase in storage. To circumvent this
problem, we described a cotransform in [2]. Applied to r and i
when �0:5 < r < 0, it returns r2 and i2, where r2 < �1, the
new values r2 and i2 being passed to the interpolator. A
further development of the interpolator itself was then
described in [2], [1]. Its errors were also within FLP limits,
and with a significantly shorter critical speed path than
hitherto, it raised the prospect of 32-bit LNS addition better
than FLP in terms of both speed and accuracy. This design,
together with the cotransform unit, forms the basis of the
implementation described herein and is summarized in
Section 2.1. Finally, ongoing work focuses not only on faster
interpolation but also, for example, [13], on longer word
lengths.

2.1 Addition and Subtraction Algorithms

For each function, the range of r ¼ j� i is partitioned into
segments at increasing powers of 2. Each segment is
divided into intervals, at each of which the function F and
its derivative D are stored. By partitioning r, a linear Taylor
interpolation produces an estimate of the function at
intermediate points. The error in the estimation increases
from zero when the required value lies on a stored point, to
E when it falls immediately to the side of the next stored
point. It was observed that the shape of this error curve is
very similar in all intervals in both curves. It is therefore
possible to calculate the error in any particular case by
storing, alongside F and D for each interval, its value of E. A
separate table stores the normalized shape of the common
error curve, from 0 when the required value lies on an
interpolation point, to 1. This table is known as the P
(proportion) function. The error is calculated by multi-
plying E by P and is then added to the result of the
interpolation. A full explanation is given in [1], the only
modification to which was that the truncation of the
interpolator multipliers was determined empirically, by
successively trimming low-order bits from the multiplier in
the hardware description model and simulating with
random values while keeping within FLP error bounds.

The range shifter is inserted immediately after the
selection of i and calculation of r. As described above, it
is deployed selectively whenever r falls close to zero in the
subtraction operation, transforming i and r into new values,
where r is now in the linear region. Space does not permit
an explanation of its operation here; it is fully explained in
[2].

The entire unit is depicted in Fig. 2. Its accuracy was
verified by exhaustive simulation of the hardware descrip-
tion model before fabrication, as described in Section 4.

2.2 Data Format, Range, and Precision

IEEE standard FLP representation uses a sign, an 8-bit
biased exponent, and a 23-bit significand. The latter has
an implied binary point immediately to its left and a
hidden “1” to the left of the point. Extreme exponent
values (0 and 255) are used for representing special cases;
thus this format holds values in the range �ð1:0� 2�126Þ
to ð1:111 . . .� 2þ127Þ, � �1:2E� 38 to 3:4Eþ 38.

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 533

Fig. 1. LNS addition and subtraction functions.

In the equivalent LNS representation used throughout
this work, the integer and fractional parts form a coherent
two’s complement fixed-point value in the range � �128 to
þ128. The real numbers represented are in the range �2�128

to 2þ128, � �2:9E� 39 to 3:4Eþ 38. The smallest positive
value, 4000000016, is used for representing zero, while
C000000016 represents NaN.

Underflows are taken to zero. Overflows, invalid oper-
ands, and any operation with NaN as an input return NaN.

3 PROCESSOR PHILOSOPHY AND ARCHITECTURE

As far as we were aware, there were no LNS-based
microprocessor devices yet in existence. The motivation
for this work was to develop one. However, a few authors
had noted, as we did, that LNS ALUs have markedly
different characteristics from their FLP equivalents and are
therefore likely to require some reevaluation of the
surrounding microprocessor design to deploy them to best
advantage. Paliouras et al. [8] used the work in [6] as the
basis for the addition unit in a proposed VLIW device,
optimized for filtering and comprised of two independent
ALUs, each with a 4-stage pipelined adder and a single-cycle
multiplier. Simulations suggested an operating frequency of
12 MHz in 0:7�CMOS. In an outline proposal for the ELM [9],
we noted that the small size of the LNS multiplier-cum-
integer unit encouraged its replication, leading to a short
vector design with four single-cycle multipliers and two

multicycle flowthrough adders. Arnold [10] instead pro-
posed a VLIW device with only one single-cycle multiplier
and one 4-stage pipelined adder, suggesting that large-scale
replication of functional units could lead to difficulties with
the complexity of the multiplexing paths leading to and
from the registers. He then considered a number of issues
related to suitable instruction set architectures (ISAs), but
did not present a finished design or simulation results.

The following discussion is based on the characteristics
of the LNS arithmetic unit at our disposal, and we show
how these have influenced the design decisions relating to
its integration into the ELM pipeline. Depicted in Fig. 3, this
is based around 16 general-purpose registers.

Simulations of the hardware model had revealed that the
basic addition/subtraction unit would incur about three
times the delay of a fixed-point addition and that the range
shifter, when invoked, would delay it by a further cycle.
The first decision concerned the desirability of pipelining
the arithmetic units. A number of factors seemed to weigh
against:

. Whereas an FLP addition or multiplication circuit is
complex enough that it is usually economic to
emphasize its throughput by pipelining it, such an
argument does not apply to fixed-point units and
therefore not to the LNS multiplier. This leaves the
LNS addition/subtraction unit as the only block of
circuitry with a delay greater than a cycle —usually
three and occasionally four—and it does not seem
worthwhile to devise a pipelining scheme for this
operation alone.

. One of the principal advantages of the LNS is the
reduced latency of the multiplication operation. This
implies that the device will be of particular utility in
latency-sensitive applications, in which case it
would seem consistent also to minimize the latency
of the addition operation, but pipelining would
inevitably increase it.

. The addition/subtraction unit has a variable delay
time, which would complicate a pipeline control
algorithm.

Accordingly, we have arranged a fully interlocked
pipeline in which a single-cycle ALU executes all operations
except logarithmic addition and subtraction. These are
handled by the multicycle ALU, which executes with a

534 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

Fig. 2. Addition and subtraction hardware.

Fig. 3. ELM pipeline.

three-cycle flowthrough time. The instruction issue unit
continues to launch two more instructions while waiting for
the addition to complete, provided that these are destined
for the single-cycle ALU and do not otherwise conflict with
the addition or subtraction in progress. This raises the
possibility that both ALUs may complete at the same time,
and the register file update paths are designed with
sufficient bandwidth to accommodate this.

The second decision concerned the ISA. Mainstream
computer architecture favors a register-register approach
which decouples the data cache from the pipeline via a
load/store unit in order to permit its independent con-
current operation. This is often combined with superscalar
instruction processing in order that the loads can be issued
in parallel with the arithmetic operations. Review of the
likely application areas for this device, and the practicalities
of designing it, suggested that this might not be the best
approach and that a dual RR/RM architecture with a cache
incorporated into the pipeline might be considered instead.
Pertinent factors were:

. Time did not permit any consideration of super-
scalar design, so the device is limited to the issue of
one instruction per cycle. Explicit load instructions
would use up an issue slot.

. Complex numeric codes contain a high proportion of
loads and stores as loaded data often have a short
working life. Explicit loading would unavoidably
increase the number of cycles per executed real
instruction.

. A decoupled cache would inevitably have a longer
access latency than a tightly integrated one, which
would be inconsistent with the low latency empha-
sized elsewhere.

The drawback would be that an integrated cache could
not operate independently of the pipeline. Potentially this
could reduce performance in two ways:

. “Intelligent” features such as early data forwarding
or predictive loading would be impossible. It would
have to be accepted that, if required data were not in
the cache, then the system would stall while the
entire line was loaded. However, this could be
minimized by making the cache as large as possible,
with a relatively small line size.

. Disparities between the speed of the cache and that
of the pipeline could not be accommodated so easily.
However, since the LNS adder/subtractor uses
several ROM devices itself, the pipeline speed will
always be governed by memory speeds, so large
disparities are unlikely to arise.

Consequently, the ISA allows for RR and RM addressing.
Superficially similar to that of the IBM S/360, operands
located in memory are addressed by a base register plus a
16-bit unsigned displacement. All instruction codes are
32 bits, and in total there are 35 distinct operations.

The final design question was more clear-cut. So far, we
have emphasized low latency, sometimes at the expense of
throughput. Functional unit replication is commonly
employed to boost throughput on FLP devices. Unlike
functional unit pipelining, this is a very appropriate
strategy on the ELM, where the single-cycle unit is so small
that it can easily be replicated four times. A vector

capability is thereby provided, permitting the execution of
four integer, logical, or LNS multiplication, division, or
square root operations in one clock cycle. The vast majority
of the silicon area used for the arithmetic circuitry can thus
be reserved for the more substantial multicycle ALU. Two
such units are provided, allowing two additions or
subtractions to proceed in three cycles.

Accordingly, all instructions are available in either scalar
or vector form, the former operating on only one memory
location or register, and the latter on a set of four
consecutive locations or registers (or two in the case of
addition and subtraction). A hybrid mode is available to
apply a scalar to all elements of a vector. The orthogonal
ISA permits almost all meaningful combinations of scalarity
and addressing mode.

Scalar integer and logical operations set a 2-bit condition
code, according to the result being < 0, ¼ 0, or > 0. Branch
instructions may be conditional on any combination of the
three. Because of the ambiguity, when a logarithmic and an
integer instruction complete at the same time, logarithmic
instructions do not set the condition code. Conditional tests
on logarithmic values are instead made by applying an
appropriate logical operation. For example, a register would
be reloaded from itself to determine the state of the sign bit,
which has the same significance in logarithmic values as in
integers. A useful by-product of the data representation is
that a one-place logical left shift brings the logarithmic part
of a value into the same significance as that of an integer,
transforming a sign comparison around zero into a
magnitude comparison around unity. This might be used,
for example, following a magnitude comparison between
arbitrary values, which in the LNS would be best accom-
plished by division.

To maintain the required memory bandwidth, the instruc-
tion and data caches supply, respectively, one and four 32-bit
words to the processor per cycle. Each cache is of 8-Kbyte
capacity and is two-way set associative (until a late stage in
the design they were to have been 16 Kbytes, which was
within the timing tolerance but slightly over budget). A 64-bit
asynchronous external bus interface is provided, with a
minimum transaction time of three cycles per read and four
per write, although these times can be increased with wait
states if desired. Input and output devices may be mapped
into the memory address space, and transfer 32 bits per
operation. I/O devices may be accessed by polling, but also
have recourse to a single-level nonmaskable interrupt.

Following verification on an FPGA, devices were
fabricated in 0:18� CMOS and packaged in 181-pin grid
arrays for easy handling during development work. Sign-
off simulations immediately before fabrication had indi-
cated an operating frequency of 166 MHz. Fabricated
devices ran on the tester at 150 MHz. The current devices
have been installed on development boards and are
functional at 125 MHz, although a batch of higher quality
boards is ready for manufacture and it is expected that
these will permit some increase in operating speed.

The existing development systems consist of a 7� 8 in
board containing a 125-MHz ELM1A, 4 Mbytes of 10-ns
static RAM, basic peripherals, and serial interface to a host
PC. The bus speed, both for read and write accesses, is set to
four cycles. Software support is currently comprised of a
relocating assembler, a linkage editor, and a mathematical

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 535

link library. An implementation of one of the public
versions of ANSI-C is in an advanced state of preparation.

4 ACCURACY

In IEEE 754 arithmetic using the round-to-nearest option, a
result is guaranteed to lie on the closest available quantiza-
tion point. This is sometimes called “exact” rounding, and is
difficult to achieve in the LNS. The logarithm itself might be
rounded to the nearest point, but because of the nonlinear
relationship between i and x ¼ 2i, this does not guarantee
that x will also be exactly rounded when i lies near the
midpoint of an interval. On the other hand, the LNS has the
felicitous property of a significantly lower relative error
than the maximum of that of FLP. Even with inexactly
rounded i, this more than compensates for the inexact
rounding of x, and consequently an LNS implementation
will tend to have smaller worst-case relative errors than
those of FLP. A detailed working out of this principle is
presented by Arnold and Walter [11], who refer to this
property of the LNS as “better than FLP” accuracy. The
object of the experiments described herein is to determine
whether this has happened in practice.

We evaluated the ELM addition and subtraction units in
two ways. An exhaustive analysis determined the definitive
error characteristics, and stochastic experiments illustrated
their typical operational behavior. The units used for the
measurement of accuracy are as defined in [1].

4.1 Definitive Analysis

ELM assembly language programs were developed to
sweep through all representable values of the log. domain
difference of the two operands to the logarithmic addition
or subtraction, as far as a difference of 24� 223. This
corresponds to sweeping through the entire range of r up to
the point at which the value of the relevant function is set to
hardwired zero. In other words, the function approximation
hardware in the logarithmic addition and subtraction unit
has been tested for all representable values of its operand r.

These tests were carried out during the design verifica-
tion stage prior to layout and fabrication. An FPGA
prototype implementation of the ELM, logically identical
to the ELM itself in all respects except cache size, was
employed to speed up the test, and the test was split into
768 sections so that the data generated for each section
would be small enough to fit into the memory available on
the FPGA development board. A Perl script automated the
generation and retrieval of a complete set of results for all
768 sections for both addition and subtraction.

Analysis of the results was automated by a Perl script,
which read in the result saved from the FPGA run and
evaluated the corresponding exact result using IEEE
double-precision FLP. It then calculated the error in the
ELM implementation and produced the maximum, mini-
mum, mean, and mean-size figures for each section and for

the entire data set, in terms of both log. domain LSBs and
equivalent FLP LSBs. The script also binned the errors to
form error histograms both for every section and for the
entire data set.

The error figures for the entire range of r for LNS
addition and subtraction on the ELM are given in Table 1.

The error distributions are shown in Fig. 4. Since the
largest errors found for any value of r for both addition and
subtraction were under 0.5 equivalent FLP bits, we
conclude that the ELM implementation of LNS satisfies
the required bounds for “better than FLP” arithmetic.

The final hardware implementation of the algorithms
differs slightly from that already published [1, Table 1] and
these results show its error performance to be marginally
better. The only previous work to show the error distribu-
tions for LNS was Lewis’ interleaved memory implementa-
tion of 32-bit LNS with a weak error model for subtraction
of nearly equal quantities [6]. The distributions for normal
operation of that unit agree in shape with the distributions
presented here, except, of course, for the region in which the
weak error model comes into play. No discussion of these
distributions is given, however, and this is a possible area
for further work.

4.2 Typical Behavior

In [1], we described an experiment in which we compared
the accuracy of 32-bit FLP operations and kernels with that
of their simulated LNS equivalents. Reference should be
made to this work for a description of the method, and to [1,
Fig. 8] for the results. The average processing error of the
simulated LNS implementation had been compared with
that of FLP, and the experiments were repeated several

536 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

TABLE 1
Errors in ELM Addition and Subtraction Operations

Fig. 4. Error distribution in ELM LNS addition and subtraction.

times for each kernel, with gradually increasing dynamic
range.

We now repeated these experiments, this time running
the LNS program on the ELM evaluation board rather than
in simulation. The procedure was otherwise identical,
although we had upgraded the Pascal compiler in the
interim and were therefore reliant on a different randomi-
zation intrinsic and thus on different input data. We show
these new results in Fig. 5. The results obtained from the
ELM are virtually identical to the simulated LNS predic-
tions. The FLP results are also similar, except that extremes,
some of them anomalous, in the two signed multiplicative
kernels seem to have varied. These presumably originate in
some interference pattern between FLP methods and
imperfections in the randomizers.

Overall, the LNS errors are generally less than those of FLP
and are smoother throughout the dynamic range. They are
less sensitive to the actual data values, although there might
be some question as to whether this would be the case had the
randomizer been implemented in LNS arithmetic.

5 SPEED

The ELM is fabricated in 0:18� technology, and all of the
measurements reported in this work are taken from the
existing 125-MHz systems. In order to discuss the speed, it
is helpful to have an FLP standard for comparison. For this

purpose, we looked for an industry-standard FLP DSP
device, as similar as possible to the ELM in every respect
apart from its arithmetic system. We chose the Texas
Instruments TMS320C6711. Apart from DSP applications,
this device is also used in graphics. It runs at 150 MHz, the
fastest speed grade available in 0:18� technology. Although
a faster speed grade, the C6711D, has recently become
available, it is fabricated at 0:13� with copper interconnect
and is therefore not directly comparable with the current
implementation of the ELM. A variant, the C6701, is
currently manufactured at 0:18� and runs at 167 MHz,
but is also not comparable because it has a simplified on-
chip memory, having dispensed with the cache in favor of a
RAM.

The TMS is a superscalar device with a VLIW arrange-
ment and an RR instruction set. It has two independent
arithmetic units, A and B, each with 16 registers 0::15,
parallel pipelined FLP add and multiply units, and integer
and reciprocal-approximate units. Up to eight independent
instructions may be issued per cycle (the symbol “k” in the
assembly listings shown later designates that an instruction
is issued in the same packet as the previous one). The add
and multiply units have a latency of four cycles, the integer
unit one. Divide and square root are implemented in
software by using the Newton-Raphson method. Optimized
assembly-language routines are provided by the manufac-
turer for this purpose and require about 30 and 40 cycles,

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 537

Fig. 5. Error in ELM execution of arithmetic kernels.

respectively. Loads and stores enter the memory pipeline,
which has a four-cycle latency. There is a 4-Kbyte level-1
(L1) data cache, 4-Kbyte L1 instruction cache, and a 64-
Kbyte unified level-2 (L2) cache. The device has a 32-bit
external bus with a configurable protocol. On the evaluation
board used for these experiments, it used synchronous
dynamic RAMs (SDRAMs), and was running at its
maximum bandwidth of about 340 Mbytes/sec.

The ELM is a scalar device with an RM instruction set
and 16 general registers. The device has a 64-bit asynchro-
nous bus with a bandwidth on the current boards of
250 Mbytes/sec. The resources available to each device are
detailed in Table 2.

Evidently the devices are comparable in terms of
fabrication technology and clock speed. Each device has
six principal ALUs. The TMS is comprised of two adders,
two multipliers, and two integer units (the adders and
multipliers can also be used for fixed-point work), while the
ELM has two adders and four combined multiplier/integer
units. The devices are also broadly comparable in terms of
memory bandwidth, but do have different cache arrange-
ments. The TMS has a unified L2 cache, which is not present
on the ELM. There are also differences in the L1 caches,
which to some extent are consequent on the different
arithmetic techniques. The straightforward implementation
of vector operations on the ELM, putting four identical
functional units in parallel, requires a simple data cache
organization in which four consecutive words are read out
simultaneously. The TMS, with pipelined functional units
launching operations in different cycles, is more likely to
encounter bank conflicts and is therefore more likely to
benefit from dual porting to the cache.

The TMS has an optimizing C compiler. It is not
straightforward to program in assembly language because
it does not have an interlocked pipeline, that is, there is no
hardware mechanism for checking that one instruction has
completed before a dependent one begins. The programmer
must therefore construct a dependency chart from which
the parallel operations are scheduled manually, calculating
the state of the pipeline at each clock cycle and if necessary
inserting no-ops to account for instruction latency. In vector
operations, there might be several iterations of the loop in
different stages of the pipeline simultaneously. The pipeline
is brought into the correct state by a prologue before the
start of the iterating kernel, and the terminating iterations
are wound down by an epilogue at the end. To simplify
programming, the manufacturer provides a “linear assem-
bler,” which determines the dependencies, schedule, and
register allocation automatically. The preferred method of
programming is then to use the compiler for the outer scalar
sections of code, which can easily be scheduled efficiently
by the compiler, and to write the inner loops in linear
assembly language.

The ELM has an interlocked pipeline and also an RM
ISA. The two features together make for a relatively
straightforward assembly language interface, which is
currently the only method of programming the device.

Latencies and vector throughput on the two devices are
summarized in Table 3. Those for the discrete operations are
shown first, followed by the values for multiply-accumulate
(MAC) and sum-of-products (SOP) kernels. It is assumed in
the two kernels that input data are taken from memory and
results are returned there. The maximum vector execution
rate on the TMS is two additions and two multiplications per

538 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

TABLE 2
Hardware Resources of TMS and ELM Devices

cycle. The cache-processor bandwidth permits four loads or
two stores per cycle. Its peak performance is therefore
0.67 MAC or SOP operations per cycle. These figures will
only be achieved under best-case conditions with relatively
long vectors, where the pipeline can be kept saturated with
sequential elements. In purely scalar sequences, the loads,
multiplications, addition, and store would execute in
16 cycles, a throughput of 0.0625 MAC or SOP operations
per cycle.

On the ELM, it is possible to launch two logarithmic
additions in one cycle and then to process four loads and
four multiplications in the remaining two cycles before
the addition completes. The four multiplications perform
implicit loads, so all eight words are loaded in the two
cycles. The maximum execution rate on this device is
thus two additions, four multiplications, and eight loads
in three cycles. The best schedule, again working from
and to memory, is illustrated in Fig. 6, which also serves
as an example of programming. The MAC calculates
x½n� ¼ a½n�b½n� þ c½n�. It starts with the instruction “Load
vector,” which loads a½0�::a½3� into R0::R3. “Multiply
logarithm vector” multiplies each register by the corre-
sponding element of b. Each instruction takes one clock
cycle. “Add logarithm vector” then adds c½0�::c½1� into
R0::R1 in three cycles. Another ALV accumulates c½2�::c½3�

into R2::R3. This also requires three cycles, but during the
last two, the products of the next four elements of a and b
are prepared in R4::R7. With the addition now complete,
the result is returned to x½0�::x½3� via “Store vector,” which
takes two cycles. It is evident in Fig. 6A that the sequence can
repeat every eight cycles, giving a peak vector rate of
0.5 MAC per cycle. Fig. 6B illustrates the SOP kernel. Here,
the ab product is generated in R0::R3 and cd in R4::R7, the
two products being added by “Add logarithm register
vector.” The second addition adds R6::R7 to R2::R3.
Immediately after this starts, the former registers are finished
with and R4::R7 are reused for the preparation of the next
product. Again, the sequence maintains 0.5 SOP per cycle.
Neither kernel makes any use of R12::R15, which are
available for other purposes, for example, holding the base
address of the vectors. The scalar MAC or SOP would execute
in seven cycles, yielding a throughput of 0.14 per cycle.

Measuring by time, and recognizing the slightly slower
clock speed of the current implementation of the ELM,
additions and subtractions are still marginally faster than
on the TMS, except when the range shifter is deployed.
Allowing that this might occur in half of the subtractions,
and that additions and subtractions might occur equally,
the average speed of the ELM on these operations improves
on that of the TMS by a few percent. Multiplications are

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 539

TABLE 3
Latency and Throughput of TMS and ELM Devices

Fig. 6. ELM assembly language implementations of vector kernels. (A) MAC and (B) SOP.

3.4 times the speed, and divisions and square roots
complete in a small fraction of the time. It might be argued
that additions and subtractions on the TMS are subject to
the delay times of three more pipeline registers than on the
ELM, so a strict calculation of flowthrough times would
improve the TMS values. Against this, however, the entire
design philosophy of the TMS device is based on pipelining.
Its behavior would otherwise be radically different, and we
must evaluate the device as it is.

Evidently the TMS is at an advantage in vector
sequences. However, it will only attain this level of
performance when it is possible to maintain a continuous
pipeline flow. This will be difficult in code with data
dependencies or with short vectors for which the start-up
times dominate. In longer vector sequences, the TMS may
exceed the performance of the ELM, particularly where
fewer memory accesses are required, such as in running
MAC sequences or weighted vector sums. However, in very
long vector processing, other factors may come to dominate.
In particular, it may become difficult to maintain the
required memory bandwidth when the cache capacity is
exceeded. At this point, the performance of the two devices
is likely to converge as both become dominated by their
external memory bandwidths, which are similar.

The ELM has a lower latency than the TMS in almost all
cases, and hence a significantly higher scalar throughput.
The figures suggest that, as predicted in [1], the ELM can be
expected to offer around twice the performance of the TMS
in scalar code and in less regular or short vector sequences.
In code involving a significant proportion of division or
square root operations, the ELM may exceed this.

6 CASE STUDIES

Processor architecture, instruction scheduling, compiler
efficiency, caching, memory access patterns, and other
related factors all affect final performance. Two large-scale
case studies were undertaken to determine whether the
theoretical predictions hold in practice.

Material was drawn from two application areas: DSP and
graphics. The first had a substantial proportion of vector
code, the second far less, thus playing to the respective
strengths of both processors. In both applications, all but a
few percent of the processing workload consisted of
relatively small kernels, so compiler effects were eliminated
by writing these in assembly language. On the TMS we
used the linear assembler, which was given every facility to
optimize for speed, including speculative processing
beyond array bounds and freedom from aliasing con-
straints. In most cases this produced an obviously near-
optimal schedule, but in the few instances where this was
not the case, the results were improved by assigning
registers manually. On the ELM, we wrote standard
assembly language and then optimized it manually by
moving single-cycle instructions wherever possible to lie in
the shadow of a preceding multicycle one. The outer
mainlines were written in compiled C on the TMS, with
options set to emphasize speed, and linked to the kernels.
On the ELM, the mainlines were written in assembler, but
were not subsequently optimized.

How efficient was the resulting TMS assembly program-
ming? By considering the number of operations, the critical
speed path between them, and the available functional
units, we calculated the minimum possible latency for the

real arithmetic processing in each of the scalar loop kernels.
We show this as LA. It is not realistically possible to avoid
conditional branching latency in scalar codes, and taking
this into account, a revised figure LAB is also shown. This
represents the minimum number of clock cycles in which
the loop could possibly execute, assuming an unlimited
supply of registers, perfect scheduling, loads, stores, and all
housekeeping operations lying within the latency of
arithmetic operations, and no overheads accruing from any
other source such as from calling conventions. The latency
achieved by the C compiler with the original high-level code
is then given as LC . Finally the latency actually achieved by
the scheduled assembly program is shown as L. The ratios
LC=LAB and L=LAB therefore represent the quality of the
result; the closer these values are to unity, the better. To avoid
distortion, the latency of called arithmetic functions is shown
separately, for example, as (þ div). For vector loops, the
assembler will devise a schedule in which arithmetic
operations and branches are both pipelined. The best possible
schedule in this case, designated LABV , is determined simply
by dividing whichever operation occurs most frequently by
the number of functional units available to service it. For
example, a loop containing six additions would require a
minimum of three cycles per iteration with two pipelined
addition units. As before, L=LABV grades the result.

For each application, we first describe the algorithm,
mentioning any factors likely to influence execution speed.
Excerpts of code are included where they serve to explain
any significant differences in performance. Examples of
input and output data are given. With regard to output, we
have only shown that produced by the ELM, but where
there are significant differences between it and that of the
TMS, we have performed an analysis of accuracy against an
80-bit standard by using the same procedure as in Section 4.
We measure the time taken by each processor, and by
working through the assembly listings, counting the
number of clock cycles for each kernel and multiplying by
the number of passes through it, we analyze the number of
clock cycles spent in each. The difference between the
expected total clock cycles and the observed runtime is
accounted for by stalling. This is predominantly because of
cache activity, but also includes delays arising on the TMS
from bank collisions and on the ELM from the subtractor
range shifter (and to a negligible extent, it also includes the
mainline processing). Finally, we discuss the results and
show how the different arithmetic implementations have
accounted for any differences in performance.

6.1 A Vector Application: Recursive Least Squares
QR Filtering

This type of rapidly converging adaptive filter would be
used at higher orders, such as N ¼ 64, in precision control
systems, such as that of a DVD player. At lower orders, it
could be used in applications such as voice compression for
Internet transmission. A preliminary version of this experi-
ment and the algorithm used was described in [12].

The kernel is programmed as shown in Fig. 7A. The i loop
processes the boundary cell to the left of each row and consists
of a chain of serial dependencies, including a square root and
a division. The inner j loop processes the remainder of the
row and may be vectorized. Programming of the latter is
illustrated in Figs. 7B and 7C. The calculated efficiency of the
TMS version is shown in Table 4.

540 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

The j loop, as implemented on the ELM, is shown in
Fig. 7C. It may be largely understood by way of the
explanation in Section 5, new points in this example being
the addressing offset from R14 on line 1, “Multiply
logarithm scalar vector” on line 2, which multiplies all four
registers R0 . . . R3 by the constant CFI from memory, and
“Load address” and “Load decremented address” at the
end, which respectively increment R14 by 16 and decrement
R12 by 1. The latter is followed by a conditional branch back
to the loop.

The experiment was repeated for filter order N ¼ 8, 16, 32,
64, and 128. An input file spanned 2,000 time steps. Random
noise, increasing in amplitude, was passed to the reference
input, and 1

2 N time steps later was coupled into the signal.
Inputs were quantized to 24-bit fixed-point values (23 bits

plus sign) and thus took advantage of the entire 23-bit
precision of the arithmetic. The same input data were
presented to the TMS and the ELM, in each case being loaded
into the memory of the respective development system before
execution. In real life, the devices would be reading the data
from an A-D converter, but this would take a similar length of
time as that to access memory.

Both systems were timed (the TMS versions were run
with and without the L2 cache), and the outputs were
compared with that of an 80-bit Pentium to evaluate the
SNR. An example of input and output is shown in Fig. 8.
The SNR values for the results are presented in Fig. 9. The
average TMS value is 108.4 dB and that of the ELM 117.5, so
the ELM has delivered an average improvement of 9.1 dB or
1.5 bits. Since the 23-bit quantization has imposed a limit of

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 541

Fig. 7. QR RLS algorithm. (A) C language version of i and j loops, (B) TMS assembly language, and (C) ELM assembly language implementation of

the j loop.

TABLE 4
Efficiency of TMS Assembly Implementations of RLS Filter Loops

138.5 dB, we can conclude that the TMS has added 30.1 dB
of processing noise, whereas the ELM has added 21.0 dB.
The generally smoother progression of the SNR values
throughout the range of the ELM results is also noteworthy,
and appears to be consistent both with the results in Fig. 5
and with the intuitive expectation that SNR will rise and fall
around some optimum with N, although we make no
attempt to explain it.

The runtimes are presented in Fig. 10, which shows an
OðN2Þ increase consequent on the 2D nature of the arrays. A
knee is present in each curve, where the total amount of
data exceeds the capacity of the caches. For the TMS with
only a 4-Kbyte L1 cache, this is at N ¼ 32. For the ELM with
its 8-Kbyte cache, it is at N ¼ 64, and for the TMS with a
64-Kbyte L2 cache, at N ¼ 128. Evidently there is little to
choose between the ELM with one cache and the TMS with
two, except for one specific instance at N ¼ 64, where the

data are too large to fit into the cache on the ELM but just
small enough to be cached at L2 on the TMS.

Figs. 7 and 11 together explain this result. With increasing
N, the j loop increases in prominence as the i loop wanes. The
j loop runs on the TMS in three cycles per iteration against an
average of 5.25 on the ELM, the better performance on the
TMS arising from the pipelining of the functional units. The
i loop completes in 126 cycles on the TMS but 53 on the ELM,
almost all of this difference being attributable to the division
and square root operations. Furthermore, the ELM stalls for
significantly longer than the TMS, obviously due to its lack of
an L2 cache, except at N ¼ 128 where this occurs on both
processors. The improved performance of the i loop is,
however, so significant that, except at N ¼ 64, the ELM
actually completes in slightly fewer cycles overall than the
TMS does.

The longer cycle time but lower cycle count on the ELM
result in the processors delivering a similar level of
performance throughout. However, the ELM has done so
despite what are evidently the major handicaps of having
no L2 cache or vector pipeline. The dramatic simplifications
inherent in the LNS division and square root operations
have translated into an ability to dispense with a large
measure of silicon complexity. The ELM has also achieved
this result without running at its full design speed.

6.2 A Scalar Application: Recursive Ray Tracer

A demanding area of computational graphics is the ray
tracer. An image is represented as a mesh of triangles into
which a matrix of rays is projected from the viewer’s eye.
The first triangle on the path of each ray is visible to the
viewer, and once identified its surface qualities are
considered. If reflective, transparent, or both, then further
rays are fired in the direction of reflection or refraction. A
binary tree of recursive activations is built, and the color at
each intersection point added to the total for that ray. To
obviate testing each ray with each triangle, the latter are

542 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

Fig. 8. Example of input and output data (output from ELM1A) for N ¼ 32

filter.

Fig. 9. Accuracy of TMS and ELM implementations of filter.

Fig. 10. Runtimes of TMS and ELM implementations of filter.

Fig. 11. Analysis of clock cycle usage in TMS and ELM implementations

of filter.

grouped into a hierarchy of bounding axis-aligned ellip-
soids. Only after a ray intersects an ellipsoid is it tested
against the list of triangles within. There are two ray-
ellipsoid intersection algorithms. The “algebraic” method
treats the ellipsoid as a quadric, substitutes the ray
parameters, and tests the discriminant. Programmatically,
this involves a large number of multiterm SOPs. The
“geometric” method rescales the ray into the ellipsoid’s
own space, effectively converting this into a sphere, and
then makes a ray-sphere intersection test. This involves far
fewer operations, but several are divisions or square roots.
Intersection with the triangles is tested in two stages. The
ray-plane algorithm rejects any rays that do not intersect the
plane in which the triangle lies, and involves a division.
Finally, Badouel’s algorithm tests whether the intersection
point lies within the triangle. This code is sparse and
irregular but can be, and was, arranged so as to avoid
significant use of division.

It would be very difficult to vectorize this application.
The data consists of either scalars or three-element vectors.
The control paths vary, even between successive iterations
of the inner loops. Mapping a 3D model into a 1D memory
results in fragmentation, so as the program will typically
access randomly scattered blocks of between 8 and 32 words
each, memory accesses are also difficult to vectorize.

A model was rendered at 256� 256 pixels and com-
prised of 796 triangles within 86 ellipsoids in three levels, a
total model size of 115 Kbytes. The TMS assembly language
(Table 5) was highly optimal and a significant improvement
on the compiled output.

There was no discernable difference between the outputs
from the TMS and the ELM, which were similar to that
shown in Fig. 13, except that this has random jitter on the
refracted ray paths to simulate slightly opaque water. This
increased the runtime unpredictably and was disabled
during the timings to prevent discrepancies arising in the
randomizers.

Runtimes were measured, excluding calls to initial
runtime support on the TMS, for example, for storage
allocation and cache initialization. The times were 14.9 s on
the 150-MHz TMS using the algebraic algorithm and with
both caches operational, and 10.9 s on the 125-MHz ELM
with the geometric method. Restricted to the use of its
L1 caches only, the TMS runtime increased to 241 s,
probably because of thrashing in the program cache.
Comparing the 125-MHz ELM with one cache to the
150-MHz TMS with two, the ratio of runtimes is thus
73 percent and that of clock cycles 61 percent. An analysis is
presented in Fig. 14.

Unlike the digital filter, this application is intrinsically
suited to the capabilities of the ELM, which runs with a lower
cycle count than the TMS in every part of the algorithm. These
gains have been achieved in different ways.

In the ray-triangle routine, the ratio of ELM/TMS clock
cycles is 67 percent. The most heavily used part of this code
is illustrated in Fig. 12, where the ratio for a pass through
the complete sequence is 35/53. Broadly, the lower cycle
count is attributable to the reduced latency of the multi-
plication and load operations, implicit loading, and the
reduced branching latency.

In all its passes through the ray-plane loop, the TMS
device consumed 999m clock cycles and the ELM 411m,
a ratio of 41 percent. The processing included
11.9m divisions. Allowing 30 cycles for each on the TMS
thus accounts for 357m cycles. Discounting the effect of
these divisions, the ELM/TMS ratio would be 411/642 or
64 percent. The reduction in cycle count here stems from
very similar factors to those just described for the ray-
triangle routine.

In the ray-ellipsoid loop, the ratio of ELM/TMS cycles is
79 percent. As seen in Table 5, the TMS linear assembler has
generated a particularly efficient schedule in this case, due
to the fact that the code consists of a large number of
independent SOPs which have allowed the processor to run
at close to its peak vector rate. It is unlikely that the ELM
would have improved on this directly. Instead, the
algorithm was rewritten to use a smaller number of
operations, despite several being divisions or square roots.
Although this approach was counterproductive on the TMS,
it exploited one of the main strengths of the LNS.

The data structure used in this algorithm was comprised
of 115 Kbytes. This was far greater than the capacity of either
L1 data cache, and since about 12 out of 64 Kbytes in the TMS
L2 cache was occupied by frequently used program code, it
was over twice the available size of the latter. Data accesses
had little spatial locality, with random access across the
entire structure. The small scattered accesses fit well into a
fine-grained cache such as that on the ELM, which is eight
words wide. In the TMS L2 cache with a 32-word line, more
time is likely to be spent loading unnecessary data at the
boundaries. Despite the availability of an L2 cache, the TMS
device stalled for 21 percent of its overall runtime against
27 percent on the ELM.

In total, the ELM required only 61 percent of the clock
cycles of the TMS, and did so while also dispensing with an
L2 cache. It appears that, although some of this reduction is
attributable to the low latency of division and square root,
much also accrues from that of multiplication and from the
streamlining of the load and control operations made in
support of it.

7 CONCLUSION

As an alternative to FLP, we had proposed the use of the
LNS for the representation and processing of real numbers.
Although the advantages for multiplication, division, and
square root were obvious, the question had been whether

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 543

TABLE 5
Efficiency of TMS Assembly Implementations of Ray Tracer Loops

addition and subtraction could be carried out at least as fast

and accurately as in FLP, not only in simulation but by

working silicon. Anything less would be unlikely to gain
acceptance. Once this were established, however, the LNS
would become a viable alternative and the question would
arise as to possible techniques for integrating it into a
practical computer. How would the architecture of a new
device need to be adapted to accommodate an LNS
arithmetic unit? Would the theoretical gains actually
translate into measurable improvements in performance?

We developed a new microprocessor, the ELM, based on
a 32-bit logarithmic arithmetic unit. We found that additive
operators would in fact be marginally more accurate than

544 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

Fig. 12. Excerpt from ray tracer: ray-triangle intersection. (A) Original HLL, (B) Equivalent in optimized TMS assembler, and (C) In optimized ELM

assembler.

Fig. 13. Nymphaea alba: 256� 256 pixel ray traced image (with 512�
512 adaptive supersampling) rendered in 12.0 s on 125-MHz ELM1A
(available in color in the Computer Society Digital Library at http://

Fig. 14. Analysis of clock cycle usage in TMS and ELM implementations

of ray tracer.

those of FLP, and as multiplicative operators return exact
results, a typical kernel making equal use of each would
incur roughly half the total error of FLP arithmetic. We had
previously verified this expectation by using a simulation of
the proposed unit. Running the same experiments again,
this time on the fabricated microprocessor, we obtained an
almost identical set of results. Clearly we may conclude that
the LNS can indeed be implemented in silicon, with better
accuracy than that of FLP arithmetic.

We evaluated its speed by comparison with a commer-
cial FLP processor of similar fabrication technology. Each
processor had six principal ALUs: two adders, two multi-
pliers, and two integer units on the FLP processor, versus
two adders and four combined multiplier/integer units on
the LNS device. The FLP processor was the result of its
designers’ best efforts to produce a first-class arithmetic
unit, in real silicon, integrated into a microprocessor in the
most favorable way, and the LNS processor was the result
of our own best efforts to do the same. We were, of course,
comparing our first-off silicon and circuit board with the
last of several revisions of the FLP device, but were
nonetheless able to run the ELM at 5

6 of the clock speed of
the latter. Additive times were marginally better on the
ELM, multiplications were 3.4 times the speed, and
divisions and square roots were many times faster than
the FLP software implementation. If, as we expect, a
reworked PCB enables us to run the ELM a little closer to
its design speed, which was similar to that of the
FLP device, then we may simply compare clock cycles. In
this case, the ELM would offer improvements to addition
and multiplication of 1.3 and 4 times, respectively. In any
event, LNS addition and subtraction can be implemented
not only with “better than FLP” accuracy, but also with
better speed. The criteria set out above have been satisfied,
and we conclude that the LNS is a clear improvement on
32-bit FLP arithmetic.

In order to harness this new power, we had considered
how the design of a microprocessor might be adapted to
achieve the best synergy with desirable features of the
arithmetic. The LNS is intrinsically of low latency, and this
philosophy pervaded the design of the ELM. Functional
unit pipelining was dispensed with, and an RM instruction
set adopted to eliminate explicit loading. However, as the
multiplier is effectively cost free, throughput was enhanced
by functional unit replication, with a resulting short-vector
capability.

Substantial case studies pinpointed how and where the
use of LNS arithmetic had been of value. These studies also
served to experiment with possible application areas for the
ELM and to demonstrate its overall capability. Measuring
by time, that is, despite the fact that the ELM was running at
a slower clock speed, we found in one case that the inherent
simplification of the division and square root operations
almost entirely compensated for the lack of an L2 cache. In
the other, we not only dispensed with the L2 cache but also
obtained a reduction to 73 percent of the execution time.
This arose through 1) the reduced latency of all real
operations and of architectural decisions such as a tightly
coupled L1 cache made in support of it, and 2) rewriting the
algorithm to use fewer operations, despite several being
divisions and square roots. In terms of clock cycles, this
reduction was to 61 percent.

The ELM delivered an improvement in accuracy equiva-
lent to 1.5 bits; in the application concerned, a reduction in
processing noise to about 2

3 of that of the FLP device.

In summary, the LNS delivered faster execution than
FLP arithmetic, more accurate results, and did so with a
significant reduction in architectural complexity. Power
dissipation and silicon area are yet to be considered
(although preliminary results are encouraging), but on the
basis of the present results, the LNS may now be the
preferred technique for 32-bit work. This is particularly so
in emerging algorithms that are naturally cast in terms of
divisions, but where a great deal of programmer time is
currently spent in reworking to alternative formulations. A
point that we made in [1] may be repeated here: the design
of an LNS unit requires significant attention to only one
block of circuitry. If the adder/subtractor could be reduced
in latency to less than that of a 32� 32 bit multiplier, then
assuming an equal proportion of additions and multi-
plications, the LNS would be faster than fixed-point
arithmetic. That is the next step.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
European Strategic Programme for Research and develop-
ment in Information Technology (ESPRIT) Long-Term
Research Programme, which funded this work under Grants
23544 and 33544. Partners in the project were the University of
Newcastle upon Tyne, University College Dublin, Academy
of Sciences of the Czech Republic, Prague, Philips Research,
Eindhoven, and Massana, Dublin. We also thank Philips
Semiconductors, Nijmegen, where the ELM devices were
fabricated. The initial design of the evaluation board was
done by MEng student Steve Fishwick.

REFERENCES

[1] J.N. Coleman, E.I. Chester, C. Softley, and J. Kadlec, “Arithmetic
on the European Logarithmic Microprocessor,” IEEE Trans.
Computers, vol. 49, no. 7, pp. 702-715, July 2000, erratum,
vol. 49, no. 10, p. 1152, Oct. 2000.

[2] J.N. Coleman and E.I. Chester, “A 32-Bit Logarithmic Arithmetic
Unit and Its Performance Compared to Floating-Point,” Proc. 14th
IEEE Symp. Computer Arithmetic, 1999.

[3] F.J. Taylor, R. Gill, J. Joseph, and J. Radke, “A 20-Bit Logarithmic
Number System Processor,” IEEE Trans. Computers, vol. 37,
pp. 190-200, 1988.

[4] D.M. Lewis, “An Architecture for Addition and Subtraction of
Long Wordlength Numbers in the Logarithmic Number System,”
IEEE Trans. Computers, vol. 39, pp. 1325-1336, 1990.

[5] D. Yu and D.M. Lewis, “A 30-b Integrated Logarithmic Number
System Processor,” IEEE J. Solid-State Circuits., vol. 26, pp. 1433-
1440, 1991.

[6] D.M. Lewis, “Interleaved Memory Function Interpolators with
Application to an Accurate LNS Arithmetic Unit,” IEEE Trans.
Computers, vol. 43, pp. 974-982, 1994.

[7] D.M. Lewis, “114 MFLOPS Logarithmic Number System Arith-
metic Unit for DSP Applications,” IEEE J. Solid-State Circuits.,
vol. 30, pp. 1547-1553, 1995.

[8] V. Paliouras, J. Karagiannis, G. Aggouras, and T. Stouraitis, “A
Very-Long Instruction Word Digital Signal Processor Based on the
Logarithmic Number System,” Proc. Fifth IEEE Int’l Conf. Electro-
nics, Circuits and Systems, 1998.

[9] J.N. Coleman, C.I. Softley, J. Kadlec, R. Matousek, M. Licko, Z.
Pohl, and A. Hermanek, “The European Logarithmic Micropro-
cessor—A QR RLS Application,” Proc. 35th IEEE Asilomar Conf.
Signals, Systems, and Computers, 2001.

[10] M.G. Arnold, “A VLIW Architecture for Logarithmic Arithmetic,”
Proc. Euromicro Symp. Digital System Design, 2003.

[11] M.G. Arnold and C. Walter, “Unrestricted Faithful Rounding Is
Good Enough for Some LNS Applications,” Proc. 15th IEEE Symp.
Computer Arithmetic, 2001.

COLEMAN ET AL.: THE EUROPEAN LOGARITHMIC MICROPROCESSOR 545

[12] J.N. Coleman, C.I. Softley, J. Kadlec, R. Matousek, M. Licko, Z.
Pohl, and A. Hermanek, “Performance of the European Logarith-
mic Microprocessor,” Proc. SPIE Ann. Meeting, 2003.

[13] C.H. Chen, R.-L. Chen, and C.-H. Yang, “Pipelined Computation
of Very Large Word-Length LNS Addition/Subtraction with
Polynomial Hardware Cost,” IEEE Trans. Computers, vol. 49,
pp. 716-726, 2000.

J. Nicholas Coleman was initially educated in
music, receiving the BA degree from York
University. His first employment was in commer-
cial applications and systems programming.
Becoming increasingly interested in engineering,
he joined Plessey Telecommunications Re-
search, Poole, Dorset. Working initially as a
software engineer and then as a hardware
engineer, he was responsible for the design of
a custom processor for real-time test of the

System-X telephone exchange. At Brunel University, Uxbridge, Mid-
dlesex, he then began work on a PhD, for which he designed and built a
special-purpose dataflow computer. After receiving the PhD degree, he
joined Newcastle University, where he is a lecturer in computer
engineering and the coordinator of the European Strategic Programme
for Research and development in Information Technology (ESPRIT)
Project on which this work is based. He has recently founded a spin-off
company, Northern Digital, which, with research and development
funding from the United Kingdom government, aims at commercializing
the outcome of this project. His research interests include high-speed
processor design and processor-intensive applications such as graphics.

Chris I. Softley received the BEng (hons) degree
in microelectronics and software engineering
from the University of Newcastle upon Tyne in
1999. His dissertation focused on arithmetic cells
for a logarithmic number system (LNS) CPU. He
was then employed by the university as a
research assistant, seconded to the Philips
Research Laboratories in Eindhoven, The Neth-
erlands. Here, he worked primarily on the design
of the European Logarithmic Microprocessor,

under the European Strategic Programme for Research and develop-
ment in Information Technology High-Speed Logarithmic Arithmetic Unit
(ESPRIT HSLA) Project. Upon completing this work in 2002-2003, he
moved to Switzerland and joined Photonfocus AG, becoming the head of
sensor development in 2005. He currently develops high-performance
CMOS image sensors for industrial applications which have a combined
linear-logarithmic response for high dynamic range. He is also with the
Hochschule für Technik, Rapperswil, where he supervises research on
low-power low-noise readout circuits for fast CMOS imagers. His
research interests include image sensors, energy-efficient analog
circuits, computer arithmetic, number systems, and processor architec-
ture, particularly as applied to vision and visualization systems. He is a
member of the IEEE and the IEEE Computer Society.

Jiri Kadlec received the MSc degree from the
Czech Technical University in Prague, in 1982
and the PhD degree from the Academy of
Sciences of the Czech Republic in 1987. Since
1990, he has been with the Institute of Informa-
tion Theory and Automation at the Academy of
Sciences of the Czech Republic, where he is
currently the head of the Department of Signal
Processing. He was a researcher at Ruhr
University, Bochum, Germany, in 1989, the

University of Athens, Greece, in 1990, Queen’s University of Belfast,
United Kingdom, from 1992 to 1995, and the Katholieke Universiteit
Leuven, Belgium, from 1995 to 1996. His research interests include
recursive system identification algorithms suitable for FPGA, rapid
prototyping of advanced signal processing algorithms, and scalable
floating-point arithmetic for FPGA SoC designs.

Rudolf Matousek received the MSc degree in
automation in transportation sciences from the
Czech Technical University in Prague, in 2000.
His research interests include computer arith-
metic, FPGA implementation of DSP algorithms,
and design methodology and tooling for the
dynamic reconfiguration of FPGA devices.

Milan Tichy received the MSc and PhD degrees
from the Czech Technical University in Prague,
in 1999 and 2006, respectively. In 2003, he was
awarded the two-year Marie Curie Fellowship,
which he spent in the Department of Computer
Science at Trinity College, Dublin, Ireland, from
2004 to 2006. He is currently a senior researcher
in the Department of Signal Processing at the
Institute of Information Theory and Automation
of the Academy of Sciences of the Czech

Republic. His research interests include reconfigurable systems, parallel
algorithms and architectures, parallel adaptive algorithms, VLSI im-
plementations, and embedded systems. He is a member of the IEEE
and the IEEE Computer Society.

Zdenek Pohl received the bachelor’s degree in
electrical engineering from the Czech Technical
University in Prague. He is currently working
toward the PhD degree at the Czech Technical
University. He is also a researcher in the
Institute of Information Theory and Automation
at the Academy of Sciences of the Czech
Republic. His research interests include FPGA
implementations of signal processing algo-
rithms, speech coding, and rapid prototyping.

Antonin Hermanek received the MSEE degree
from the Czech Technical University in Prague,
in 1998 and the PhD degree from the Université
Paris-Sud, Orsay, in 2005. He is a researcher in
the Institute of Information Theory and Automa-
tion at the Academy of Sciences of the Czech
Republic. His research interests include blind
equalization, multiple-input, multiple-output
(MIMO) and orthogonal frequency-division multi-
plexing (OFDM) communication systems, FPGA

implementation of DSP algorithms, array processing, and rapid
prototyping for signal processing. He has published more than 30 papers
in these areas. He is a member of the IEEE.

Nico F. Benschop received the MSc degree in
electronics from Delft University, The Nether-
lands, in 1966 and the PhD degree from Water-
loo University, Ontario, Canada in 1971. From
1970 to 2002, he was with Philips Research
Laboratories, Eindhoven, The Netherlands, re-
searching design methods for digital VLSI in
logic, arithmetic, and state machines. After
retirement, he finished a book, Associative
Digital Network Theory, combining these three

main aspects under one heading of the finite associative algebra of
function composition (semigroups) to improve structural insight into
complex computer circuits and algorithms.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

