
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 394201, 11 pages
doi:10.1155/2008/394201

Research Article
Implementation of the Least-Squares Lattice with Order and
Forgetting Factor Estimation for FPGA

Zdenek Pohl, Milan Tichy, and Jiri Kadlec

Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague, Czech Republic

Correspondence should be addressed to Milan Tichy, tichy@utia.cas.cz

Received 6 February 2008; Revised 5 June 2008; Accepted 24 June 2008

Recommended by Ricardo Merched

A high performance RLS lattice filter with the estimation of an unknown order and forgetting factor of identified system was
developed and implemented as a PCORE coprocessor for Xilinx EDK. The coprocessor implemented in FPGA hardware can fully
exploit parallelisms in the algorithm and remove load from a microprocessor. The EDK integration allows effective programming
and debugging of hardware accelerated DSP applications. The RLS lattice core extended by the order and forgetting factor
estimation was implemented using the logarithmic numbers system (LNS) arithmetic. An optimal mapping of the RLS lattice
onto the LNS arithmetic units found by the cyclic scheduling was used. The schedule allows us to run four independent filters in
parallel on one arithmetic macro set. The coprocessor containing the RLS lattice core is highly configurable. It allows to exploit
the modular structure of the RLS lattice filter and construct the pipelined serial connection of filters for even higher performance.
It also allows to run independent parallel filters on the same input with different forgetting factors in order to estimate which
order and exponential forgetting factor better describe the observed data. The FPGA coprocessor implementation presented in the
paper is able to evaluate the RLS lattice filter of order 504 at 12 kHz input data sampling rate. For the filter of order up to 20, the
probability of order and forgetting factor hypotheses can be continually estimated. It has been demonstrated that the implemented
coprocessor accelerates the Microblaze solution up to 20 times. It has also been shown that the coprocessor performs up to 2.5
times faster than highly optimized solution using 50 MIPS SHARC DSP processor, while the Microblaze is capable of performing
another tasks concurrently.

Copyright © 2008 Zdenek Pohl et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

A number of possible applicationsin digital signal processing
(DSP) such as parameter estimation [1], echo suppression
[2], or beam-forming [3] can be found for adaptive least
squares filters. Their recursive form known as the recursive
least squares (RLS) [4] is the solution of the minimum mean
square error problem. The convergence rate of the RLS is far
superior to that of the well-known least mean square (LMS)
[5] algorithm and its normalized sibling NLMS.

The hardware implementation of the RLS algorithm is
rather difficult due to its high computational complexity
and problems with numerical stability. The complexity can
be decreased by the exploitation of serial structure of the
input data, typical for DSP applications. It allows to reduce
asymptotic complexity of the RLS from O(N2) to O(N). One
of the fast versions of RLS algorithm is represented by the fast
transversal filters (FTF) [6–8]. The problems with numerical
instability of the FTF lead to the development of its stabilized

version [9, 10]. Motivated to develop numerically stable
fast RLS filters, the least-squares lattice (LSL) filters [11, 12]
and fast QR decomposition (QR-RLS) [13] algorithms were
developed. While the numerical stability of the fast QR-
RLS algorithm was proven analytically [14], good numerical
properties of an LSL filter were found experimentally. The
analysis of QR-RLS and LSL algorithms can be found in [15].
This work focuses on the LSL algorithm because of its slightly
lower complexity.

The implementation of the LSL filter with error-feedback
[16–18] has proven good numerical behavior. In [16], it was
shown that the filter can be efficiently implemented in field
programmable gate arrays (FPGA). In the following text, this
algorithm is referred to as the RLS lattice. Its computational
complexity is 24N , which can be further reduced by the
utilization of parallel hardware in an FPGA.

The possibilities of efficient FPGA implementation of
the RLS lattice algorithm were exhaustively investigated in
[19, 20]. Similar approach to the optimization of other DSP

mailto:tichy@utia.cas.cz

2 EURASIP Journal on Advances in Signal Processing

algorithms for FPGAs can be found in [21–23]. As shown in
these works, the resulting intellectual property (IP) cores can
outperform floating-point DSP microprocessor solutions by
one order of magnitude. There also exist other RLS filter
FPGA implementations such as [1, 3], where IP cores are
implemented and integrated in a custom one purpose design.
Another implementation of RLS filter is presented in [24],
where calculations are distributed between FPGA and the
NIOS microprocessor in a single chip.

Our aim is to provide a versatile highly configurable
hardware RLS core for DSP applications. We focus on the
implementation of a hardware coprocessor rather than a
standalone IP core. Our target application scheme is to use
one lattice filter and to estimate the order probability or
to use more parallel lattice filters with different forgetting
factors on a single channel and to estimate, which forgetting
factor yields better results. We also expect that parallel lattice
filters will be possible to interconnect serially and to create
a high performance pipelined solution. The algorithm is
integrated into the Xilinx EDK environment as a Microblaze
accelerator, resulting in a versatile, easy-to-use and compact
RLS lattice coprocessor, which can easily be accessed by the
standard C programming and debugging.

2. PROBABILISTIC APPROACH TO SYSTEM
IDENTIFICATION

In order to outline the development of the RLS lattice
algorithm with order probability estimation and to describe
its hardware implementation, a brief insight to the recursive
least squares estimation from the probabilistic theory view-
point is provided.

The probabilistic approach [25] to the system identi-
fication provides the link between the probabilistic theory
and the least square error estimation, which allows us to
extend the estimation task by the hypotheses probability
estimation. In this approach to the system identification,
the hypotheses probability update of an autonomous one-
dimensional system [26] can be formulated as

p(hn|Dn) = p(yn|Dn−1,hn)p(hn|Dn−1)
∑
∀hp(yn|Dn−1,hn)p(hn|Dn−1)

, (1)

where yn are data observed at the unknown system output
at time n, the variables Dn and Dn−1 are previously
observed data y0 through yn and yn−1, respectively. The
hypothesis hn is the ordered pair h ∈ (i, λ), where i ∈
{0, . . . ,N} is the unknown order and λ ∈ {λ1, . . . , λM} is
the unknown forgetting factor. The term p(yn|Dn−1,hn) is
the probabilistic description of the modeled system with
order and exponential forgetting given by hypothesis hn. This
probability can be evaluated as

p(yn|Dn−1,hn)

=π−1/2
λΛ((λϑn−1−i)/2+1)

h,n−1

Λ
((ϑn−i)/2+1)
h,n

·det (λVz,h,n−1)1/2

det (Vz,h,n)1/2 · Γ((ϑn−i)/2+1)
Γ((λϑn−1−i)/2+1)

,

(2)

where Λh is the optimal solution error of the model for the
hypothesis h. The matrix Vz,h,n is the autocorrelation matrix
defined as

Vz,h,n = zh,nzTh,n, (3)

where

zh,n = [yn−1 · · · yn−i]T . (4)

The operator Γ in (2) is the gamma function. The quantity ϑ
represents the “amount of data” accumulated in matrixVz,h,n

through the estimation process. The quantity ϑ is updated as

ϑn = λϑn−1 + 1. (5)

It should be noted that according to [25] the relation (2)
is correct only for the definition of the autoregression model
inherent to the hypothesis h as a conditional probability
density function (pdf)

p(yn|Dn−1,Θh,n,hn) = ωh,n√
2π

e−(ωh,n/2)(yn−AT
h,nzh,n)

2

, (6)

where the symbol Θh,n denotes parametrization of the model
by the vector of unknown parameters α and of an unknown
precision measure ω [25]

Θh,n = {Ah,n,ωh,n},
AT
h,n = [α1 · · · αi].

(7)

The autoregression model of an unknown system in (6) can
be described as

yn= AT
h,nzh,n + eh,n, (8)

where eh,n is the prediction error of the model inherent to
the hypothesis h at time n. As shown in [25], if eh,n is a
normally distributed random variable, the conditional pdf
for the model parameters Θh,n can be written as

p(Θh,n|Dn,hn) = ch,nω
ϑn/2
h,n e

−(ωh,n/2)Xh,n , (9)

where ch,n is a normalizing constant and

Xh,n =
[
−1

Ah,n

]T

Vh,n

[
−1

Ah,n.

]

. (10)

The matrix Vh,n is the augmented autocorrelation matrix
which keeps information about the shape of the conditional
pdf (9). This data matrix can be updated recursively as

Vh,n = λVh,n−1 + λ

[
yn

zh,n

]
[
yn zTh,n

]
. (11)

The optimal solution Âh,n for Ah,n is located at the maximum
of the conditional pdf (9). The maximum can be found by
the minimization of the quadratic form (10), which can be
written as

Xh,n = Λh,n + (Ah,n − Âh,n)
T
Vz,h,n(Ah,n − Âh,n). (12)

Zdenek Pohl et al. 3

For better clarity, the subscript n will be omitted in the fol-
lowing text. The matrix Vh used in (10) can be decomposed
as follows:

Vh =
[
Vy VT

z,y,h

Vz,y,h Vz,h

]

. (13)

Consequently, the optimal solution can be written as

Âh = V−1
z,hVz,y,h,

ωh = ϑΛ−1
h ,

(14)

where

Λh = Vy −VT
z,y,hV

−1
z,hVz,y,h. (15)

Recursive formulas for the direct update of the decomposed
matrix Vh can be derived from (11).

The recursive solution for Âh, maximizing the pdf given
by (9), is also known as the RLS algorithm [27]. It is
important to note that for the estimation of (N + 1)M
hypotheses by the Bayes formula (1), it is needed to estimate
all models defined by the estimated hypotheses, which means
to calculate NM-array of RLS filters.

3. HYPOTHESES ESTIMATION

Despite the possibility to implement the RLS estimation by
formulas introduced in Section 2, it is more convenient to
use one of the state-of-the-art RLS algorithms. As the most
convenient algorithm for implementation, the recursive
least-squares lattice [4] in the error-feedback form was
chosen. As suggested in [17], the normalized a posteriori
errors are used to reduce the complexity of the algorithm.
The computational complexity of this algorithm is 24N ,
where N denotes the filter order (dimension).

As mentioned above, the estimation of probability of
hypotheses h by (1) requires performing one RLS estimation
for each hypothesis h. Thus, the NM-array of RLS filters has
to be calculated.

The most important property making the RLS lattice
suitable for the hypotheses estimation is its modular struc-
ture. The RLS lattice filter consists of a cascade of identical
modules. Each module implements the order update, which
means that it is using ith order output from the preceding
module and increases the order of estimation to i + 1.
Consequently, estimations of all orders up to N can be found
during computations. Using this principle, the number RLS
filters required for the hypotheses estimation can be reduced
to M.

In our solution, the evaluation of probability estimates
is divided into two stages. The first stage performs the
order update, which uses the “old” probability estimates and
updates them by new data. This operation is represented by
the numerator of (1). In the second stage, the normalization
of the updated order estimates is performed. The normaliza-
tion is represented by the denominator of (1). The forgetting
on hypotheses pdf is applied in the normalization stage. The
order update can be integrated into the RLS lattice algorithm.

Initialization
γ−1 = 1, F−1 = B−1 = δI

ψ−1 = γ
f
−1 = γb−1 = κ−1 = ba−1 = 0

e1, e2, g set using (17) and (18)
Lattice update (for each n ≥ 0):

α0,n = dn,η0,n = ψ0,n = un, γ0,n = 1
psd−1,λ,n = (N + 1)ϕ

for (i = 0; i ≤ N ; i = i + 1)

ηi+1,n = ηi,n − γ
f
i+1,n−1ψi,n−1 T1,2

f = γi,n−1ηi,n T3
ψi+1,n = ψi,n−1 − γbi+1,n−1ηi,n T5,4

b = γi,nψi,n T6
αi+1,n = αi,n − κi+1,n−1ψi,n T8,7

γ
f
i+1,n = γ

f
i+1,n−1 + bai,n−1ηi+1,n T10,9

Fi,n = ν + λFi,n−1 + f ηi,n T13,11,14,12
Bi,n = ν + λBi,n−1 + bψi,n T17,15,18,16
f ai = f /Fi,n T19
bai,n = b/Bi,n T20

γbi+1,n = γbi+1,n−1 + f ai ψi+1,n T22,21
κi+1,n = κi+1,n−1 + bai,nαi+1,n T24,23
γi+1,n = γi,n − bai,nb T26,25
a1 = λFi,n−1 U1
a2 = ae1i

1 /Fe2i
i,n U2

a3 = |γi,n|1/2 U3
pdi,λ,n = pi,λ,n−1·a2·a3·gi U4,5,6
psdi,λ,n = psdi−1,λ,n + pdi,λ,n U7

end

Algorithm 1: RLS lattice algorithm with exponential forgetting
and probability update evaluation. The labels Txx and Ux denote
individual arithmetic operations contained in the right side of each
equation.

ηi,n ηi+1,n

ψi,n ψi+1,n

αi,n αi+1,n

Bi,n−1

Fi,n−1

κi,n−1

∑

∑

∑

z−1

Figure 1: Data flow graph of one order update step of the
algorithm.

The RLS lattice algorithm with order and forgetting factor
update is summarized in Algorithm 1 . For the illustration,
the update of estimates to order i+ 1 from order i is depicted
in Figure 1.

The algorithm presented in Algorithm 1 is in the form,
where input un is used to estimate desired value dn. For
identification of one-dimensional autoregression model the
input must be connected as presented in Figure 2. Then, the

4 EURASIP Journal on Advances in Signal Processing

yn un αN ,n
z−1

dn

pn−1 pn

z−1

RLS lattice

Order
estimation

Figure 2: RLS lattice algorithm for identification of one-
dimensional autoregression model.

Table 1: The parameters of the RLS lattice algorithm with
exponential forgetting and probability update evaluation.

Parameters

N Filter order

λ ∈ (0; 1〉 Forgetting factor

δ δ > 0, δ→0 Regularization parameter

ν 2−b(1− λ) Regularization constant

ϕ ∈ 〈0; 1) Hypotheses forgetting factor

probabilistic approach given in Section 2 can be used for
estimation of order and forgetting factor probability as also
shown in the figure. The RLS lattice algorithm parameters
are summarized in Table 1.

For the probability p(hn|Dn), ph,n = pi,λ,n will be further
used as a more simple notation, where h was defined as the
ordered pair (i, λ), i ∈ {0, . . . ,N}, h ∈ {1, . . . ,M}. Before
the first iteration of the algorithm, initial hypotheses pdf has
to be set and the look-up tables have to be initialized. The
initial hypotheses pdf can be selected as

pi,λ,−1 = 1
(N + 1)M

∀i, λ, (16)

where pi,λ,n is the probability of order i and forgetting factor
λ at time n. Value n = −1 represents the initialization step.
The look-up tables are initialized for the limit value of

ϑlim = lim
n→∞ϑn =

1
1− λ (17)

as follows:

e1i = λϑlim − i
2

+ 1

e2i = ϑlim − i
2

+ 1 i = 0, . . . ,N

gi = π−1/2 Γ(e2i)
Γ(e1i)

. (18)

After the values pi,λ,n−1 have been updated, the nor-
malization step has to be performed to obtain actualized
probability pi,λ,n. The pdf given by (1) extended with
forgetting of hypotheses can be evaluated as

pi,λ =
pdi,λ + ϕ

∑λM
λ=λ1

∑N
i=0(pdi,λ + ϕ)

, (19)

where pdi,λ is updated, but not normalized probability of
order i and forgetting factor λ. The symbol ϕ is the forgetting
factor of hypotheses.

Equation (19) can be calculated more efficiently as

pi,λ =
pdi,λ + ϕ
∑λM

λ=λ1
psdN ,λ

, (20)

where psdN ,λ is a sum of updated probabilities pdi,λ biased by the
forgetting factor of hypotheses. Comparing (19) and (20), it
can be shown that the sum of updated probabilities pdi,λ can
be calculated as

psdN ,λ =
N∑

i=0

(pdi,λ + ϕ) = (N + 1)ϕ +
N∑

i=0

pdi,λ. (21)

Then, the value of psdi,λ is calculated using the update of psdi,λ
from its initial value psd−1,λ = (N + 1)ϕ as shown in the right-
hand side of (21). This step is labeled as operation U7 in
Algorithm 1.

Adding the order and forgetting estimation, the original
RLS lattice algorithm increases its complexity to 31N . Thus,
the number of operations for maintaining N+1 order andM
forgetting factor hypotheses is 31NM. The normalization of
updated probabilities requires 2M(N+1)+M−1 operations.
Considering these figures, we can state the complexity of
the RLS lattice with the estimation of hypotheses which is
33NM + 3M − 1 operations, provided that the division of
two powers is regarded as one operation.

It is evident that the implementation of M RLS lattice
estimations to test each hypothesis can be easily parallelized.
For each forgetting factor hypothesis, one RLS lattice
instance extended by the probability update can be evaluated
in parallel. When all filters have been calculated, the normal-
ization is performed before new data are acquired. Such an
arrangement can be efficiently implemented in FPGAs.

4. FPGA IMPLEMENTATION

Hardware implementation of the RLS lattice requires ALU
providing ADD, SUB, MUL, and DIV operations. For the
probability estimation, POW and SQRT operations are also
required. The Logarithmic Number System (LNS) arithmetic
[28, 29] has been identified as the most convenient alter-
native to floating point for hardware implementation. This
selection is supported by [16, 19].

Numbers in LNS are represented as fixed-point base-
2 logarithms of numbers to be represented. The LNS
arithmetic provides extremely effective MUL, DIV, and
SQRT operations. The ADD/SUB operations are more
complex and thus require more resources. For our RLS
lattice implementation, the high speed logarithmic arithmetic
(HSLA) library was used [29].

The proposed hardware provides solution to a few
implementation challenges, such as

(i) conversions between fixed-point and LNS numbers;

(ii) implementation of the power function or directly of
the division of powers;

Zdenek Pohl et al. 5

(iii) mapping the algorithm to the LNS ALU efficiently
and scheduling of operations;

(iv) ensuring the numerically robust behavior;

(v) implementation of the optimized RLS lattice core;

(vi) supporting integration of the core into a Micropro-
cessor system.

In the following sections, these issues are directly addressed
and their solution is presented.

4.1. Conversions

In audio DSP applications, the 16-bit two’s complement
integer is a typical input and output data format. The same
precision was used for implementation of the input and
output of the RLS lattice filter.

A conversion of an unsigned 16-bit fixed-point numbers
to LNS format and vice versa, introduced in [19], was
implemented. The method can be easily modified for signed
integers. The integer to LNS conversion is based on the LNS
addition, which can be written as

log2(X + Y) = i + log2(1 + 2 j−i), (22)

where i = log2|X| and j = log2|Y | are the fixed-point
numbers representing X and Y in LNS, respectively. The 16-
bit integer input can be written as

Z= 28z1 + z2, (23)

where z1 and z2 are high and low parts of the integer Z,
respectively. Then, the conversion of Z into the LNS can be
written as

log2Z = log2(28z1 + z2) = log2(X + Y). (24)

It is clear that for calculation of the LNS image of Z, the
values i = log2|X| = log2|28z1| and j = log2|z2| have to
be known. The value of i and j can be tabulated as Ti and Tj ,
each of depth 256.

The conversion from LNS to fixed point is implemented
as the binary search of the nearest lower number in Ti. The
value of Ti is then subtracted from the original in the LNS
domain and the search continues in Tj . The integer result
is formed from addresses of found values in the tables Ti and
Tj . The hardware solution of conversions using LNS addition
and two tables delivers maximal conversion performance for
the input and output data.

Initialization of the algorithm presented in Algorithm 1
requires constants and initial vector values in LNS. A
software conversions for an FPGA soft processor were
implemented using the functions provided in HSLA.

4.2. Division of powers

As mentioned in Section 2, the division of two general pow-
ers in (2) is considered as one floating-point-like operation.
In the LNS arithmetic, this operation can be calculated as

Z = log2
Ae1i

Be2i
= a·e1i − b·e2i, (25)

where a = log2|A| and b = log2|B| are LNS representations

of A and B, respectively. The values of e1 and e2 are fixed-
point exponent values stored in tables defined in (18).

According to (25), the division of two powers in the
LNS can be implemented very efficiently as the fixed-
point multiplications, which are in fact fixed-point integers
representing base-2 logarithm with a fixed-point expo-
nent. Consequently, the results are subtracted. The FPGA
implementation benefits from the possibility to use integer
subtraction in full precision and to truncate the result to the
desired LNS width at the end.

The fixed-point exponents in tables e1 and e2 are stored
in 16-bit unsigned fixed-point with 8 fractional bits. Such
decision makes possible efficient implementation without
the loss of precision. Although such representation limits the
possible range of the parameter λ to λ ∈ 〈0.95; 0.995〉 and
of the parameter i to i ∈ {0; 20}, this range covers the most
used options for the recursive identification and for the order
estimation. The restriction put on the order i corresponds
with the range in which the probabilistic approach to order
estimation can provide reliable results as shown in [30].

4.3. ALU and scheduling

Since our implementation of the RLS lattice filter is designed
for 16-bit two’s complement integers used as an input
and output, the 19-bit LNS arithmetic provides sufficient
precision. The bit allocation within the 19-bit LNS number is
as follows: 1 bit sign and 18-bit two’s complement fixed-point
number. Special values are reserved for zero, NaN, and Inf.

In order to exploit the maximal possible parallelism
in the implementation of the RLS lattice filter, the cyclic
scheduling of the RLS lattice inner loop was used [20, 31].
It was found that the addition hardware macro is utilized
by less than 25%. For higher utilization of resources, four
RLS lattice filter modules can share one dual-port ADD/SUB
unit, that is, four independent RLS lattice filters can be
implemented without using more ADD/SUB units. Other
hardware macros used in the RLS lattice filter implemen-
tation are four MUL and DIV macros, one SQRT, and
POW/POW macro. All hardware macros are fully pipelined.

Using the method of cyclic scheduling, four independent
RLS lattice filter modules were mapped onto the LNS
arithmetic units so that the schedule consists of 2 clock
cycles prologue loop, 25 clock cycles main body loop, and 34
clock cycles epilogue loop. The resulting schedule is depicted
in Figure 3, where the evaluation of one iteration of the
RLS lattice filter is displayed. Operations for one iteration
of the algorithm presented in Algorithm 1 are spread over
three consecutive iterations in the hardware implementation
and evaluated concurrently. Operations in Algorithm 1 were
labeled T1-26 for the RLS lattice algorithm and U1-7 for
the probability update. In Figure 3, the corresponding oper-
ations are displayed as 4-clock-cycle long operations, which
consist of four consecutive calls—one for each instance of the
RLS lattice module.

4.4. Numerical behavior

To guarantee the numerical stability, it is required to avoid
divisions close to zero in operations labeled T19 and T20.

6 EURASIP Journal on Advances in Signal Processing

U9 U8 U3

U2

T19

T20U10

T11 cont. T4 T6 U11 T11

T21
cont. T23 T7 T12 T21

T15 T1 T3 T9 T25

U4 cont. U5 T16 U1 U6 U4

T26 cont. T17 T2 T18 U7 T22 T26

T13 T5 T8 T14 T10 T24

Txx Txx

Uxx

Txx

Uxx

LSL
algorithm

Extension

Operations
in iteration i− 1

Operations
in iteration i

Operations
in iteration i

Operations
in iteration i + 1

Operations
in iteration i + 1

Clock cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 2515

ADD/SUB1

ADD/SUB2

MUL0

MUL1

MUL2

MUL3

DIV0

DIV1

POWSD

SQRT

Macro
instances

w

Figure 3: Schedule of operations of four RLS lattice algorithms with probability estimation. The operations Txx and Ux are defined in
Algorithm 1.

T6
T16

T15 T20
ν0

(a) Nonbiased

T6
T16

T15
T20

ν

(b) Biased

Figure 4: Comparison of two approaches to regularization of
division in T20. The critical path fragment is marked in red.

The sufficient solution is to add a small positive constant ν0

to the denominator before the divisions are evaluated [18].
Such solution provides nonbiased energies Bi,n and Fi,n.

Alternatively, the constant ν = ν0(1 − λ) can be used in
operations labeled T13 and T17 [17]. We use this version of
the RLS lattice which introduces a small bias to the energies
Bi,n and Fi,n.

The “biased” version is more suitable for parallelization,
rather than using the nonbiased version, because the eval-
uation of the energy Bi,n lies on the critical path of the
algorithm. Situation on the critical path is compared to both
options in Figure 4. It can be seen that at the expense of a
small bias added to the energies Fi,n and Bi,n, the iteration
time of the lattice loop is decreased from 33 to 25 clock cycles,
that is, by 24%.

According to [17, 18], the constant ν equal to 2−b(1− λ)
should be used. Here, b is the mantissa length to which
the prediction energies are quantized and λ is the forgetting
factor. For the 19-bit LNS arithmetic case, b = 12 was used.
The worst case forgetting factor λ = 0.95 is determined
by constrain introduced in Section 4.2. The relation for ν is
correct under the assumption that input signal yn is within
the range 〈−1, 1〉, which is always satisfied by the input and
output conversions described in Section 4.1.

4.5. Optimized RLS lattice core

The result of RLS lattice implementation is a standalone
IP core. The internal variables of the core are expected to
be stored in external memories. It allows more convenient
integration of the core into the soft core processor.

A special memory organization, grouping the instances
of one internal variable into one distributed memory ele-
ment, was used. It allows us to reduce the size of multiplexer
connected to the shared arithmetic unit macros, which is
demonstrated in Figure 5. The experiments show that 8% of
FPGA resources was saved by this approach.

4.6. Integration to a microprocessor system

Considering common solutions, where algorithm is used
as an IP core in one purpose hardware design, our aim
is to provide a versatile configurable RLS lattice solution.
Thus, the optimized RLS lattice core was integrated as a
coprocessor to the Microblaze processor system. For its
development, the Xilinx system generator (XSG) was used.
It is possible to create the coprocessor PCORE, which
can directly be integrated to the Microblaze system. Such
solution provides maximal applicability of the RLS lattice
core, although at the expense of slight performance loss

Zdenek Pohl et al. 7

against one purpose design based on the same core. The
XSG schematic of the coprocessor can be seen in Figure 6.
It consists of the RLS lattice core denoted LSL, which can
also be used as a standalone core of the input and output
data buffers denoted inBuf and outBuf, of the control words
mb2hc control and hc2mb status, and of the communication
interface denoted Comm.

The Comm block is responsible for the batch processing
of input data by the RLS lattice core in the LSL block. It stores
filter results to the output buffer. It is capable of working with
the RLS lattice core containing one up to four filter instances.

The LSL module consists of order updating loop (see
algorithm in Algorithm 1) with the input consisting of four
values. After increasing the estimation to higher order, the
same four data can be regarded as output. Otherwise, only
the internal states are altered. As a consequence, one filter
can use another filter output as its input and to continue in
the computation of order updates. The solution of higher-
order filter can be obtained using the pipelined solution
consisting of multiple RLS lattice filter instances. That is why
the Comm block in the coprocessor design has to be capable
of reconfiguring data path between RLS lattice instances,
in order to use them either as parallel four channel RLS
lattice filter (each with order up to 126), or it is possible to
connect up to four instances serially and to create pipelined
RLS lattice solution with order up to 504, achieving 4×
higher performance. It is the reason why, in Figure 6, the fifo
block storing the intermediate results is used in the pipelined
organization of the coprocessor.

Four versions of the PCORE with one, two, three,
and four RLS lattice modules were implemented. Resource
requirements in the Xilinx Virtex4 SX35 device are sum-
marized in Table 2. For illustration, the floor-plan of the
system with Microblaze and the PCORE with four RLS lattice
modules as a coprocessor are presented in Figure 7. The area
occupied by the Microblaze processor is displayed in yellow,
the FSL communication interfaces in blue, batch processing
control unit in purple, and the RLS lattice filter core in green
color. The entire system occupies 78% of the Xilinx Virtex4
SX35 chip.

5. DYNAMIC RECONFIGURATION

The implementation of the RLS lattice as a coprocessor con-
nected to the Microblaze makes possible to use the dynamic
reconfiguration for loading and unloading the coprocessor
while the microcontroller is running. The loading of the
coprocessor can be initiated on demand.

The software version of the RLS lattice filter was devel-
oped. The floating-point number representation is used in
the Microblaze, whereas the 19-bit LNS is used in hardware.
The software conversions based on the HSLA library were
used for implementation of migration between hardware and
software. The conversions are based on evaluation of base-
2 logarithm contained in the Microblaze glibc library. Such
conversions are time consuming even if a hardware support
of floating-point is included in the Microblaze.

To control the load of the processor and the power
consumption, a mechanism for migration the task from

Address

Lattice 1
data A

Lattice 1
data A

data A

data A

Lattice 2

Lattice 2

mux

MUL

Lattice 1–4 data B

Grouping memories together

Lattice 1

Lattice 2

Lattice 3

Lattice 4

Lattice 1–4 address

Mem A

mux

MUL

Lattice 1–4 data B

Figure 5: Reduction of multiplexers by grouping the block mem-
ories.

Table 2: RLS lattice coprocessor resources usage in the Xilinx
Virtex4 SX35 device.

PCORE 1 2 3 4

Slice Flip Flops 4032 5106 6131 7242

4 input LUTs 7719 9527 11554 12357

Occupied Slices 6112 7826 9675 10270

Total 4 input LUTs 8006 9844 11905 13350

Block RAMs/DSP48 42/12

Nmax 126 126 126 126

Mmax 1 2 3 4

fmax 44 MHz

the processor to coprocessor was developed. The software
version of the RLS lattice runs in the Microblaze when no
other tasks require to use the processor. When there is a need
to use the Microblaze for other tasks, the processor is freed
and the RLS lattice is run in the coprocessor.

The available run-time configurations are presented in
Figure 8. One is the software solution, remaining three are
the coprocessor versions containing one to four RLS lattice
filters.

6. PERFORMANCE RESULTS

The performance in each run-time state was measured
and the key results are summarized in Table 3. The table
is divided into three parts. The first part summarizes
performance of the RLS lattice filter with the probability
estimation. In general, the estimation of the model order
higher than 15–20 is not giving satisfactory results, as it
was shown in [30]. Thus, higher order of estimation is not
expected to be used. As it can be seen in the table, the
performance decreases with the number of employed RLS
lattice instances. The performance of hardware coprocessor
is 5.5-times higher compared to the software solution, even if
the clock frequency of the microprocessor is 4-times higher
(this can be seen in the table by comparison of Microblaze
and PCORE4 rows for N = 16, M = 4).

8 EURASIP Journal on Advances in Signal Processing

System
generator

EDK processor

MB

dout

mb2hc control

[a:b]

Slice bit[0]

Delay Z

Delay RDY

Shared memory
<<‘fifo’>>

Comm
CommSim

Shared memory
<<‘outBuf ’>>

z−1

z−1

Shared
memory

<<‘inBuf ’>>

LSL hc2mb status

fifoMemDOUT

inBufDOUT

lattice rdy

lattice z

mb2hc

outBufDOUT

rst

fifoMemADDR

fifoMemDIN

fifoMemWEN

hc2mb

inBufADDR

inBufDIN

inBufWEN

lattice a

lattice en

outBufADDR

outBufDIN

outBufWEN

addr

din

we

dout

addr

din

we

dout

a

en

rst

rdy
z

stages
order

contexts

din

stages
order
contexts

addr

din

we

dout

Figure 6: The RLS lattice coprocessor integration to Microblaze processor via FSL.

Table 3: Performance of the RLS lattice coprocessor: the execution time for 180 inputs is presented.

Processor Clk [MHz] M N Time (ms) M flops

Microblaze 100 4 16 69.46 5.50

PCORE1 25 1 16 12.24 7.79

PCORE2 25 2 16 12.96 14.74

PCORE4 25 4 16 12.49 30.60

Microblaze 100 4 126 547.53 3.98

PCORE1 25 1 126 29.60 18.39

PCORE2 25 2 126 29.40 37.02

PCORE4 25 4 126 28.70 75.86

PCORE4 pipe 25 1 64 7.02 39.38

PCORE4 pipe 25 1 504 26.48 82.22

Figure 7: Floor-plan of the RLS lattice filter implementa-
tion: Microblaze processor (yellow), FSL communication interface
(blue), batch processing control (in purple) and the RLS lattice core
(green); the Xilinx Virtex4 SX35 usage is 78%.

The second part shows results with the probability
estimation deactivated. The results for maximal supported

Microblaze

PCORE4 PCORE2

PCORE1

State reorganization State conversion

Figure 8: Reconfiguration states with switch possibilities.

order of 126 are presented. It can be seen that the maximal
filter order exploits the best RLS lattice core optimization by

Zdenek Pohl et al. 9

40003500300025002000150010005000

n

−1

0

1

2
O

rd
er

Real order

(a)

40003500300025002000150010005000

n

0

0.2

0.4

0.6

0.8

1
Order probability

Order 0
Order 1

(b)

Figure 9: The order probability evaluation for orders 0 and 1.

cyclic scheduling. The acceleration of computation is nearly
20-times compared to the software solution running at 4-
time higher clock speed.

The last part of the table shows results for the pipelined
version of the RLS lattice filter. The pipelined solution uses
all four RLS lattice instances, each computing 1/4 of overall
estimation order. The hardware solution of order 504 is
equivalent to software with M = 4 and N = 126, and
the speedup of 20-times is reached again. The performance
of the pipelined solution can be seen in the last row of
Table 3. In the pipelined solution, the probability estimates
cannot be maintained because the normalization cannot be
implemented in such case.

The switch cost between run-time states was measured.
The time for conversion is 411μs/order. To change the state,
local memories in the PCORE have to be reorganized. The
time required for this state change was found by another
experiment as 4μs/order. Thus, we can formulate the “reorg”
state and conversion times, which are Treorg = 4MN μs and
Tconv = 411MN μs, respectively.

The example of order estimation is presented in Figure 9.
The upper plot shows the time when the model order was
switched from 0 to 1 and back. The bottom plot shows the
corresponding probability of order 0 and 1.

7. RELATED WORK

The error feedback RLS lattice filter algorithm was imple-
mented before, which is presented in [32]. Our implementa-
tion of the lattice PCORE has similar performance. However,
three more lattice filters are possible to run at the same
time and hypotheses probability can be evaluated in our

implementation. We have also demonstrated that four filters
in coprocessor can be serialized to perform as one, 4-level
pipelined filter. The performance can be 4-times better but
the hypotheses estimation cannot be maintained.

There exists another RLS filter FPGA implementation
presented in [33]. The performance cannot be compared
since the only information provided in the paper is the clock
frequency 5.3 MHz and the resource usage consisting of 2685
slices and 7 multipliers for the floating-point version and
3971 slices and 24 multipliers for the 17-bit LNS version (at
4 MHz). The PCORE implemented in our work uses 19-bit
LNS and it can run at 44 MHz. In the smallest configuration,
it occupies 4032 slices, 42 BRAMs, and 12 DSPs.

Our implementation is based on the algorithm presented
in [17]. Its implementation for the analog devices 21061
DSP (SHARC) running at 50 MHz allows to evaluate order
N = 290 at 8 kHz sampling rate. From Table 3 it can be
extrapolated that our solution at 44 MHz can, in the case
of one lattice module, operate for order N = 168 at 8 kHz
sampling rate (1.7× slower than SHARC solution). When all
four RLS lattice modules are used, the pipelined solution can
theoretically reach up to N = 753. However, the limitation
of the current implementation allows maximal value of N =
504 (1.7× faster than SHARC). Alternatively, the filter of
order N = 290 can operate at the sampling rate of 20 kHz
(2.5× faster than SHARC). It is important to note that our
architecture allows to execute any task on the microprocessor
while the RLS lattice coprocessor is busy.

8. CONCLUSIONS

The easy use and easy programming and debugging PCORE
integrated in the Xilinx EDK can perform 5-times faster than
the software solution for Microblaze. At the maximal order
with deactivated probability estimation, the acceleration
reaches up to 20 times.

The dynamic reconfiguration can be used to adapt DSP
capabilities to actual demand by changing the contents of the
RLS lattice coprocessor. The migration of processing from
the microprocessor to HW requires 411NM microseconds,
where N is the order and M is the number of filter instances.
The time is determined mainly by the conversion from
the Microblaze floating-point representation to the LNS.
In the case of reconfiguration between different hardware
versions, the reorganization of the internal state takes only
4NM microseconds. The reconfiguration controller must
be designed with respect to the high cost of the migration
between software and hardware solutions.

ACKNOWLEDGMENTS

This work was supported and funded by the Czech Ministry
of Education, Project CAK no. 1M0567, and also by the
European Commission, Project AETHER no. FP6-2004-IST-
4-027611. The paper reflects only the authors view and
neither the Czech Ministry of Education nor the European
Commission are liable for any use that may be made of the
information contained herein.

10 EURASIP Journal on Advances in Signal Processing

REFERENCES

[1] Z. Salcic, J. Cao, and S. K. Nguang, “A floating-point FPGA-
based self-tuning regulator,” IEEE Transactions on Industrial
Electronics, vol. 53, no. 2, pp. 693–704, 2006.

[2] F. Capman, J. Boudy, and P. Lockwood, “Acoustic echo cancel-
lation using a fast QR-RLS algorithm andmultirate schemes,”
in Proceedings of the 20th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’95), vol. 2, pp.
969–972, Detroit, Mich, USA, May 1995.

[3] A. Nakajima, M. Kim, and H. Arai, “FPGA implementation
of MMSE adaptive array antenna using RLS algorithm,” in
Proceedings of the IEEE Antennas and Propagation Society
International Symposium, vol. 3A, pp. 303–306, Washington,
DC, USA, July 2005.

[4] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Upper Saddle
River, NJ, USA, 4th edition, 2002.

[5] B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1985.

[6] G. Carayannis, D. Manolakis, and N. Kalouptsidis, “A fast
sequential algorithm for least-squares filtering and predic-
tion,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 31, no. 6, pp. 1394–1402, 1983.

[7] J. Cioffi and T. Kailath, “Fast, recursive-least-squares transver-
sal filters for adaptive filtering,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 32, no. 2, pp. 304–337, 1984.

[8] L. Ljung, M. Morf, and D. Falconer, “Fast calculation of
gain matrices for recursive estimation schemes,” International
Journal of Control, vol. 27, no. 1, pp. 1–19, 1978.

[9] J.-L. Botto and G. V. Moustakides, “Stabilizing the fast Kalman
algorithms,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 9, pp. 1342–1348, 1989.

[10] D. T. M. Slock and T. Kailath, “Numerically stable fast
transversal filters for recursive least squares adaptive filtering,”
IEEE Transactions on Signal Processing, vol. 39, no. 1, pp. 92–
114, 1991.

[11] D. Lee, M. Morf, and B. Friedlander, “Recursive least squares
ladder estimation algorithms,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 29, no. 3, pp. 627–641, 1981.

[12] F. Ling, D. Manolakis, and J. Proakis, “Numerically robust
least-squares lattice-ladder algorithms with direct updating
of the reflection coefficients,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 34, no. 4, pp. 837–845, 1986.

[13] J. M. Cioffi, “The fast adaptive ROTOR’s RLS algorithm,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 38,
no. 4, pp. 631–653, 1990.

[14] P. A. Regalia, “Numerical stability properties of a QR-based
fast least squares algorithm,” IEEE Transactions on Signal
Processing, vol. 41, no. 6, pp. 2096–2109, 1993.

[15] P. A. Regalia and M. G. Bellanger, “On the duality between
fast QR methods and lattice methods in least squares adaptive
filtering,” IEEE Transactions on Signal Processing, vol. 39, no. 4,
pp. 879–891, 1991.

[16] F. Albu, J. Kadlec, C. Softley, et al., “Implementation of
(normalised) RLS lattice on virtex,” in Proceedings of the
11th International Conference on Field Programmable Logic
and Applications (FPL ’01), pp. 91–100, Springer, Northern
Ireland, UK, August 2001.

[17] A. H. C. Carezia, P. M. S. Burt, M. Gerken, M. D. Miranda, and
M. T. M. Da Silva, “A stable and efficient DSP implementation
of a LSL algorithm for acoustic echo cancelling,” in Proceedings

of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP ’01), vol. 2, pp. 921–924, Salt Lake
City, Utah, USA, May 2001.

[18] M. D. Miranda, M. Gerken, and M. T. M. Da Suva, “Efficient
implementation of error-feedback LSL algorithm,” Electronics
Letters, vol. 35, no. 16, pp. 1308–1309, 1999.

[19] A. Hermánek, Z. Pohl, and J. Kadlec, “FPGA implementation
of the adaptive lattice filter,” in Proceedings of the 13th
International Conference on Field Programmable Logic and
Applications (FPL ’03), pp. 1095–1098, Springer, Lisbon,
Portugal, September 2003.

[20] Z. Pohl, J. Kadlec, P. Sucha, and Z. Hanzdlek, “Performance
tuning of iterative algorithms in signal processing,” in Pro-
ceedings of the International Conference on Field Programmable
Logic and Applications (FPL ’05), pp. 699–702, Tampere,
Finland, August 2005.

[21] A. Heřmánek, J. Schier, and P. A. Regalia, “Architecture
design for FPGA implementation of finite interval CMA,”
in Proceedings of the European Signal Processing Conference
(EUSIPCO ’04), pp. 2039–2042, Vienna, Austria, September
2004.

[22] A. Heřmánek, J. Schier, P. Sucha, and Z. Hanzálek, “Opti-
mization of finite interval CMA implementation for FPGA,” in
Proceedings of the IEEE Workshop on Signal Processing Systems
Design and Implementation (SIPS ’05), pp. 75–80, Athens,
Greece, November 2005.

[23] P. Sucha, Z. Hanzalek, A. Heřmánek, and J. Schier, “Scheduling
of iterative algorithms with matrix operations for efficient
FPGA design–implementation of finite interval constant mod-
ulus algorithm,” The Journal of VLSI Signal Processing, vol. 46,
no. 1, pp. 35–53, 2007.

[24] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA imple-
mentation of matrix inversion using QRD-RLS algorithm,” in
Proceedings of the 39th Asilomar Conference on Signals, Systems
and Computers, pp. 1625–1629, Pacific Grove, Calif, USA,
October-November 2005.

[25] V. Peterka, “Bayesian approach to system identification,” in
Trends and Progress in System Identification, P. Eykhoff, Ed.,
pp. 239–304, Pergamon Press, Oxford, UK, 1981.

[26] J. Kadlec, Probabilistic identification of regression model in fixed
point, Ph.D. thesis, UTIA CAS, Bolivar, Tenn, USA, September
1986.

[27] J. Kadlec, “Lattice feedback regularised identification,” in Pro-
ceedings of the 10th IFAC Symposium on System Identification
(SYSID ’93), pp. 277–282, Copenhagen, Denmark, 1993.

[28] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec,
“Arithmetic on the European logarithmic microprocessor,”
IEEE Transactions on Computers, vol. 49, no. 7, pp. 702–715,
2000.

[29] R. Matoušek, M. Tichy, Z. Pohl, J. Kadlec, C. Softley, and
N. Coleman, “Logarithmic number system and floating-point
arithmetics on FPGA,” in Proceedings of the 12th International
Conference on Field-Programmable Logic and Applications:
Reconfigurable Computing Is Going Mainstream (FPL ’02), vol.
2438, pp. 627–636, Springer, Montpellier, France, September
2002.

[30] J. R. Dickie and A. K. Nandi, “A comparative study of AR order
selection methods,” Signal Processing, vol. 40, no. 2-3, pp. 239–
255, 1994.

[31] P. Sucha, Z. Pohl, and Z. Hanzalek, “Scheduling of iterative
algorithms on FPGA with pipelined arithmetic unit,” in Pro-
ceedings of the 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS ’04), vol. 10, pp. 404–412,
Toronto, Canada, May 2004.

Zdenek Pohl et al. 11

[32] F. Albu, J. Kadlec, N. Coleman, and A. Fagan, “Pipelined
implementations of the a priori error-feedback LSL algorithm
using logarithmic arithmetic,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP ’02), vol. 3, pp. 2681–2684, Orlando, Fla, USA, May
2002.

[33] B. Lee and K. Lever, “Logarithmic number system and
floating-point implementations of a well-conditioned RLS
estimation algorithm on FPGA,” in Proceedings of the 37th
Asilomar Conference on Signals, Systems and Computers, vol.
1, pp. 109–113, Pacific Grove, Calif, USA, November 2003.

	Introduction
	Probabilistic Approach to System Identification
	Hypotheses Estimation
	FPGA Implementation
	Conversions
	Division of powers
	ALU and scheduling
	Numerical behavior
	Optimized RLS lattice core
	Integration to a microprocessor system

	Dynamic Reconfiguration
	Performance Results
	Related Work
	Conclusions
	ACKNOWLEDGMENTS
	References

