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Secondary lymphedema of upper limbs, a frequent complication after a breast cancer therapy, can be
successfully treated only when diagnosed at an early, ideally latent, stage. Lymphoscintigraphy is a
promising candidate to this purpose. A slow lymphatic dynamics of upper limbs allows, however, a
routine collection at most three images reflecting it. This makes an exploitation of lymphoscintigraphy to
early-stage diagnosis a complex task. Recently, a Bayesian methodology extracting diagnostic information
from the available sparse data has been developed. It properly detects lymphedema occurrence but not a
desirable disease staging.
The present paper proposes Bayesian diagnostic processing of lymphoscintigraphic and routine clinical
data. Its staging ability was tested on diagnostic data of 88 women at the age of 39–84 years (60.2±10.4)
with a suspicion of unilateral secondary lymphedema of upper limbs caused by a breast cancer treatment.
Less than 20 of them had simply detectable disease stages. Information about accumulation dynamics
of the lymphatic system contained in lymphoscintigraphic images was quantified via estimation of a
simplified accumulation model [P. Gebouský, M. Kárný, A. Quinn, Lymphoscintigraphy of upper limbs: a
Bayesian framework, in: J.M. Bernardo, M.J. Bayarri, J.O. Berger (Eds.), Bayesian Statistics, vol. 7, Univer-
sity Press, Oxford, 2003, pp. 543–552]. The sole use of this approach, referred as “Bayesian quantitative
lymphoscintigraphy”, was found insufficient for a finer staging of the disease to typical categories (healthy,
latent, reversible, spontaneously irreversible, elephantiasis). For this reason, the results of Bayesian
quantitative lymphoscintigraphy were attached to routinely available qualitative lymphoscintigraphic
inspection and clinical data. These combined data were modelled by normal probabilistic mixtures. Their
Bayesian estimates were used for a computerized disease staging.
The resulting model predicts expert's conclusions on the presence of a lymphedema in 95% cases. A
finer staging is successful in 85% cases of suspicious limbs. Model cross-validation and a closer look on
patients' data indicate that the combined data are still insufficiently informative. It calls for the further
improvements of the inspection methods. Even under the current inspection conditions, the proposed
processing provides clinicians a reliable quantitative “second” opinion on the disease staging.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A lymphedema, an edema caused by a lymphatic system insuffi-
ciency, is a chronic disease that is frequently misdiagnosed, treated
too late, or not treated at all. At the same time, the success and ef-
ficacy of its therapy strongly depend on a disease stage [1,2].

The secondary upper limb lymphedema can have many causes.
Often, it arises as a consequence of a breast-cancer radiation therapy
and (or) an axillary lymph node dissection. This cause concerns a
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significant group of patients, for example, about 4000 women in the
Czech Republic yearly. The frequency of the lymphedema incidence
is relatively high, about 5–30% [3]. The prospective study [4] even
found that the lymphedema affected 42% women after the axillary
lymph node surgery. This state calls for an efficient and reliable
method allowing a safe diagnostic of the early lymphedema stages.
Besides the basic clinical assessment, lymphoscintigraphy used for
judging the state of lymphatic system seems to be an adequate and
sensitive method at disposal.

Available publications provide limited information concerning
quantitative lymphoscintigraphy and lymphedema staging. Exist-
ing evaluation studies are hardly comparable due to the lack of
the standard imaging protocol. The clinical and experimental stud-
ies differ in used radiopharmaceuticals, imaging time moments,
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administered radiopharmaceutical activities, etc. [3]. The common
conclusions are: (i) the qualitative evaluation of lymphoscintigraphic
images sufficiently characterizes lymphatic morphology; (ii) the
treatment-critical recognition of the latent disease stages is poorly
supported [5].

At present, the regional lymph-node accumulation and the clear-
ance rate from the radiopharmaceutical injection site are taken as
quantitative expressions of the lymphatic system's state [6–8]. Some
studies question usefulness of these characteristics. For instance, the
accumulation in axillas' region was found non-informative when-
ever axillas are dissected [7]. Scoring systems were also suggested to
enhance diagnostic differentiation [9–12]. They are time-consuming
and susceptible to subjective errors of the evaluator.

Slow dynamics of the upper-limb lymphatic system makes its
diagnostics specific. Slowness critically reduces the number of
measurements routinely available. The limitation stems from the
constrained time-capacity of the gamma camera and from a limited
ability of patients to endure a desirable number of examinations
within the time interval covering dynamics of the upper-limb lym-
phatic system. The realistic, routinely accessible, number of images
on each limb is two or three. The small amount of available data
makes a diagnostic inference hard as the formally evaluated tra-
ditional physiological indicators are unreliable. In summary, a few
published quantitative evaluation techniques lack sufficient reliabil-
ity, sensitivity and accuracy and no reliable, clinically accepted, quan-
titative evaluation of the upper-limb lymphoscintigraphy is at disposal.

A promising quantification method was proposed in [1]. It
was inspired by the depot-clearance-rate technique [13,14], which
models the dynamics of the colloid accumulation at the injec-
tion site. The accumulation and clearance near the injection site
predominantly depend on the flow rate and local diffusion. Thus,
they provide a little information about the limb state. The proposed
quantification, which models the colloid accumulation within the
remaining part of the limb, reflects more characteristics of the
inspected lymphatic system, including a lymph formation. More-
over, the adopted regional modelling of limb parts respects that a
lymphedema may appear locally within the limb.

The discussed method uses simplified modelling of the lymphatic
flow within the limb. This facilitates estimation of its patient-specific
parameters from a small amount of uncertain data. The Bayesian es-
timation framework was chosen [15], as it (partially) compensates
the lack of data by prior information. This processing, recalled briefly
in Section 2.4, resulted in the routinely applicable Bayesian quanti-
tative lymphoscintigraphy of the upper limb lymphedema [1]. The
processing also resolved various decision subtasks, for instance, the
choice of suitable time moments for imaging [16].

The inspection of the Bayesian quantitative lymphoscintigraphy,
summarized in [1], indicates that the method is efficient and in-
creases the diagnosis accuracy. At the same time, experiments shown
that a reliable lymphedema staging is impossible without a full ex-
ploitation of all routinely available information sources. Data offered
by them differ in a form, reliability and precision, so that their com-
bination is non-trivial.

The present paper proposes an algorithm mapping the routinely
available diagnostic information on an estimate of the lymphedema
stage and tests the algorithm's reliability. The paper inspects impor-
tance of items within the record with explanatory data created from
the clinical, qualitative and quantitative scintigraphy examinations.
The importance of items arising from the Bayesian quantitative lym-
phoscintigraphy is of a special interest.

The combination of the disparate explanatory data is based on
an exploitation of well-established probabilistic mixtures, for a good
classical exposition see [17]. For the purpose of this paper, it suf-
fices to take the mixtures as multi-modal distributions describing
probability of occurrence of data records, consisting of the predicted

disease stage and of the corresponding explanatory diagnostic data,
in multivariate data space. Uni-modal components of the mixture
characterize (possibly overlapping) clusters of similar records. The
complete estimation of the mixture includes also structure estima-
tion, which decides on the number of components and importance
of respective items incorporated into the processed data records, see
[18]. After such estimation, the unknown stage is predicted using
the patient-specific explanatory data record.

2. Materials and methods

Eighty-eight women at the age 39–84 years (60.2±10.4, mean ±
standard deviation), with a suspicion on unilateral secondary lym-
phedema of upper limbs due to the breast cancer treatment, partici-
pated in the study. The patients predominantly with latent and early
disease stages were chosen as their diagnostics is difficult and can
be critical. Each patient underwent both lymphoscintigraphic and
clinical examinations. All patients gave written consent to additional
processing of their diagnostic data.

The subsequent sections describe the respective data sources and
their evaluation in detail.

2.1. Scintigraphic data and a clinical assessment

A qualitative inspection of scintigraphic images, see Section 2.3,
is a decisive part of the routine diagnostics nowadays. The Bayesian
quantitative lymphoscintigraphy [1] extends its outcomes. The data
reflecting clinical examination include a categorized therapy history,
patients' subjective feelings of edema and pain as well as clinical
findings. The therapy history contains a treatment type (mastectomy,
chemotherapy, radiotherapy, etc.), the number of removed nodules
and the number of the malignant ones. The part of the limb where
the clinician found the edema is recorded. The clinician provides
a subjective assessment of the disease stage on the ordinal scale
(0, 1, 2, 3, 4)= (healthy, latent, reversible, spontaneously irreversible,
elephantiasis). This choice is close to the recommendation in [19]
but other, even substantially finer, staging scales exist.

2.2. Lymphoscintigraphy

The following routine procedure was applied in acquiring lym-
phoscintigraphic data.

Lymphoscintigraphic inspections were performed on both upper
limbs. The healthy limb served as the patient-specific standard. A
radiopharmaceutical of the volume 0.1–0.2ml were injected subcu-
taneously into the first and the fourth inter-digital web space of each
hand.

In our study, 20MBq of the 99mTc-labelled sulfur colloid was
administered to 32 patients. For the rest of the patients, the sulfur
colloid was replaced by the 99mTc-serum albumin colloid. The re-
placement was enforced by the terminated production of the former
radiopharmaceutical. The enforced change of radiopharmaceutical
had no observable consequences on the results.

The initial calibrating image of the injection site was stored into
(128×128) image matrix. This 60 s image was collected immediately
after the injection. Then, the patients performed flexions and exten-
sions for 30min to stimulate the lymphatic flow. Then, three images
reflecting morphology and dynamics of the lymphatic system were
collected within the time span 30–180min after the radiopharma-
ceutical administration. The whole arm was imaged in a supine po-
sition with the lead shielding the hand and the wrist. The gamma
camera Sopha DXT with a LEHR collimator having the peak 140keV
summed the recorded scintillation impulses into the (64×64) image
matrix for 60 s. The markers on all images indicated elbows, wrists
and shoulders.



P. Gebouský et al. / Computers in Biology and Medicine 39 (2009) 1–7 3

For the quantitative evaluation, the regions of interest (ROI) were
drawn around the axillary and the supraclavicular region, the fore-
arm and the upper arm. The overall number of impulses recorded
over the ROI within the 60 s acquisition time, so called an integral
count, characterized the activity accumulated within each ROI. The
integral counts were corrected to the physical decay of the tracer
over the examination period.

2.3. Qualitative evaluation of lymphoscintigraphic images

The trained nuclear-medicine expert inspected the lymphoscinti-
graphic images and evaluated them qualitatively according to the
number of visible arm and cubit nodules, the lack of a transit in the
application site, the visibility of the extended lymphatic vena and
the existence of the dermal back-flow. A level of the dermal back-
flow and its local position were differentiated. The findings on the
affected limb were compared with the image of the contra-lateral
limb. Primarily, the late images served to the qualitative evaluation.
Other images served to a finer differentiation. The outlined quali-
tative evaluation of the scintigraphic images led to the expert's as-
sessment of the lymphedema stage on the same ordinal scale as the
clinician's.

2.4. Quantitative evaluation of lymphoscintigraphic data

The routine acquisition way of scintigraphic data, described
Section in 2.2, implies that a small amount of data is available. Con-
sequently, any quantification technique has to rely on a simplified
modelling and an exploitation of the available prior information.
The technique proposed in [1] is outlined here as its outcomes are
used in the discussed staging.

2.4.1. Radio-tracer accumulation model
The accumulation dynamic is modelled by a linear discrete-time

(t in minutes) dynamic model. A specific model is built for each
individual ROI. It relates the administered activity (model's input) to
the integral counts (the model's outputs).

The relative scintigraphic response is modelled, i.e., the
time–activity curve (TAC, its values are denoted x) of the accumu-
lated colloid normalized by the administered activity. A cascade
of the first-order linear models (compartments) with a common
gain parameter b is used. The cascade has d compartments with
a common dynamical parameter a. This model structure is a flex-
ible compromise between the need to characterize the complex
distributed nature of the lymphatic system and the need to get a
model with a few unknown parameters. TAC is modelled at time
moments t = 0, 1, 2, . . . counting minutes from the administration
time. At time t, the TAC value xt is related to the model parameters
b, d, a by the formula

xt = b × d × (d + 1) × · · · × (t + d − 1)
t!

× at . (1)

While the expression (1) models the whole scintigraphic response
on a fine time grid, its noisy measurements yt are made for a small
subset t∗ of discrete time moments t = 0, 1, 2, . . .. Recall that mea-
surements are normalized integral counts over the modelled ROI at
time t. Thus, the processed measurements are sums of raw counts
over pixels forming the ROI. Consequently, the overall noise effect
can be modelled by a zero-mean normal noise et , i.e.,

yt = xt + et , et is normal zero-mean

normal noise with variance r, t ∈ t∗. (2)

The significant difference of measurement times justifies the
assumption that the noise samples et and e�, t � �, t, � ∈ t∗, are

mutually independent. The normalization implies that the noise vari-
ance r can be assumed approximately constant. These assumptions
complete probabilistic modelling relating the model parameters to
measurements.

2.4.2. Use of prior information for the estimation of model parameters
The parametric model (1), (2) is completely characterized by the

quartet � = (r, b, d, a) to be estimated.
The noise variance r reflects measurement process independent

of the inspected patient, limb and ROI. Thus, data from various ROIs
and patients can be used for its estimation. The sufficient amount of
these data, corrupted by the noise with the same variance r, implies
that the prior distribution of r has a limited influence on the poste-
rior distribution. Therefore, computationally advantageous conjugate
prior distribution [15] can be used. The conjugate prior distribution
leads to the posterior distribution of the same functional form. Con-
sequently, a low-dimensional statistic has to be numerically handled
only.

The remaining three parameters (b,d, a) are strictly patient-
specific. They depend on the modelled limb as well as on the ROI
and have to be estimated using three available total counts. This
is impossible without a prior information. Its systematic use is the
key advantage of the Bayesian paradigm adopted for the inference
from these sparse data. The prior information is expressed through
intervals of a priori expected values of (b,d, a). Let us list and briefly
comment the used prior information on these patient-specific pa-
rameters.

• b (0 < b <1)—the parameter describes the gain of the model (1).
The restriction respects that the lymphoscintigraphic response is
non-negative and that it cannot exceed the applied input. Taking
into account that no activity is created within the limb, a tighter
upper bound bmax <1 was derived and used. It is a function of the
inspected a, d, [16].

• d (1 < d�6)—the parameter describes the penetration rate through
the limb and modifies the shape of the TAC. For d = 1, the model
(1) would coincide with the exponential model used for depot-
clearance-rate technique. The chosen upper bound is a very con-
servative guess.

• a (0 < a <1)—the parameter determines the dynamics of the model
(1). The specified interval reflects the fact that the inspected re-
sponses are stable and non-oscillatory. During implementation,
this interval was shrunk to reflect the slow accumulation dynam-
ics. Typically 0.9 < a <0.999. The specific choice respected the in-
spected number of compartments d.

The above information items were converted into a complete prior
distribution on the patient-specific unknown parameters (b,d, a).
Since no further detailed information is available for them, uniform
distribution on the above ranges were chosen. This choice can be
justified via the insufficient-reasons' principle [20].

2.4.3. Processing of information sources
With themeasured data, the chosenmodel and the specified prior

distribution, a relatively straightforward Bayesian evaluation of the
posterior distribution [15]provides point estimates of parameters
as well as their precisions. The patient-specific parameters and the
noise-free TAC xt , at any discrete time moment t = 1, 2, 3, . . ., are
estimated on each ROI.

The disease staging addressed in this paper is a classical but dif-
ficult pattern-recognition problem [21]. Primarily, it requires selec-
tion of features that allow reliable differentiation of the lymphedema
stages. The estimates of the triples of the patient-specific parame-
ters (for each ROI) are obvious candidates to this purpose. Besides
these estimates, the value and position of the TAC maximum were
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considered as promising features. They represent the counterpart of
the late uptake and appearance time used in [5,7]. The residence
time, widely accepted in nuclear medicine as a quantitative charac-
teristic of accumulation dynamics [22]was considered, too. With the
adopted scaling and sampling, the residence time in minutes coin-
cides with the area under the TAC estimate.

Note that just point estimates were passed to the further
processing described below. Attempts to exploit their uncertain-
ties increased computational demands without an observable
improvement of the evaluation outcomes.

2.5. Disease staging

As stated in Introduction, a computerized support of the staging
assessment is the ultimate aim of the data processing discussed here.
Thus, an algorithmically feasible mapping

explanatory data D → estimate Ŝ of the disease stage S (3)

is constructed.
Data sparsity is the decisive feature of the addressed pattern-

recognition problem. Indeed, the diagnostic data related to each limb
provided data records D with 41 items of meaningful explanatory
variables. The subjective staging made by the clinician and the scinti-
graphic expert, labelled Sc and Ss, respectively, was attached to the
records D. The available diagnostic data concerned 88 patients. Thus,
we got 176 learning data (D, Ss, Sc) for relating 41 explanatory vari-
ables to the unknown scalar stage S.

With a few data available, the Bayesian framework was again
adopted as it combines consistently the available learning data,
model of the inspected relations and prior information. Normal
probabilistic mixture [17]was selected as the probabilistic model
relating the explanatory data D to the stage S. The available learn-
ing data were used for estimation of its structure and parameters.
Numerical processing was performed by Jobcontrol system [26]that
covers all major tasks related to the mixture estimation. The corre-
sponding theory is in [18].

The maximizer Ŝ of the learnt probabilistic mixture, evaluated
for the patient-specific explanatory data D, is taken the stage esti-
mate: the learning and maximization define the constructed staging
algorithm (3), referred as the computerized staging in the rest of the
paper.

Note that during the learning, the scintigraphic staging Ss was
taken as a better measurement of the stage S. The clinical staging Sc
was used for a comparison only. This choice was motivated by the
fact that the clinicians ask for the scintigraphy whenever they are
uncertain about own staging of the lymphedema.

The choice of the mixture model was the key step in constructing
the staging algorithm. The following reasons singled out this model
class:

• Probabilistic models “naturally” respect discrepancies of experts'
opinions. Both scintigraphic and clinical staging are just subjec-
tively influenced reflections of the real disease stage. Moreover,
the boundaries between the respective disease stages are not sharp
and the modelled relationship is stochastic by its nature.

• The expert's staging Ss has the discrete values {0, 1, 2, 3, 4} and
the explanatory data D contain continuous-valued entries. Thus,
categorical regression is to be learnt, which is known to be hard
computational problem [23]. This regression can be, however, ap-
proximated by a normal mixture if variances of the individual
mixture components are kept small enough.

• Normal mixtures formally coincide with an artificial neural net-
work made of Gaussian radial basis functions. This network is
known to approximate (almost) any multivariate mapping [24].

Therefore, it suits for the considered exploratory data analysis in
which the relation D to S is poorly known.

• Efficient algorithms exist for an approximate Bayesian estimation
of normal mixtures. They include the needed structure estimation
and a model validation [18,25].

3. Results

The examination and evaluation results concerned 88 patients,
i.e., 176 limbs. The clinician's and scintigraphic-expert's staging dif-
fered in 37 cases. It means that the scintigraphic Ss and the clini-
cal Sc staging coincided in 78.9% cases. A finer distribution of these
opinions is reflected in Table 1.

The figures present the portion of the computerized staging, see
Section 2.5, which coincided with the scintigraphic expert's staging.

The extent of the exploitation of the available explanatory data
distinguishes the columns in the respective figures. “All” means that
no available explanatory data were omitted. “Sci” used union of the
data provided by the scintigraphic expert (except of his/her staging)
and the data gained from the quantitative scintigraphy, i.e., with the
features derived from the estimated model (1), (2). “SciKv” refers to
the sole use of the features gained from the quantitative scintigraphy.
“Cli” relied on the diagnostic data provided by the clinician (except
of his/her staging). “Rest” predicted the stage using the combination
of the data provided by the scintigraphic expert and the diagnostic
data provided by the clinician (again except of their staging).

The left dark columns in Figs. 1–4 correspond with the results ob-
tained when all considered data were used for learning, i.e. for mixture
estimation, cf. Section 2.5. The right light columns in Figs. 1–4 reflect
the cross-validation results: the mixture was learnt on all considered
data records except one on which the stage was estimated. All con-
sidered data records gradually played the role of the exceptional one.
This technique is known as the leave-one-out cross validation [21].

The figures differ in an exploitation degree of the learn-
ing data and also present the reduced dichotomous staging
(healthy/unhealthy). Let us describe them individually.

The left column graph in Fig. 1 displays the correspondence of the
computerized staging with that provided by a scintigraphic expert.
The right column graph in Fig. 1 shows the same dependence evalu-
ated for records related to limbs that are suspicious of lymphedema,
i.e., one half of the data records (88) was used. This reduction sup-
pressed the influence of the results from the limbs that were a priori
taken as healthy.

The left column graph in Fig. 2 deals only with the data of those
patients for which the scintigraphic and the clinical staging coin-
cided (139 cases). This reduction suppressed the influence of experts'
subjectivity. The right column graph in Fig. 2 reflects the results ob-
tained when the limbs suspicious of lymphedema and with the stage
identically classified by experts were inspected.

The left column graph in Fig. 3 gives up distinctions between
the sparsely populated higher stages of lymphedema providing just
the dichotomic statements: the limb does not have or does have

Table 1
The experts' staging of the lymphedema

Scintigraphic staging, Ss Clinical staging, Sc

0 1 2 3 4

0 98 10 1 0 0
1 1 19 4 2 0
2 3 5 11 5 0
3 0 0 2 10 3
4 0 0 0 1 1

Italics entries mean the numbers of limbs with the staging pair(Ss , Sc).
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Fig. 1. The accuracy of the lymphedema-stage classifier: the correspondence of the classified stage for all (the left column graph) and suspicious (the right column graph) limbs.

Fig. 2. The accuracy of the lymphedema-stage classifier: the correspondence of the classified stage for all (the left column graph) and suspicious (the right column graph)
limbs identically classified by the clinician and the scintigraphic expert.

Fig. 3. The accuracy of the dichotomous classifier: the correspondence of the classified lymphedema for all (the left column graph) and suspicious (the right column graph)
limbs.

lymphedema. The same evaluation reflected in the right column
graph of Fig. 3 concerned the suspicious limbs only.

The left column graph in Fig. 4 gives up distinctions between the
sparsely populated higher stages of lymphedema providing just the
dichotomic statements and deals only with the data of those patients
for which scintigraphic and clinical evaluations coincide (139 cases).
The right column graph in Fig. 4 shows dichotomous results for
identical staging and suspicious limbs only.

4. Discussion and conclusions

The results imply the following conclusions:

• The use of all scintigraphic data, including features from the Bayesian
quantitative lymphoscintigraphy, is obligatory (see Figs. 1–4).

• The sole evaluation of either clinical data (see the left column
graphs in Figs. 2 and 3 and the right column graph in Fig. 3) or the
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Fig. 4. The accuracy of the dichotomous classifier: the correspondence of the classified lymphedema for all (the left column graph) and suspicious (the right column graph)
limbs identically classified by the clinician and the scintigraphic expert.

data from the Bayesian quantitative lymphoscintigraphy (visible
in all figures) was found insufficient for a reliable staging.

• The extension of the scintigraphic data by the clinical ones may
be advantageous (see the left column graphs in Figs. 3 and 4).

• The overall number of the available learning data was still too
small. The visibly poorer cross-validation results than those ob-
tained from all data confirmed it (all figures).

• The cross-validation results indicate that the explanatory data
are still insufficiently informative. This is the probable cause of a
higher robustness of the simpler models (see the columns “All”
vs. “Sci” in the left column graphs of Figs. 1, 2, 4 as well as of the
models dealing with the discrete-valued data only (see the col-
umn “Cli” in all figures).

• The quality of the dichotomic staging is very high (see the left
column graph in Fig. 3 and both graphs in Fig. 4).

The derived methodology of computerized staging confirmed that:

• Complete scintigraphic evaluation is necessary for recognition of
the early (latent) stages of the disease (all figures).

• The quantitative characteristics of the model (1), (2) are insuffi-
cient for the staging (see the columns “SciKv” in all figures) but
contribute significantly to the qualitative scintigraphy in the way,
which cannot be substituted by the clinical evaluations only (see
the columns “Sci” and “Rest” in all figures).

• Combined data from the qualitative and the quantitative scintig-
raphy can be used for a very reliable indication of lymphedema
presence even at the early stage (see Fig. 4 and take into account
discrepancies in staging provided by the experts involved).

At the methodological level, the following main conclusions can be
made:

• The presented results indicate that the proposed processing pro-
vide a reliable “second” opinion on the lymphedema staging based
on both lymphoscintigraphic and clinical data.
The term “indicate” stresses the fact that the processed data set
was not rich enough to make conclusions sufficiently reliable and
statistically sufficiently supported.

• The formerly proposed “Bayesian quantitative lymphoscintigraphy”
[1], which still has no real competitor, helps significantly even in
lymphedema staging.

• Bayesian estimation of probabilistic mixtures that estimates also
their structure [18] suits for clustering and diagnostically oriented
pattern recognition even with data of a mixed (categorical and
numerical) nature.

• Bayesian processing is the first-option method when dealing with
sparse data as it properly exploits the available prior information
complementing data-based information.

Future research has essentially two directions:

• The above-described studies should be performed on a substan-
tially wider set of patients' data. Statistical significance of the
results and sensitivity to various optional parameters of the stag-
ing algorithm are worth of study when such a set of data will be
available.

• The dependence of categorical variables on the numerical ones
should bemodelled in a better way. It is a well-known hard prob-
lem solved at small scales by logistic-type regression or inspected
asymptotically. The considered intermediate-scaled problem is
poorly supported by the available statistical tools.

5. Summary

The paper presents an application of advanced modelling and
estimation methods to an important and difficult problem of stag-
ing of secondary lymphedema. The secondary lymphedema of upper
limbs, a frequent complication after a breast cancer therapy, can be
successfully treated only when it is diagnosed in an early stage. Use
of, otherwise well-established, lymphoscintigraphically supported
staging is inhibited by a slow lymphatic dynamics of upper limbs,
which allows a routine collection at most three images reflecting it.
A Bayesian methodology coping with this problem is described in
the paper.

The properties of the proposed method are demonstrated on the
study of 88women at the age 39–84 years (60.2±10)with a suspicion
on a unilateral secondary lymphedema of upper limbs due to a breast
cancer treatment. Less than 20 of them had simply detectable disease
stages.

The proposed Bayesian staging methodology relies on a simpli-
fied accumulation model to get quantitative lymphoscintigraphy.
It uses normal probabilistic mixtures for a computerized disease
staging that exploits fully the routinely available information. The
overall procedure predicts expert's conclusion on the presence of a
lymphedema in 95% cases. A finer staging is successful in 85% cases
of suspicious limbs. A model cross-validation and a closer look on
patients' data attribute this difference to insufficiently informative
data. The success rate is, however, high enough to justify further
inspection of the proposed methodology and its use as a “second”
opinion on the disease stage offered to the clinicians.
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