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Ústav teorie informace a automatizace, v.v.i.

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Kamil Dedecius∗, Ladislav Jirsa

Impact of forgetting on models of rolling mills

No. 2283 September 22, 2010
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1 Introduction

This report deals with modelling of the cold sheet rolling process. It describes several models
proposed for this purpose, one of them being based directly on related physical principle, one
being a physical approximation, using the rolling force and two models are so called ‘blackbox
models’, i.e., models with user-selected structure.

As one can expect that the models’ parameters vary in time, we estimate them with expo-
nential and partial forgetting; estimation without forgetting is used for comparison. While the
first forgetting method is known as time weighted least squares (TWLS) [3] or as flattening of
the posterior probability density function (pdf) [7], and is well established in the theory of es-
timation of time-varying parameters, hence the most popular, the other method is a recently
developed approach to the issue [1]. The partial forgetting tries to solve the main drawbacks
of the exponential forgetting, i.e., use of the same forgetting factor for all parameters and the
liability to covariance blow-up, a situation, when the gain of the estimation algorithm grows
without bounds for non-persistently exciting signals [6]. The drawback of the latter method
consists in its higher complexity, imposing certain needs on computing device.

None of the forgetting methods used a predefined alternative pdf. If such a pdf were at
hand, the estimation would (logically) be significantly improved. However, the purpose of
this report is to demonstrate the pros and cons of both the methods for modelling of the
rolling process.

2 Bayesian modelling with forgetting

We employ the Gaussian regressive model in the form

f(yt|θ,ψ) ∼ N (ψ′tθt, r) (1)

where f denotes a probability density function (pdf) of the argument, θ ∈ Rn is a vector
of regression coefficients and ψ ∈ Rn is the regression vector. yt denotes the scalar value of
interest, corrupted by a Gaussian white noise with zero mean value and constant variance
r ∈ R+. This model coincides with the recursive least squares with

yt = ψ′tθt + et, t = 1, 2, . . . (2)

where et ∼ N (0, r).
The estimation of parameters θ has two steps:

• Data update – new data are incorporated into the parameter pdf.

• Time update – the unknown transition from θt−1 → θt is reflected.

Both these steps are given in literature, e.g. [7, 4]. The time update step in our case has the
form of exponential forgetting [7] or partial forgetting [1]. The latter is attached in Appendix.

3 Data transformations

The available data represent various physical variables with different scales. There are two
potentially ‘dangerous’ situations:
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• Different measuring units – the data are mix of speed, length and other variables.

• Different scale units – there are different scales for length (millimeters, meters etc).

Both of these reasons can potentially lead to modelling problems, especially when algorithms
working with Euclidean norms are used. As the Euclidean distance is computed as a sum of
variable differences, its result greatly depends on the ranges of the variables. Therefore, we
demonstrate the use of data normalization to N (0, 1).

Proposition 1 (Normalization to N (0, 1)) Let the random variable X ∈ R have finite
first and second order moments, namely mean value µ and variance σ2. Then,

Z =
X − µ
σ

(3)

has normalized normal distribution N (0, 1).

Proof omitted.
Since in our case are the moments unknown, we use their sample variants, i.e., sample mean

X̄ and sample variance S2. Instead of the random variable X we work on its n realizations,
i.e.

zi =
xi − X̄
S

, i = 1, . . . , n, (4)

where

X̄ =
1

n

n∑
i=1

xi, S2 =
1

n− 1

n∑
i=1

(xi − X̄)2.

For online estimation purposes, a need of recursive evaluation of these moments arises. A
suitable solution is to calculate them on a finite sliding window. A potential risk consists in
situations when a failure occurs – faulty data may significantly corrupt the regular data when
used for normalization, as the moments can diverge to nonsense values. This may especially
occur, if the normalized values are constant (then σ2 = 0 leads to division by zero) or if the
measured invalid value is significantly different to the reasonable values (outliers).

A short analysis of normalization impact is given in Section 5.1 on page 14.

4 Models used

There are multiple ways how to model the output y, i.e., the output thickness deviation of
the rolled sheet, e.g., [2]. Some of them are ‘recycled’ below, while others are new proposals.
Let’s introduce the following notation for the related physical variables, used further in this
reading:

H1, H2 input, output thickness – absolute

h1nom, h2nom input, output thickness – nominal

h1, h2 input, output thickness – deviation

y output thickness deviation

F total rolling force

v1, v2 input, output speed

vr speed ratio v1/v2
z uncompensated rolling gap
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where
Hi = hinom + hi, i = 1, 2 (5)

Upon (2), we can build the following models, characterized by their regression vectors:

• The mass-flow based model

ψt = [h1nomvr, h1vr, 1]′. (6)

• Gaugemeter-based model, evaluated as polynomials of order m

ψt = [F 1, . . . , Fm, z, 1]′, m = 2, 3, . . . (7)

• Black-box model 1
ψt = [h1, z, 1]′, (8)

• Black-box model 2
ψt = [h1, z, vr, 1]′ (9)

Like in many industrial applications, the sheet rolling process is typical for delayed data.
This means, that when some of the measurements are being gathered, these measurements
are delayed to the others due to the traffic delay. Here, the traffic delay is connected with the
output thickness deviation, measured by a distant device. The distance corresponds usually
to either 19 or even 120 time steps. The only straightforward solution is to use such data in
place of the current one.

4.1 Analysis of the mass-flow model

The mass-flow model is specific for its underlaying physical principle. If we neglect the change
of the strip width and other variables, the following equation holds:

v1
v2

=
H2

H1
, (10)

i.e., the ratio of speeds is equal to the reciprocal fraction of absolute thicknesses. Rewriting
(10) yields

vr =
v1
v2

=
h2nom + h2
h1nom + h1

(11)

from which follows the relation for the output thickness deviation

y = h2 = h1nomvr + h1vr − h2nom.

Considering the last term as an absolute term yields a model with the regression vector (6).
Let us now focus on the validity of this model, using standard data batch file

Gi-200810211323 206-10-B 3.mat. To avoid working with initial unstable data, measured
at the beginning of the rolling process, the first 219 samples were dropped. The length of the
batch was 1000 samples.

First, we can compare the right- and left-hand sides of (10). Apparently, the speed ratio
vr has significantly more noisy character than the ratio of absolute thicknesses. Some selected
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Figure 1: Evolution of H2/H1 and vr = v1/v2, respectively.

statistics of series vr and H2/H1 are given in Table 1. The Spearman correlation coefficient
is 0.707, which indicates certain, but not really tight correlation between the two data.

Figure 2 shows two boxplots for H2/H1 and vr, respectively. The median of the latter is
lower and its inter-quartile range (IQR) is much higher than the ones of the former. H2/H1

contains a lot of outliers, i.e. data with absolute values more than 1.5IQR from median,
which indicates the need of adaptive tracking. However, one would expect the two boxplots
to be almost the same, they are not. This undermines the arguments justifying the mass-flow
model as well.

The scatter plot 3 visualises the dependence between H2/H1 and vr; the outliers were
filtered out. The blue line denotes the perfect correlation between the two variables. On the
other side, if the markers were concentrated on a horizontal line, there would be no (linear)
correlation at all. In the empirical case, the data are scattered around a cluster with centroid
above the blue line and their correlation is (visually) not very high; the red line depicts the
linear trend (0.5362vr + 0.3150). Let us remind that the correlation coefficient is 0.707.

Let us now focus on a subset of the data batch. It contains 400 measurements of
h1, h2, v1, v2, z and F . This sample starts with t0 = 400, which is identical to the 180th
sample in the previous batch. The course of selected variables is depicted in Fig. 4. It is
worth to mention that the correlation coefficient of this batch was even 0.419! It is necessary
to pose the following questions:
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Figure 2: Boxplots of H2/H1 (1) and vr = v1/v2 (2), respectively. The blue box extends
from the lower to the upper quartile, hence it contains 50% of data samples. The red line is
the median. The whiskers show the range of the data, their length is 1.5IQR (inter-quartile
range). + denote outlier data w.r.t. quartiles.

1. The input thickness deviation h1 course resembles periodic character, which is visually
not similar to evolution of any other variable. Is this caused by a systematic error, e.g.,
the measuring device? If yes, can it be eliminated or detected?

2. The input speed v1 has very noisy character. What is the cause? The measuring device?
What are the (dis)continuity properties of its measurements?

3. The output speed v2 measurement is polluted with the noise even more and the ampli-
tude is (significantly) higher. Is the reason the higher speed of the strip?

4. The rolling gap z is measured indirectly, based on the piston/plunger position. What
is the reliability and precision of such measurements? What may cause the change of
the measured gap size?

5. The rolling force F can be measured either directly or indirectly. What is the reliability
and precision of such measurement?
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Figure 3: Scatterplot H2/H1 × vr with line of theoretical dependence (blue) and real linear
regression line (red).

Statistics vr H2/H1

Minimum 0.6167 0.5960

Maximum 0.7207 0.7566

Range 0.1040 0.1606

Mean 0.6646 0.6714

Median 0.6651 0.6724

Standard deviation 0.0092 0.0070

Variance 8.492e-05 4.884e-05

Correlation coefficient (Spearman) 0.707

Table 1: Descriptive statistics of data.

7



Figure 4: Course of h1, h2, v1, v2, z and F
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4.1.1 Discussion

The mass-flow equation (10) was studied with empirical data. Some selected properties of
the data were visualised using a ‘classical’ plot and boxplots. Selected descriptive statistics
were given in the table. The idea of closely deterministic relation between both sides of the
equation was corrupted to some degree, in particular due to:

1. Spearman correlation coefficient rS = 0.707.

2. The very noisy character of vr, at least in comparison to H2/H1.

3. Difference in some descriptive statistics.

4. The scatterplot visually declines full causality between vr and H2/H1.

Possible causes:

• Plastic deformation of the rolled material structure.

• Deformations in the rolling mill.

• Change of the (not measured) width of the rolled material.

• Sensors’ inaccuracy.

• Other causes.
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5 Analysis of the gaugemeter model

The gaugemeter model (7) models the output thickness deviation h2 with a regression vector
containing 1 for absolute term, z and a series of powers of Fn, n = 1, 2, . . .. Theoretically,
the output thickness (deviation) should be well correlated with the rolling force, however, the
linear correlation coefficient was, for standard data batch used in the previous chapter, namely
Gi-200810211323 206-10-B 3.mat, equal to 0.323. This indicates very low linear correlation
between these two variables, anyway, it does not say anything about a non-linear relation.
Let us compare 2nd, 3rd and 4th order gaugemeter-based models without forgetting.

First, let us work on non-normalized data. In the figures 5 and 6 are depicted 2nd and
4th order-models characteristics. Some selected characteristics of prediction errors are given
in the Table 3. Apparently, the increasing order of the model does not lead to significant
improvement.

Normalization of regressors leads to the balancing of the powers of F . This is evident
from the Fig. 8. In the Fig. 7 are depicted courses for the 3rd order gaugemeter model. The
difference between normalized F and F 2 are shown in Fig. 9.

Figure 5: Gaugemeter model – 2nd order
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Figure 6: Gaugemeter model – 4th order

Statistics 2nd order 3rd order 4th order

Maximum 48.969 48.810 48.727

Minimum negative -65.434 -65.434 -65.434

Mean 0.928 0.934 1.273

Median 0.566 0.465 0.921

Standard deviation 10.970 10.985 10.845

Variance 120.344 120.681 117.605

RMSE 121.206 121.554 119.226

Table 2: Gaugemeter models – descriptive statistics of prediction errors for non-normalized
regressors.

11



Figure 7: Gaugemeter model – 3rd order – normalized data

Statistics 2nd order 3rd order 4th order

Maximum 5.275 5.522 7.065

Minimum negative -7.034 -7.034 -7.034

Mean 0.145 0.156 0.157

Median 0.103 0.115 0.122

Standard deviation 1.175 1.177 1.179

Variance 1.380 1.386 1.391

RMSE 1.402 1.410 1.415

Table 3: Gaugemeter models – descriptive statistics of prediction errors for non-normalized
regressors.
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Figure 8: Gaugemeter model – 4th order – normalized data

Figure 9: Difference between normalized F and F 2
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5.1 Brief analysis of normalization impact

In this section we bring a short analysis of impact of data normalization to normal normalized
distribution N (0, 1). This procedure was described in Section 3 by Proposition 1.

Let us deal with the mass-flow model (6), whose physical validity was studied in Section
4.1. Under rather weak assumption, that the regression coefficients should lay in interval
[0, 1], and should be close to 1 (or, at least, should not be close to 0), we can compare
the modelling process for both normalized and non-normalized data by means of coefficients
evolution.

We chose file Gi-200810211323 206-10-B 3.mat, containing stable data. The window
started with t0 = 1250 and was 800 samples long. The traffic delay for h2 was 19 time
steps, the modelling started with non-informative prior with V0 = diag(0.1, 0.01, 0.01, 0.01)
and ν0 = 7, the estimation used exponential forgetting with factor 0.99.

The results are depicted in Figs. 10 and 11 for non-normalized and normalized data,
respectively. From the figures follows, that the former case suffers from anti-correlation of
θ1 and θ3, i.e., between h1nomvr and the absolute term. This indicates suspicion of model
overparametrization. The second regression coefficient θ2 remains close to 0 and its impact on
modelling is therefore very low. On the other side, the normalization of the data (regressors)
led to release of the correlation.

Figure 10: Course of regression coefficients estimation for non-normalized data.
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Figure 11: Course of regression coefficients estimation for normalized data.
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6 Standard data modelling

This and the following chapters bring analyses of models mentioned in the former parts of
the report. This chapter deals with the full set of models defined and for each of them, it
describes the impact of various estimation techniques on data prediction. In contrast to the
following chapters, each case is accompanied by a relevant figure here. The following chapters
depict only the no-forgetting cases.

The standard data batch consisted of data from file Gi-200810211323 206-10-B 3.mat. To
avoid the initial stabilization, the modelling started from 1250th sample, 800 samples were
used. They were modelled with the following four models:

• Mass-flow model (6), which was widely discussed in Section 4.1, where its limited the-
oretical validity was studied.

• Blackbox model 1 (8).

• Blackbox model 2 (9).

• 2nd order gaugemeter model (7).

The parameter estimation was evaluated:

• Without forgetting, i.e., no time update of parameters pdf was done.

• With exponential forgetting. The forgetting factor was 0.99.

• With partial forgetting. The hypotheses weights were evaluated automatically during
the estimation. The factors were:

– 0.95 for hypotheses’ weights,

– 0.99 for construction of alternative pdf fA for hypothesis H1

– 0.9 for construction of alternative pdf for fA for hypothesis H2

The results are summarized below each model.
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6.1 Mass-flow model

6.1.1 No forgetting

Error statistic Value

Mean 0.254

Median 0.273

Variance 0.956

Standard deviation 0.978

RMSE 1.021
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6.1.2 Exponential forgetting

Error statistic Value

Mean 0.028

Median 0.024

Variance 0.892

Standard deviation 0.945

RMSE 0.893
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6.1.3 Partial forgetting

Error statistic Value

Mean 0.007

Median 0.003

Variance 0.911

Standard deviation 0.955

RMSE 0.911
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6.2 Blackbox 1 model

6.2.1 No forgetting

Error statistic Value

Mean 0.521

Median 0.528

Variance 1.33

Standard deviation 1.15

RMSE 1.603
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6.2.2 Exponential forgetting

Error statistic Value

Mean 0.219

Median 0.152

Variance 1.38

Standard deviation 1.18

RMSE 1.431
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6.2.3 Partial forgetting

Error statistic Value

Mean 0.122

Median 0.058

Variance 1.34

Standard deviation 1.16

RMSE 1.360
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6.3 2nd order gaugemeter model

6.3.1 No forgetting

Error statistic Value

Mean 0.145

Median 0.103

Variance 1.38

Standard deviation 1.18

RMSE 1.402
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6.3.2 Exponential forgetting

Error statistic Value

Mean 0.122

Median 0.045

Variance 1.37

Standard deviation 1.17

RMSE 1.384
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6.3.3 Partial forgetting

Error statistic Value

Mean 0.128

Median 0.051

Variance 1.4

Standard deviation 1.18

RMSE 1.420
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6.4 Blackbox 2 model

6.4.1 No forgetting

Error statistic Value

Mean 0.313

Median 0.252

Variance 1.34

Standard deviation 1.16

RMSE 1.438
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6.4.2 Exponential forgetting

Error statistic Value

Mean 0.113

Median 0.064

Variance 1.34

Standard deviation 1.16

RMSE 1.354
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6.4.3 Partial forgetting

Error statistic Value

Mean 0.085

Median 0.012

Variance 1.31

Standard deviation 1.14

RMSE 1.315
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7 Periodic signal modelling

The periodic signal data batch consisted of data from file Ki-200703010856 7632171-081-
001s 2-example data fault 2.mat. To demonstrate the modelling of interesting data batch, it
started from 2000th sample and 800 samples were used. The datafile did not contain the
rolling force measurements necessary for the gaugemeter model (7), which restricted the class
of available models to the following three members:

• Mass-flow model (6), which was widely discussed in Section 4.1, where its limited the-
oretical validity was studied.

• Blackbox model 1 (8).

• Blackbox model 2 (9).

The parameter estimation was evaluated:

• Without forgetting, i.e., no time update of parameters pdf was done.

• With exponential forgetting. The forgetting factor was 0.99.

• With partial forgetting. The hypotheses weights were evaluated automatically during
the estimation. The factors were:

– 0.95 for hypotheses’ weights,

– 0.99 for construction of alternative pdf fA for hypothesis H1

– 0.9 for construction of alternative pdf for fA for hypothesis H2

Apparently, the periodicity is related to both vr and z.

7.1 Mass-flow model

7.1.1 No forgetting

Error statistic Value

Mean -0.174

Median -0.265

Variance 1.09

Standard deviation 1.04

RMSE 1.116

7.1.2 Exponential forgetting

Error statistic Value

Mean -0.031

Median -0.095

Variance 1.11

Standard deviation 1.05

RMSE 1.106
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7.1.3 Partial forgetting

Error statistic Value

Mean 0.033

Median -0.001

Variance 1.01

Standard deviation 1

RMSE 1.011
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7.2 Blackbox 1 model

7.2.1 No forgetting

Error statistic Value

Mean -0.137

Median -0.146

Variance 0.905

Standard deviation 0.951

RMSE 0.924
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7.2.2 Exponential forgetting

Error statistic Value

Mean -0.042

Median -0.084

Variance 1.01

Standard deviation 1

RMSE 1.012

7.2.3 Partial forgetting

Error statistic Value

Mean 0.037

Median 0.016

Variance 0.92

Standard deviation 0.959

RMSE 0.922
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7.3 Blackbox 2 model

7.3.1 No forgetting

Error statistic Value

Mean -0.064

Median -0.135

Variance 0.96

Standard deviation 0.98

RMSE 0.965
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7.3.2 Exponential forgetting

Error statistic Value

Mean 0.036

Median -0.023

Variance 0.988

Standard deviation 0.994

RMSE 0.989

7.3.3 Partial forgetting

Error statistic Value

Mean 0.077

Median -0.023

Variance 0.882

Standard deviation 0.939

RMSE 0.888
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8 Periodic signal modelling II

Another periodic signal data batch consisted of data from file Ki-200903020808 0000000-000-
0000f 2 2-example data lesser-fault 2.mat. The data of interest started again from 2000th
sample and 800 samples were used. Since the datafile did not contain measurements of the
rolling force, the gaugemeter model was not available. Hence, the data were modelled with
the three models:

• Mass-flow model (6), which was widely discussed in Section 4.1, where its limited the-
oretical validity was studied.

• Blackbox model 1 (8).

• Blackbox model 2 (9).

The parameter estimation was evaluated:

• Without forgetting, i.e., no time update of parameters pdf was done.

• With exponential forgetting. The forgetting factor was 0.99.

• With partial forgetting. The hypotheses weights were evaluated automatically during
the estimation. The factors were:

– 0.95 for hypotheses’ weights,

– 0.99 for construction of alternative pdf fA for hypothesis H1

– 0.9 for construction of alternative pdf for fA for hypothesis H2
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8.1 Mass-flow model

8.1.1 No forgetting

Error statistic Value

Mean 0.336

Median 0.276

Variance 0.899

Standard deviation 0.948

RMSE 1.013
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8.1.2 Exponential forgetting

Error statistic Value

Mean 0.042

Median 0.096

Variance 0.918

Standard deviation 0.958

RMSE 0.920

8.1.3 Partial forgetting

Error statistic Value

Mean -0.002

Median 0.030

Variance 0.844

Standard deviation 0.919

RMSE 0.844
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8.2 Blackbox 1 model

8.2.1 No forgetting

Error statistic Value

Mean 0.486

Median 0.324

Variance 1.14

Standard deviation 1.07

RMSE 1.381
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8.2.2 Exponential forgetting

Error statistic Value

Mean 0.218

Median 0.181

Variance 1.35

Standard deviation 1.16

RMSE 1.398

8.2.3 Partial forgetting

Error statistic Value

Mean 0.107

Median 0.100

Variance 1.37

Standard deviation 1.17

RMSE 1.383
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8.3 Blackbox 2 model

8.3.1 No forgetting

Error statistic Value

Mean 0.045

Median 0.105

Variance 0.905

Standard deviation 0.952

RMSE 0.907
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8.3.2 Exponential forgetting

Error statistic Value

Mean -0.078

Median 0.001

Variance 0.796

Standard deviation 0.892

RMSE 0.802

8.3.3 Partial forgetting

Error statistic Value

Mean -0.071

Median 0.002

Variance 0.85

Standard deviation 0.922

RMSE 0.855
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9 Isolated outliers in the signal

A data batch containing isolated outliers consisted of data from file Vt-200909211137-example
data fault 3.mat. The data of interest started from 23300th sample and 800 samples were

used. The modelling with this datafile was restricted to just two models – the datafile did
not contain measurements necessary for both the mass-flow model and the blackbox 2 model.

• Blackbox model 1 (8).

• Gaugemeter model (7).

The parameter estimation was evaluated:

• Without forgetting, i.e., no time update of parameters pdf was done.

• With exponential forgetting. The forgetting factor was 0.99.

• With partial forgetting. The hypotheses weights were evaluated automatically during
the estimation. The factors were:

– 0.95 for hypotheses’ weights,

– 0.99 for construction of alternative pdf fA for hypothesis H1

– 0.9 for construction of alternative pdf for fA for hypothesis H2

The modelling results are not very satisfactory here. Apparently, the models used were
very sensitive to the outliers, which caused significant immediate deterioration of modelling
quality. However, the stabilization is still very fast. This example shows, that it would be
reasonable to consider some kind of outlier filtration.

If we focus on the particular models, we may conclude, that the difficulties are probably
connected with the regressor z as well. Its constant setting suppresses its use in modelling,
while its forgetting may potentially cause problems with numerical stability.

42



9.1 Blackbox 1 model

9.1.1 No forgetting

Error statistic Value

Mean -0.713

Median -0.587

Variance 3.48

Standard deviation 1.87

RMSE 3.989
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9.1.2 Exponential forgetting

Error statistic Value

Mean -0.546

Median -0.448

Variance 3.42

Standard deviation 1.85

RMSE 3.716

9.1.3 Partial forgetting

Error statistic Value

Mean -0.683

Median -0.370

Variance 10.8

Standard deviation 3.28

RMSE 11.223

44



9.2 2nd order gaugemeter model

9.2.1 No forgetting

Error statistic Value

Mean -0.659

Median -0.556

Variance 2.74

Standard deviation 1.65

RMSE 3.170
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9.2.2 Exponential forgetting

Error statistic Value

Mean -0.513

Median -0.441

Variance 2.95

Standard deviation 1.72

RMSE 3.210

9.2.3 Partial forgetting

Error statistic Value

Mean -0.280

Median -0.411

Variance 18.2

Standard deviation 4.26

RMSE 18.266

46



10 Outliers (dirty strip)

10.1 Brief analysis

The course of thickness deviation h2 due to dirty strip is depicted in Fig. 12. The difficult
part starts around the instant t = 1500 and continues until around 2500. In comparison to
isolated outliers, here the situation gets much worse. The term outlier is rather abused – the
improper data form a significant signal component, which cannot be filtered out by the basic
means.

Figure 12: Course of h2 (dirty strip).

To evaluate a brief analysis, let us focus on the signal power spectral properties. The
Figure 13 shows signal power spectra for various data files, namely:

(A, B) – Vi-200909171440 0 2-example data fault 4.mat – the dirty strip data, i.e., a case
relevant in this section.

(C, D) – Vi-201003201554 2011507 3-example data fault 4-free.mat – example of a file free
of fault of the same type.

(E, F) – Gi-200810211323 206-10-B 3.mat – the regular and correct data.

(G, H) – Vt-200909211137-example data fault 3.mat – the impact of isolated outliers on
thickness deviation.

(I, J) – Vt-201003220733-example data fault 3-free.mat – example of a file free of fault of
the same type.
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Figure 13: Power spectral densities (left) and the course of data (right).

The lengths of data are not the same for each data file, which can potentially affect the
low-frequency components of the signal. The vertical axes are limited by 25 000, which can
truncate some 0-peaks, however, this does not limit the information content of the figure. No-
tice the high-frequency band around ±0.35 in Fig. (A), which do not have their counterparts
in other files. The shape indicates, that there exist frequencies, typical for this type of fault,
which considerably influence the signal and which will almost surely cause deterioration of
the modelling quality. It would be advisable to either pre-process the data concerned by a
suitable filter (e.g., low-pass one) or to react by other means.

11 Alternative blackbox models

In this section, we discuss the searching for alternative blackbox models. This class of models,
introduced in the preliminary sections, are characteristic with their ignorance of explicit
physical character of the rolling process. They are constructed ad-hoc, using potentially
suitable combinations of measured variables as regression vector elements. It can happen,
that a chosen combination models well the regressand (output thickness deviation), on the
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other hand, the opposite situation can occur as well. Therefore, a thorough analysis of
suitability of a chosen combination is strongly advisable.

11.1 Settings

For our purpose, we finally carried out a brute-force analysis of all possible combinations of
measured variables, used as elements of tested regression vectors. We used the same standard
data file as in some previous sections, namely Gi-200810211323 206-10-B 3.mat. The data
window started with 1250th measurement and was 800 data long. The traffic delay was 19
time steps. The suitable variables, stored in the data file, were:

h1 – input thickness deviation

H1nom – nominal input thickness

H2nom – nominal output thickness

v1 – input strip speed

v2 – output strip speed

vr – ratio v1/v2

z – uncompensated rolling gap

F – rolling force

I – main drive current

The total count of the tested cases (for n = 9 variables) was(
n

1

)
+

(
n

2

)
+ . . .+

(
n

n

)
= 511. (12)

This means, that the shortest regression vector used one measured variable (of nine possible),
while the longest one used all nine. Additionally, all tested vectors were extended by the
absolute term. The models used three types of estimation procedure:

1. no forgetting

2. exponential forgetting with factor 0.99

3. partial forgetting with online weights determination and alternative pdf derived by
exponentiation of the posterior by 0.99 for hypothesis ‘all parameters vary’ and 0.9 for
hypothesis ‘absolute term varies’. The online determined weights were forgotten with
factor 0.95.

The initial statistics of the models were ν0 = 10 and extended information matrix V0 with
[0.1, 0.01, . . . , 0.01] on diagonal. These settings, i.e., regression vectors, initial statistics and
estimation methods, were used both for normalized data and raw data. This led to 511×3×2 =
3066 tested cases, which were consequently compared using their log-likelihood.
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11.2 Computing environment

The number of tested cases, in combination with the growing number of numerical operations
in partial forgetting when the length of regression vector increased, represented a computa-
tionally challenging task. To shorten the time necessary for the evaluation, we decided to
use the python programming language with the numerical and scientific libraries ‘numpy’
and ‘scipy’ and the module ‘parallel-python’ for cluster computation, the modelling itself was
carried out with the ‘pybamo’ module. The computing cluster consisted of three computers
with 2, 4 and 8 Intel processor cores, i.e., 14 cores totally. The results (log-likelihoods) were
stored in a sqlite database, which simplified their processing and significantly reduced the
risk of their corruption.

11.3 Results and proposals

The following two tables – Tab. 4 and 5 contain top-30 results ordered by log-likelihoods of
models with exponential (EF) and partial (PF) forgetting; apparently, the underlaying phys-
ical principle (cf. mass-flow model) plays still important role and models regarding evolution
of strip thickness and speed represent the best members of a class of suitable models. These
results may be taken into account as a helpful source for selection of the most suitable regres-
sion models. However, it is advisable to avoid choosing models with very similar structure,
because a dropout of one measured variable could discard a lot (if not all) of them.

A convenient way to selection of suitable models consists in employing of two principles
– Occam’s window and Occam’s razor [5]. The former one rejects those models, that predict
far less well than the best model. Formally, models not belonging to

A =

{
Mk;

max probability(Ml|d(t))

probability(Mk|d(t))
≤ C

}
,

where C is chosen by the user, should be excluded from the class of used models. The Occam’s
razor excludes those models, whose structure is more complex than that one of the simpler
models, but which receive less support. Formally

B =

{
Mk;Ml ⊂Mk,

probability(Ml|d(t))

probability(Mk|d(t))
> 1

}
should be excluded.
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combination none norm. none raw EF norm EF raw PF norm PF raw

(h2nom, h1nom, v1) -525.201 -2326.421 -27.371 -256.934 -21.752 —
(h2nom, h1nom, v1, v2, vr) -504.018 -2308.037 -28.722 -252.371 -25.662 —
(h2nom, h1nom, v1, v2) -502.818 -2316.467 -29.652 -255.952 -25.145 —
(h1, h2nom, h1nom, z, v1) -482.05 -2286.65 -29.797 -263.998 -32.973 —
(h2nom, h1nom, z, v1) -530.539 -2334.07 -29.841 -261.615 -27.721 -113.297
(h1, h2nom, h1nom, v1) -493.522 -2297.375 -30.934 -262.926 -29.027 —
(h1, h2nom, h1nom, z, v1, v2, vr) -439.547 -2257.35 -30.978 -259.29 -30.979 —
(h2nom, h1nom, v1, vr) -504.602 -2307.469 -30.991 -255.539 -26.486 —
(h2nom, h1nom, v2, vr) -504.963 -2316.702 -31.079 -255.961 -26.601 —
(h2nom, h1nom, z, v1, v2, vr) -503.912 -2313.164 -31.103 -256.965 -31.268 —
(h2nom, h1nom, v1, I) -522.125 -2327.428 -31.132 -263.78 -25.662 —
(h2nom, v1) -525.201 -2325.829 -31.391 -260.362 -23.407 -105.656
(h1nom, v1) -525.201 -2326.238 -31.391 -260.771 -23.407 -105.827
(h2nom, h1nom, F, v1) -477.113 -2276.062 -31.449 -258.345 -30.861 —
(h1, h2nom, h1nom, z, v1, v2) -443.208 -2268.33 -31.929 -262.867 -35.854 —
(h2nom, h1nom, z, v1, v2) -503.107 -2323.056 -32.034 -260.544 -30.771 —
(h1, h2nom, h1nom, v1, v2, vr) -441.218 -2260.022 -32.297 -258.374 -32.339 —
(h2nom, h1nom, v1, v2, vr, I) -508.59 -2314.765 -32.507 -259.241 -29.146 —
(h2nom, v1, v2, vr) -504.018 -2307.445 -32.743 -255.8 -27.285 —
(h1nom, v1, v2, vr) -504.018 -2307.854 -32.743 -256.208 -27.285 —
(h2nom, h1nom, F, v1, v2, vr) -420.576 -2233.177 -32.779 -253.762 -34.3 —
(h2nom, h1nom, z, v1, I) -521.622 -2330.79 -33.014 -267.872 -31.573 —
(h1, h2nom, h1nom, z, v1, I) -461.156 -2271.818 -33.073 -270.358 -37.618 —
(h1, h2nom, h1nom, v1, v2) -444.646 -2274.325 -33.227 -261.955 -31.96 —
(h1, h2nom, h1nom, z, v1, vr) -445.912 -2258.016 -33.267 -262.457 -37.202 —
(h2nom, h1nom, z, F, v1) -438.709 -2237.87 -33.349 -262.456 -35.455 —
(h1, h2nom, h1nom, z, v2, vr) -446.473 -2267.469 -33.361 -262.88 -37.315 —
(h2nom, h1nom, z, v1, vr) -505.049 -2312.707 -33.372 -260.133 -32.112 —
(h2nom, h1nom, v1, v2, I) -507.234 -2322.18 -33.438 -262.822 -28.638 —
(h2nom, h1nom, z, v2, vr) -505.481 -2323.225 -33.462 -260.552 -32.228 —

Table 4: 30 best regression vectors (without abs. term), ordered by EF (normalized regressors)
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combination none norm. none raw EF norm EF raw PF norm PF raw

(h2nom, h1nom, v1) -525.201 -2326.421 -27.371 -256.934 -21.752 —
(h2nom, h1nom) -707.756 -2508.706 -37.383 -270.522 -22.064 —
(h2nom, v1) -525.201 -2325.829 -31.391 -260.362 -23.407 -105.656
(h1nom, v1) -525.201 -2326.238 -31.391 -260.771 -23.407 -105.827
(h2nom, ) -707.756 -2508.115 -41.403 -273.95 -23.77 —
(h1nom, ) -707.756 -2508.523 -41.403 -274.359 -23.77 —
(h2nom, h1nom, vr) -612.808 -2433.684 -33.593 -261.718 -24.299 —
(h2nom, h1nom, v2) -569.09 -2368.225 -39.134 -269.01 -24.832 —
(v1, ) -525.201 -2320.126 -35.411 -257.014 -25.083 -105.866
(h2nom, h1nom, v1, v2) -502.818 -2316.467 -29.652 -255.952 -25.145 —
(h2nom, h1nom, v1, I) -522.125 -2327.428 -31.132 -263.78 -25.662 —
(h2nom, h1nom, v1, v2, vr) -504.018 -2308.037 -28.722 -252.371 -25.662 —
(h2nom, vr) -612.808 -2433.092 -37.613 -265.146 -25.991 —
(h1nom, vr) -612.808 -2433.501 -37.613 -265.555 -25.991 —
(h2nom, h1nom, I) -694.04 -2498.072 -41.401 -277.623 -26.041 —
(h2nom, h1nom, v1, vr) -504.602 -2307.469 -30.991 -255.539 -26.486 —
(h2nom, v2) -569.09 -2367.634 -43.154 -272.438 -26.519 —
(h1nom, v2) -569.09 -2368.042 -43.154 -272.847 -26.519 —
(h2nom, h1nom, v2, vr) -504.963 -2316.702 -31.079 -255.961 -26.601 —
(h2nom, v1, v2) -502.818 -2315.876 -33.672 -259.38 -26.794 —
(h1nom, v1, v2) -502.818 -2316.285 -33.672 -259.789 -26.794 —
(h2nom, h1nom, z) -670.226 -2473.385 -35.989 -271.342 -27.068 —
(h2nom, v1, v2, vr) -504.018 -2307.445 -32.743 -255.8 -27.285 —
(h1nom, v1, v2, vr) -504.018 -2307.854 -32.743 -256.208 -27.285 —
(h2nom, v1, I) -522.125 -2326.836 -35.152 -267.208 -27.316 —
(h1nom, v1, I) -522.125 -2327.245 -35.152 -267.617 -27.316 —
(h2nom, h1nom, z, v1, v2, vr, I) -503.649 -2315.534 -34.328 -263.274 -27.603 —
(vr, ) -612.808 -2433.213 -41.634 -261.794 -27.702 -106.262
(h2nom, h1nom, z, v1) -530.539 -2334.07 -29.841 -261.615 -27.721 -113.297

Table 5: 30 best regression vectors (without abs. term), ordered by PF (normalized regressors)

12 Conclusion

This report demonstrated the use of various models defined by their structures and estimators.
The impact of the forgetting techniques is shown in the related figures. The situations was
slightly complicated by the fact that the regressors are not available for each model. Therefore,
in some cases, only a subset of defined models was used.

In the first few sections, the analysis of the impact of data normalization was studied.
It has been shown, that the normalization to N (0, 1) can lead to significantly improved
estimation. The validity of the mass-flow model was analyzed then. It revealed its limitation,
indicated by a low correlation between the left and right-hand side of the continuity equation.
This situation deserves further analysis, related to the physical laws.

The main part of the report contains comparison of the models equipped with various
forgetting methods. The figures are accompanied by the statistics of the prediction errors.
Based on the situation, it seems reasonable to use the partial forgetting for certain cases.

The last part discusses the difficulties of dirty strip thickness deviation modelling and
briefly brings the possible computational-intensive search for the best blackbox models.
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[3] Jazwinski, A.H. (1970). Stochastic processes and filtering theory. New York: Academic
Press.
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