
 

 
Institute of Economic Studies, Faculty of Social Sciences 

Charles University in Prague 

 

 

 

 

 

Tail Behavior of the Central 

European Stock 

Markets during the 

Financial Crisis  

 

  
Jozef Barunik  

Lukas Vacha 

Miloslav Vosvrda 

 
 
 
 
 
 
 
 

 

IES Working Paper: 4/2010 
 

 

 

 

 



 

 

Institute of Economic Studies, 

Faculty of Social Sciences, 

Charles University in Prague 

 

[UK FSV – IES] 

 
Opletalova 26 

CZ-110 00, Prague 

E-mail : ies@fsv.cuni.cz 

http://ies.fsv.cuni.cz 

 

 

 

 

Institut ekonomických studií 

Fakulta sociálních věd 

Univerzita Karlova v Praze 

 

Opletalova 26 

110 00  Praha 1 

 

E-mail : ies@fsv.cuni.cz 

http://ies.fsv.cuni.cz 

 

 

 

Disclaimer: The IES Working Papers is an online paper series for works by the faculty and 

students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in 

Prague, Czech Republic. The papers are peer reviewed, but they are not edited or formatted by 

the editors. The views expressed in documents served by this site do not reflect the views of the 

IES or any other Charles University Department. They are the sole property of the respective 

authors. Additional info at: ies@fsv.cuni.cz 

 

Copyright Notice: Although all documents published by the IES are provided without charge, 

they are licensed for personal, academic or educational use. All rights are reserved by the authors. 

 

Citations: All references to documents served by this site must be appropriately cited.  

 

Bibliographic information: 

Barunik, J., Vacha, L., Vosvrda, M. (2010). “ Tail Behavior of the Central European Stock 

Markets during the Financial Crisis  ” IES Working Paper 4/2010. IES FSV. Charles University. 

 

This paper can be downloaded at: http://ies.fsv.cuni.cz 



 

Tail Behavior of the Central European 

Stock Markets  

during the Financial Crisis  

 

 
Jozef Barunik* 

Lukas Vacha# 

Miloslav Vosvrda° 

 
 

 * IES, Charles University Prague 
and 

Institute of Information Theory and Automation,  
Academy of Sciences of the Czech Republic, Prague 

E-mail: barunik@utia.cas.cz 
 

# °IES, Charles University Prague 
and 

Institute of Information Theory and Automation,  
Academy of Sciences of the Czech Republic, Prague 

 
 
 
 

March 2010 

 

Abstract: 

In the paper we research statistical properties of the Central European stock 

markets. We focus mainly on the tail behavior of the Czech, Polish, and Hungarian 

stock markets and compare them to the benchmark U.S. and German stock markets. 

We fit the data of the 4-year period from March 2005 to March 2009 with the stable 

probability distribution model and discuss its tail behavior. As the estimation of the 

tail exponent is very sensitive to the size of the data set, the estimates can be 

misleading for short daily samples. Thus, we employ high-frequency 1-minute data, 

which proves to be a good choice as it reveals interesting findings about the 

distributional properties. Furthermore, we study the difference in stock market 

behavior before and during the financial crisis. 
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1. Introduction

Statistical analysis of financial data has been of vigorous interest in recent years,
mainly among the physics community (Mantegna and Stanley, 2000; Bouchaud and
Potters, 2001; Buchanan, 2002; Mantegna et al., 1999; Plerou et al., 2000; Stanley
et al., 2000; Stanley, 2003). One of the main reasons driving the research is the
use of established statistical characteristics to better describe and understand the
real-world financial data.

Financial returns are believed to be the cumulative outcome of an enormous number
of pieces of information and decisions arriving almost continuously in time (McCul-
loch, 1996; Rachev and Mittnik, 2000). Since the pioneering work of Louis Bachelier
in 1900, they have been modeled by the Gaussian distribution. The strongest argu-
ment supporting this assumption is based on the Central Limit Theorem, which states
that the sum of a large number of independent, identically distributed variables from
a finite-variance distribution will tend to be normally distributed. However, financial
returns have heavier tails, which may be a source of infinite variance.

In response to the empirical evidence, Mandelbrot (1963) and Fama (1965) proposed
stable distributions as an alternative to the Gaussian distribution model. Stable
distributions were introduced by Levy (1925). Lévy investigated the behavior of
sums of independent random variables. In the literature stable distributions are also
called Lévy stable, Lévy laws, α-stable, Paretian stable or stable laws. Although
we know other heavy-tailed alternative distributions (such as student’s t, hyperbolic
or inverse normal Gaussian), stable distributions are attractive for researchers as
they are supported by the generalized Central Limit Theorem. The theorem states
that stable laws are the only possible limit distributions for properly normalized and
centered sums of independent, identically distributed random variables. A sum of
two independent random variables having a Lévy stable distribution with parameter
α is again a Lévy stable distribution with the same parameter α. However, this
invariance property does not hold for different values of α. Observed stock market
prices are argued to be the sum of many small terms, hence a stable model should be
used to describe them. When α < 2, the variance of the stable distribution is infinite
and the tails are asymptotically equivalent to a Pareto law, i.e., they exhibit power-
law behavior. Stable distributions have been proposed as a model for many types of
physical and economic systems as they can accommodate fat tails and asymmetry
and fit the data well. Examples in finance and economics are given in Mandelbrot
(1963), Fama (1965), Embrechts et al. (1997) and Rachev and Mittnik (2000).

There have, however, been many applications of Lévy stable distributions to em-
pirical data sets which could raise doubts about the correctness of the tail estimate
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(Lux, 1996; Voit, 2005). There is a significant difference between the value of the
estimated α (based on the whole data set) and the estimated tail exponent, intro-
duced in extreme-value theory. The tail exponent is estimated only on an arbitrarily
chosen part of the data (Hill, 1975; Weron, 2001). Since extreme observations of
prices on financial markets are of great importance, this problem deserves further
research. If α is underestimated, the occurrence of extreme events is overestimated.
Weron (2001) shows that the estimated tail exponent is very sensitive to changes
in parameters and to the size of the data set, hence the estimates can be highly
misleading. Simulations show that a large data set (106) is needed for identification
of the true tail behavior. The logical step is to use high-resolution data analysis.
Lux (1996) was one of the first to use high-frequency data, doing so for analysis
of the German stock market index. Several studies concerning estimation of stable
distributions followed (Mantegna and Stanley, 2000; Dacorogna et al., 2001; Voit,
2005).

In our paper, we append an analysis of Central European stock markets to the
discussions. In the first part, we briefly discuss the basics of stable distributions
and their tail behavior. In the second part, we focus on empirical analysis of the
daily returns of the Czech PX, Polish WIG, Hungarian BUX, German DAX, and
U.S. SP500 stock market indices. We fit the stable distribution to the empirical
distributions of all the indices during the period of March 2005 to March 2009.
Moreover, we divide this period into two equal halves so we can compare the behavior
before and during the crisis. After a discussion of the appropriateness of the stable
model for our data and a description of the tail behavior, we employ high-frequency
data in the analysis. We estimate the stable parameters for each day and use the
intraday γ for standardization of the daily data. Finally, the high-frequency data
allow us to study the standardized daily returns adjusted for volatility.

2. Stable Distributions

Stable distributions are a class of probability laws with appealing theoretical proper-
ties. Their application to financial modeling comes from the fact that they generalize
the Gaussian distribution, which does not describe well-known stylized facts about
stock market data. Stable distributions allow for heavy tails and skewness. In this
paper, we provide a basic idea about stable distributions. Interested readers can find
the theorems and proofs in Nolan (2003), Zolotarev (1986), and Samorodnitsky and
Taqqu (1994).
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The reason for the term stable is that stable distributions retain their shape up to
scale and shift under addition: if X, X1, X2,..., Xn are independent, identically
distributed stable random variables, then for every n

(1) X1 +X2 + ...+Xn
d
= cnX + dn

for constants cn > 0 and dn. Equality (
d
=) here means that the right-hand and left-

hand sides have the same distribution. Normal distributions satisfy this property:
the sum of normals is normal. In general, the class of all laws satisfying (1) can be
described by four parameters, (α, β, γ, δ). Parameter α is called the index of the
law or the index of stability or characteristic exponent and must be in the range
α ∈ (0, 2]. The coefficients cn are equal to n1/α. Parameter β is called the skewness
of the law and must be in the range −1 ≤ β ≤ 1. If β = 0, the distribution is
symmetric, if β > 0 it is skewed to the right, and if β < 0 it is skewed to the left.
While parameters α and β determine the shape of the distribution, γ and δ are scale
and location parameters, respectively.

Due to a lack of closed form formulas for probability density functions (except for
three stable distributions: Gaussian, Cauchy, and Levy) the α-stable distribution
can be described by a characteristic function which is the inverse Fourier transform
of the probability density function, i.e., φ(u) = E exp(iuX).

A confusing issue with stable parameters is that there are multiple parametrizations
used in the literature. Nolan (2003) provides a good guide to all the definitions. In
this paper, we will use Nolan’s parametrization, which is jointly continuous in all
four parameters. A random variable X is distributed by S(α, β, γ, δ) if it has the
following characteristic function:

(2) φ(u) =
{

exp(−γα|u|α[1 + iβ(tan πα
2 )(signu)(|γu|1−α − 1)] + iδu) α 6= 1

exp(−γ|u|[1 + iβ 2
π (signu) ln(γ|u|)] + iδu) α = 1

There are only three cases where a closed-form expression for density exists and
we can verify directly if the distribution is stable – the Gaussian, Cauchy, and
Lévy distributions. Gaussian laws are stable with α = 2 and β = 0. More pre-
cisely, N(0, σ2) = S(2, 0, σ/

√
2, 0). Cauchy laws are stable with α = 1 and β = 0,

Cauchy(γ, δ) = S(1, 0, γ, δ); and finally, Lévy laws are stable with α = 1/2 and β = 1;
Lévy(γ, δ) = S(1/2, 1, γ, γ + δ). Nolan (2003) shows these examples in detail.
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For all values of parameter α < 2 and −1 < β < 1, stable distributions have
two tails that are asymptotically power laws. The asymptotic tail behavior of non-
Gaussian stable laws for X ∼ S(α, β, γ, δ) with α < 2 and −1 < β < 1 is defined as
follows:

lim
x→∞

xαP (X > x) = cα (1 + β) γα(3)

lim
x→∞

xαP (X < −x) = cα (1− β) γα,(4)

where

(5) cα = sin
(πα

2

)
Γ (α) /π.

If the data is stable, the empirical distribution function should be approximately a
straight line with slope −α in a log-log plot.

A negative aspect of non-Gaussian stable distributions (α < 2) is that not all mo-
ments exist.1 The first moment EX is not finite when α ≤ 1. On the other hand,
when 1 < α ≤ 2 the first moment is defined as

(6) EX = µ = δ − βγ tan
πα

2
.

Non-Gaussian stable distributions do not have finite second moment. It is also
important to emphasize that the skewness parameter β is different from the classical
skewness parameter used for the Gaussian distribution. It cannot be defined because
the second and third moments do not exist for non-Gaussian stable distributions. The
kurtosis is also undefined, because the fourth moment does not exist either.

The index of stability α gives important information about financial market behavior.
When α < 2, extreme events are more probable than for the Gaussian distribution.
From an economic point of view some values of parameter α do not make sense. For
example, in the interval 0 < α < 1 the random variable X does not have a finite
mean. In this case, an asset with returns which follow a stable law with 0 < α < 1
would have an infinite expected return. Thus, we are looking for 1 < α < 2 to be able
to predict extreme values more precisely than by the Gaussian distribution.

There are several methods for estimating the parameters of stable distributions. For
a detailed discussion, see Nolan (2003), McCulloch (1996). In our paper, we use
maximum likelihood estimation of the parameters.

1It is possible to define a fractional absolute moment of order p, where p is any real number. For
0 < p < α, E |X| is finite, but for p ≥ α, E |X|p =∞ (Nolan, 2003).
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3. Daily Data

In this section, we will use different real-world data sets consisting of Central Eu-
ropean and U.S. stock market indices in order to study their distributions. More
precisely, we use 1,000 daily prices from March 2005 until March 2009 of value-
weighted PX, BUX, WIG, DAX, and SP500 indices, representing an approximation
of the Czech, Hungarian, Polish, German, and U.S. stock market indices, respec-
tively.

PX BUX WIG DAX SP 500

First Period Second Period

2006 2007 2008 2009

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al
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ed
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es

Figure 1. Prices of the indices examined, normalized to the [0, 1]
interval. The plot also shows the division into two periods, the first
one before the crisis and the second during the crisis

Figure 1 shows the plots of all the indices. In our analysis, we examine the differences
in the distributions of two groups: the Central European stock markets as represented
by PX, BUX, and WIG (plotted by solid lines in Figure 1) and DAX and SP500 as
benchmarks (plotted by dotted lines in Figure 1). We also divide the data set into
two subsets, the first one before the first quarter of 2007 and the other one during the
crisis. We will refer to these two groups as the first period and the second period in
the text. The division is logical as it allows us to study the differences in behavior of
all the stock market indices before the crisis during the steady state growth period,
and during the crisis. We can also compare the differences across the two groups of
stock markets studied.

4. Empirical Probability Densities

The logarithmic daily changes of all the indices are fitted with stable probability
densities. For the estimation, we use John P. Nolan’s STABLE2 program, which can
compute stable densities, cumulative distribution functions, and quantiles. We use

2The STABLE program is available at http://academic2.american.edu/~jpnolan/stable/
stable.html

http://academic2.american.edu/~jpnolan/stable/stable.html
http://academic2.american.edu/~jpnolan/stable/stable.html
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the maximum likelihood method, which yields reliable results for our sample size
(Nolan and Surami, 1999). The fitted stable parameters of S(α, β, γ, δ) (Equation 2)
are listed in Table 1. The fits are divided according to the periods examined. The
fit for the whole period is given first, followed by the fits for the first period and
second period subsamples.

α β γ δ

Whole Period (2005–2009)

PX 1.4790 (0.0974) -0.2540 (0.1739) 0.0079 (0.0005) 0.0010 (0.0008)
BUX 1.6986 (0.0941) -0.1393 (0.2610) 0.0103 (0.0006) 0.0001 (0.0011)
WIG 1.7424 (0.0900) -0.3001 (0.2885) 0.0108 (0.0006) 0.0009 (0.0011)
DAX 1.5309 (0.0973) -0.3093 (0.1857) 0.0071 (0.0005) 0.0013 (0.0008)
SP 500 1.2873 (0.0933) -0.2021 (0.1387) 0.0056 (0.0004) 0.0008 (0.0006)

First Period (2005–2007)

PX 1.6055 (0.1363) -0.3848 (0.2913) 0.0063 (0.0006) 0.0019 (0.0009)
BUX 1.9098 (0.0912) -0.5716 (0.7837) 0.0098 (0.0007) 0.0011 (0.0014)
WIG 1.8543 (0.1048) -0.5964 (0.5619) 0.0090 (0.0007) 0.0022 (0.0014)
DAX 1.8712 (0.0891) -0.9447 (0.2367) 0.0059 (0.0004) 0.0020 (0.0009)
SP 500 1.8515 (0.1100) -0.1233 (0.6411) 0.0042 (0.0003) 0.0005 (0.0006)

Second Period (2007–2009)

PX 1.4974 (0.1387) -0.1607 (0.2575) 0.0103 (0.0009) -0.0004 (0.0016)
BUX 1.5597 (0.1390) -0.0403 (0.2922) 0.0109 (0.0009) -0.0011 (0.0016)
WIG 1.7945 (0.1218) -0.2262 (0.4746) 0.0130 (0.0010) -0.0008 (0.0019)
DAX 1.5189 (0.1382) -0.2339 (0.2622) 0.0092 (0.0008) 0.0001 (0.0014)
SP 500 1.3855 (0.1360) –0.2007 (0.2202) 0.0095 (0.0009) 0.0002 (0.0014)

Table 1. Stable parameter estimates for the two groups of indices:
PX, BUX, and WIG, and DAX and SP 500. The number in parenthesis
is the 95% confidence interval half-width estimate.

Looking at whole period, we can observe that for all markets parameter α is less than
2, indicating that the fitted stable density might be non-Gaussian. All distributions
show asymmetry to some extent. The scale parameter γ is small for all fits and the
location parameter δ is close to zero for all markets.

Figure 2 completes the information about the fits, as it provides the stable density
fits with histograms for all the stock market indices and periods tested.

For the whole tested period of 2005 to 2009, WIG and BUX have the highest esti-
mated α. PX does not seem to belong in this group, as it shows a lower α which is



TAIL BEHAVIOR OF THE CENTRAL EUROPEAN STOCK MARKETS 8

-0.10 -0.05 0.00 0.05 0.10
0

10

20

30

40

Returns

PD
F

PX 2005-2009

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
0

10

20

30

40

50

Returns

PD
F

PX 2005-2007

-0.10 -0.05 0.00 0.05 0.10
0

5

10

15

20

25

30

Returns

PD
F

PX 2007-2009

-0.10 -0.05 0.00 0.05 0.10
0

5

10

15

20

25

30

Returns

PD
F

BUX 2005-2009

-0.04 -0.02 0.00 0.02 0.04
0

5

10

15

20

25

30

Returns

PD
F

BUX 2005-2007

-0.10 -0.05 0.00 0.05 0.10
0

5

10

15

20

25

30

35

Returns

PD
F

BUX 2007-2009

-0.05 0.00 0.05
0

5

10

15

20

25

30

Returns

PD
F

WIG 2005-2009

-0.04 -0.02 0.00 0.02 0.04
0

5

10

15

20

25

30

35

Returns

PD
F

WIG 2005-2007

-0.05 0.00 0.05
0

5

10

15

20

25

Returns

PD
F

WIG 2007-2009

-0.10 -0.05 0.00 0.05 0.10
0

10

20

30

40

50

Returns

PD
F

DAX 2005-2009

-0.02 -0.01 0.00 0.01 0.02
0

10

20

30

40

50

60

Returns

PD
F

DAX 2005-2007

-0.10 -0.05 0.00 0.05 0.10
0

5

10

15

20

25

30

35

Returns

PD
F

DAX 2007-2009

-0.10 -0.05 0.00 0.05 0.10
0

10

20

30

40

50

60

Returns

PD
F

SP500 2005-2009

-0.02 -0.01 0.00 0.01 0.02
0

20

40

60

80

Returns

PD
F

SP500 2005-2007

-0.10 -0.05 0.00 0.05 0.10
0

10

20

30

40

Returns

PD
F

SP500 2007-2009

Figure 2. Estimated stable probability density functions of PX,
BUX, WIG, DAX, and SP500 in solid lines, compared to the nor-
mal distribution function in dashed lines and histograms. Note the
vertical division according to the periods tested. The whole period for
all indices is given in the first column. The second and third columns
show the fits of the first and second sub-periods, respectively.
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not significantly different from the benchmark DAX index. On the other hand, the
other benchmark index, SP500, has a significantly lower α than all the other indices.
This is also valid when we divide the period into two sub-periods. Thus, we can see
that the most developed and the most liquid U.S. stock market, as represented by
SP500 index, departs from normality (α = 2) and also from the group of Central
European stock markets. Interestingly, DAX shows very similar estimates of stable
parameters compared to the Central European indices.

The division of the data sets into the first period and the second period shows us
more interesting results. All the α estimates of the second period are lower when
compared to the first period, while the α of BUX, DAX, and SP500 are significantly
lower. This indicates that from the Central European group, only the BUX index
has significantly different tail behavior during the crisis than before the crisis3. On
the other hand, the more developed stock markets in Germany and the USA show
significantly heavier tails during the second period. This observation is confirmed by
Figure 2. From Figure 2, we can also observe that the distributions from the first
period are much closer to the normal distribution, while the distributions from the
second period of the financial crisis clearly depart from the normal distribution.

The Jarque-Bera statistics also strongly reject normality of all the stock market
indices for the whole period. When we divide the period into two sub-samples, for the
first period the Jarque-Bera statistics show departure from the normal distribution
at the 99% significance level for all indices except BUX. For BUX, they reject the
null of normality at 95%. For the second period, the Jarque-Bera statistics again
strongly reject normality for all the stock market indices examined.

5. Tail Behavior

While the fit of the stable parameters to the data set seems reasonable, it is not
surprising that one can fit a data set with a 4-parameter stable model better than
with a 2-parameter normal model. Thus, a relevant question is whether or not the
stable fit describes the data better. For this purpose, goodness-of-fit diagnostics are
used. The first one is a simple density plot and the second one is a variance-stabilized
PP plot. Figure 2 shows us the density plots with histograms. We can observe that
the stable fit describes the distributions more reasonably than the normal distribution
for the second period. We cannot really conclude this for the first period (these results

3This result is most likely influenced by the severe economic problems that started before the
current financial crisis.
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are confirmed by the more rigorous analysis in the previous section). The PP plot of
all fits is on the diagonal4, which also confirms the good fit of the model used.
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Figure 3. Log-log plots of stable distribution fits for all indices for
different periods. The absolute value of the left tail is in blue and the
absolute value of the right tail is in red. For comparison, the tail of
the normal distribution is in black and is not linear.

4We do not provide all the PP plots here for reasons of space. They can be provided by the
authors on request



TAIL BEHAVIOR OF THE CENTRAL EUROPEAN STOCK MARKETS 11

The previous analysis did not show us a lot of details about the tails. The estimated
α exponents may provide a clue to the tail behavior, but more rigorous analysis
is needed to draw any conclusions. The tails are the most important part of the
distribution we are interested in when studying financial data, so the motivation to
take a closer look is really strong. First of all, we will use log-log fits to the cumulative
distribution function. Stable distributions with α < 2 should show linear parallel
tails with a slope of minus α. Moreover, if β is zero, the tails are superimposed.
When β = ±1, the lighter tail is not linear. Figure 3 shows the log-log plot5 for
our tested grid of stock market indices and periods. We also provide the tail of the
normal distribution calculated from the sample, which is not linear.

From Figure 3 one can observe that the tails of the actual data are slightly lighter
than the tail exponents from the stable fits. There are points visible on the right
side of the graphs that lie below the two straight lines that characterize the stable
fit. These points represent the most extreme observations on both the left and right
tails of the distribution. An imaginary line drawn through these few points on the
tails has a steeper slope than the line representing the stable fit (a higher absolute
value of α). To provide a deeper and more rigorous insight into the tail behavior, we
need more sophisticated methods of tail exponent estimation.

There are basically two tail index estimation methods. The first is based on log-log
linear regression of the cumulative distribution function and the second is the Hill
estimator (Hill, 1975). The Hill estimator tends to overestimate the tail exponent
of a stable distribution if α is close to two and the sample size is not very large. In
general, both methods are very sensitive to the choice of parameters. For a more
detailed discussion see Weron (2001) and Embrechts et al. (1997). In our analysis
we use the first method, calculating the tail exponent estimates from the upper and
the lower 2% data tails. The results are provided in Table 2. All the values of the
tail exponent estimates are higher than the stable parameter estimates α from the
previous section listed in Table 1.

Generally, we can see that the tail exponents from the second period are lower than
the tail exponents from the first period, which confirms our previous result that the
stock market distribution from the pre-crisis period behaves more normally and the
second period can be better described by stable distributions, which catch the heavy
tails. But none of the estimates of the tail exponent α is less than 2. According to the
generalized central limit theorem, sums of random variables from distributions with

5The log-log plot is a two-dimensional graph that uses logarithmic scales on both the horizontal
and vertical axes. The plot shows a log-log fit to the cumulative distribution function. The absolute
value of the left tail is shown in blue and the absolute value of the right tail is shown as 1- probability
in red.
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linear tail exponents α < 2 will converge to a stable distribution. Those with higher
tail exponents will converge to a normal distribution on summation. Thus, none of
our data comes from a stable distribution. Moreover, if we take a simulation derived
from the fit of our data (Table 1) and reconstruct a price series, we find extreme
changes more frequently than are ever found in a real financial time series. Thus,
stable fit overestimates the frequency of extreme events for financial data.

Whole Period First Period Second Period

Left Right Left Right Left Right

PX 2.0484 2.8222 2.4851 3.7801 2.2089 2.7226
BUX 2.8735 2.5276 4.5662 6.0168 2.9692 3.6715
WIG 4.3111 4.2127 7.3268 6.3841 4.0577 5.7020
DAX 2.0199 4.7485 14.048 4.9252 2.4838 5.5519
SP500 2.9095 3.4848 8.2624 3.3343 3.1789 3.7717

Table 2. The tail exponents α for all the stock indices and periods
tested. Table shows the exponents for both the right and left tails

While the value of the tail exponent α has its asymptotic limit 2, it turns out to
provide quite restrictive support for conclusions about the tail behavior (Weron,
2001). Using simulations, Weron shows that reported values of the tail exponent α
of around 3 may very well indicate a Lévy-stable distribution with α ≈ 1.8. Log-log
linear regression is also very sensitive to the sample size and the choice of the number
of observations used in the regression. Moreover, a slope of around −3 (tail exponent
α equal to 3) may indicate non-Lévy-stable power-law decay in the tails or, on the
contrary, a Lévy-stable distribution with α ≈ 1.8.

Weron (2001) also shows that for a typically sized data set of 104 or less, the plot may
be quite misleading. The true tail behavior of stable laws is visible only for extremely
large data sets, which leads us to the use of high-frequency asset returns. Moreover,
we have to keep in mind that the choice of observations used in the regression is
subjective and can yield large estimation errors.

6. High Frequency Data

The previous analysis suggests that the stable model is more appropriate for the
tested data than the normal one, but we are not able to prove it as we are not
able to draw conclusions about the tail behavior. We follow our experiment with
the assumption that there is a structure that can be observed in the volatility of



TAIL BEHAVIOR OF THE CENTRAL EUROPEAN STOCK MARKETS 13

the financial time series. Stable distributions have the mathematical property that
the absolute mean deviation of a sample from the stable distribution S(α, β, γ, δ) is
proportional to the scale factor, γ.
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Figure 4. Estimated stable probability density functions of standard-
ized PX, DAX, and SP500 in solid lines, compared to the normal dis-
tribution function in dashed lines and histograms. Note the vertical
division according to the periods tested. The whole period for all in-
dices is given in the first column. The second and third columns show
the fits of the first and second sub-periods, respectively.

To explore the data-generating process in further detail, we employ higher resolution
data.6. More precisely, we use 1-minute prices. We only have access to PX, DAX,
and SP500 1-minute prices for the period of March 2005 until March 2009, so we

6There are several studies concerning the estimation of stable distributions on high frequency
data. For example, tail exponents of the German stock market are examined in Lux (1996). Detailed
treatments of the topic can be found in Mantegna and Stanley (2000), Dacorogna et al. (2001), and
Voit (2005)
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α β γ δ

Whole Period (2005 - 2009)

PX 1.8610 (0.0740) -0.0678 (0.4617) 0.4518 (0.0233) 0.0369 (0.0369)
DAX 1.8813 (0.0738) -0.3046 (0.5138) 0.515810 (0.0275) 0.0724 (0.0553)
SP 500 1.8232 (0.0843) -0.2049 (0.4002) 0.4276 (0.0241) 0.0343 (0.0471)

First Period (2005 - 2007)

PX 1.9207 (0.0818) -0.6774 (0.7652) 0.3908 (0.0265) 0.1085 (0.0548)
DAX 2.0000 (0.0000) -0.4288 (0.2367) 0.494007 (0.0313) 0.1020 (0.0626)
SP 500 1.8515 (0.1100) -0.1233 (0.6411) -0.0878 (0.0231) 0.432 (0.0463)

Second Period (2007 - 2009)

PX 1.8486 (0.1063) 0.2580(0.6005) 0.5169 (0.0379) -0.451 (-0.0751)
DAX 2.0000 (0.0000) -0.0878 (0.7064) 0.5535 (0.0424) 0.0061 (0.0843)
SP 500 1.8558 (0.1114) -0.2250 (0.6622) 0.5233 (0.0406) 0.0603 (0.0806)

Table 3. Stable parameter estimates for standardized indices by es-
timates of γ for PX, DAX, and SP 500. The number in parenthesis is
the 95% confidence interval half-width estimate.

decided it would be sufficient to continue the analysis leaving out the BUX and WIG
indices. The trading days are concatenated so that there is no gap between a closing
price and the next open.

For each day we compute the parameters of the stable distribution so we obtain 1,000
daily estimates of all the parameters. The variation of the intraday scale factor γ
can be viewed as an estimate of the daily volatility of the series. Thus, we scale the
daily returns by the square root of the γ estimate. Figure 4 shows the histograms
of these standardized data as well as the stable and normal fits. Table 3 shows the
parameter estimates of the stable fits to these scaled daily series.

We can observe immediately that all the α estimates are larger than the α estimates
of the unstandardized data (Table 1). Again, we are interested in the details of the
tails. Figure 5 shows the left and right tails of all the estimates of the standardized
data. All of them are closer to the stable fit when compared with the fits of the raw
data in Figure 3. Jarque-Berra statistics strongly reject7 normality of all the data
for the whole sample. The statistics are much lower than the Jarque-Berra values
for the unstandardized daily data. Interestingly, the test does not reject normality
of the data at the 95% level for the PX series and at 90% for the DAX and SP500
series during the first period. For DAX and SP500, the statistics are very close to 1.

7at the 99% significance level
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Figure 5. Log-log plots of stable distribution fits for all standardized
indices for different periods. The absolute value of the left tail is in
blue and the absolute value of the right tail is in red. For comparison,
the tail of the normal distribution is in black and is not linear.

For the second period, the Jarque-Berra statistics again strongly reject8 the null of
normality of all the tested data.

7. Conclusion

In this paper, we investigated the statistical behavior of two groups of data; a Central
European group, represented by the Czech PX, Polish WIG, and Hungarian BUX
indices, and the benchmark German DAX and U.S. SP500. Moreover, we divided
the tested period of March 2005 to March 2009 into two sub-periods. The first half
of the data represents the pre-crisis period and the second half comprises data of the
current world financial crisis. We fit the stable distribution to all the data sets and
sub-periods.

The first period does not show any significant departure from the normal distribution,
while the second period does. When we explore the tail behavior in detail, we find
that the stable distribution fits embody fatter tails than can be observed in the

8at the 99% significance level
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data. We thus arrive at the same result as other studies, namely, that the real data
show fatter-than-normal but lighter-than-stable tails. In other words, the stable fit
overestimates extreme events in the stock markets. We came across another tail
estimation problem during the analysis: a large estimation error when using small
data sets. This problem can be addressed using high frequency data. As we cannot
say that the analyzed daily returns come from stable random data, we continue the
analysis.

For the further analysis, we employ 1-minute index returns. We use γ estimates for
each day to standardize the daily index returns. This step encounters the observation
of dependence in volatility. The stable fits and tails of these standardized returns are
much closer to a stable random distribution and show that stock market returns may
be generated from a mixture distribution of stable random variables and a volatility
process, which is the only part which carries information and can be predicted. When
the volatility is adjusted out, what remains is a stable random model.

Of course, this observation is far from being proof of financial time series behavior.
Nevertheless, it seems reasonable to say that the price formation process emerges
from sums of returns and these are driven by a fat-tailed distribution in market
order books. This process becomes extremely complicated and does not have the
convenient features of simple mathematical laws that might be attributed to inde-
pendent and identically distributed random variables.

References

Bouchaud, J. P. and M. Potters (2001). Theory of Financial Risks: From Statistical
Physics to Risk Management. Cambridge: Cambridge University Press.

Buchanan, M. (2002). The physics on the trading floor. Nature 10-12 (415).
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