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aworski

An Attempt to Define Graphical Models
in Dempster-Shafer Theory of Evidence

Radim Jirousek

Abstract. The goal of this paper is to introduce graphical models in
Dempster-Shafer theory of evidence. The way the models are defined is a
natural and straightforward generalization of the approach from probabil-
ity theory. The models possess the same “Global Markov Properties”, which
holds for probabilistic graphical models. Nevertheless, the last statement is
true only under the assumption that one accepts a new definition of con-
ditional independence in Dempster-Shafer theory, which was introduced in
Jirousek and Vejnarové (2010). Therefore, one can consider this paper as an
additional reason supporting this new type of definition.

Keywords: Graphical Markov models, Conditional independence, Factor-
ization, Multidimensional basic assignment.

1 Introduction

Graphical Markov models [8] developed to their variety and proficiency in the
last two decades of the 20th century, have become a benchmark with which
models from other theories of uncertainty are often compared. Here we have
in mind Bayesian networks (perhaps the most popular member of graphical
Markov models), decomposable models (indisputably the most efficient from
the computational point of view) and also “classical” graphical models. The
last models were originally studied within the class of log-linear models as
distributions whose interactions can be described with the help of simple
graphs.
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362 R. Jirousek

In this paper we want to show that the idea upon which graphical models
were founded can be (almost straightforwardly) exploit also within Dempster-
Shafer Theory of evidence. In fact, the only new idea of the approach is that
not all subsets of the considered space of discernment may be focal elements.

2 Basic Concepts and Notation

In the following text we will need just basic concepts od Dempster-Shafer
theory of evidence. However, to make the explanation more lucid we will ex-
plain our motivation originated in probability theory. Naturally, when speak-
ing about graphical models we cannot avoid a couple of notions from graph
theory. All these concepts will be briefly introduced in this section.
All our considerations will concern finite multidimensional space

N X 0 iy e S K (1)

The reader can interpret it either as a space of possible combinations of values
of n (random) variables, or as an n-dimensional space on which the respective
measures will be defined. Subsets of N = {1,2,...,n} will be denoted by K,L.M
with possible indices. So, Xk will denote a Cartesian product of those X;, for
which i € K:
Xk = Xiek Xi-

A projection of x = (x1,x2,...,%,) € Xy into Xy will be denoted xK e for

K= {i| N Top— i,'}
.1.’“( = (.1’,‘1 3 Kigyeoe .X,'r) e Xk.
Analogously, for K CLC N and A C X, A'K will denote a projection of A into .
Xk:
A = {yeXg:IeA (y=xK}).

Let us remark that we do not exclude situations when K = 0: Al =0,

One of the most important notions of this text will be a join of two subsets
A C Xy and B C X, which is defined

A@B:{_rEXK;_.L:leEA & x""EB}. (2)

Notice that if K and L are disjoint then the join of the corresponding sets
is just their Cartesian product A®B=A x B. For K =L, ARB=ANB. If
KNL+#0 and AKTLNBIKOL = @ then also A® B = 0.

In view of this paper it is important to realize that if xe C C XxuL, then
K e clK and x!t e €', which means that always C C C'X @ C'L. However,
it does not mean that C = C*¥ @ C!L. For example, considering only a 2-
dimensional frame of discernment X ) with X; = {aj,a;} for both i= 1,2,
and C = {a,az,a,az,a1a} one gets

C"{I}CEGC‘{H = {m.ﬁl}‘y}{ag,(ig} = {a|a2,§|ag.a|ﬁg.ﬁ|ﬁ3} #C.
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2.1 Graph Notions

In the paper we will exclusively consider simple graphs G = (N,E) with a set
of nodes N corresponding to the previously introduced index set. It means
that the considered graphs contain neither oriented nor multiple edges and
also no loops.

An important notion is that of a clique, which denotes a maximal subset
of N inducing a complete subgraph (i.e. all pairs of nodes of a clique are
connected by an edge and adding an additional node to the clique violates this
property). The graph in Figure 1(a) has three cliques: {1,2,3,4},{3,4,5},{6},
the graph in Figure 1(b) has five cliques: {1,2,3},{1,4},{3,6},{4,5},{5,6}.

A graph is decomposable if its cliques K;,K>,...,K, can be ordered in the
way that the sequence meets the so called running intersection property

(RIP):
Jj(1<j<i): K;Q(K|U...UK|;,])QKJ'. (3)

Notice that this property is met by any ordering of the cliques of the graph in
Figure 1(a), and that the cliques of the graph in Figure 1(b) cannot be ordered
to meet this property. It means that from the mentioned two graphs only
the former is decomposable. The graph in Figure 1(c) is also decomposable,
because the ordering of its cliques {1,2,4},{2,3,4},{4,6},{3,4,5} meets RIP
(in spite of the fact that, for example, {3,4,5},{1,2,4},{2,3,4},{4,6} does
not meet this property).

The last notions we will need are notions of separation and a separating set.
We say that two different nodes i, j € N are separated by a set K C N\ {i, j}
if we cannot go along the graph edges from i to j without going through a
node from K. So, if there is no path from i to j (as, for example there is
no path from 1 to 6 in the graph in Figure 1(a)) then even the empty set
may be a separating set. A set K is a minimal separating set if there exists
a pair of nodes i and j, which is separated by K but no proper subset of K
separates i and j. Notice that in the graph in Figure 1(c) both {2,4} and {4}
are minimal separating sets; the former is a minimal separating set for 1 and
3, whereas the latter is a minimal separating set for 1 and 6.

ove D—@) (D—(2)

& ® O—© ©®

(a) (b) (¢)

Fig. 1 Graphs with 6 nodes
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If graph G = (N, E) is not complete then it is always possible to find a couple
of subsets LM C N (usually there are lot of such couples; the exception is
a graph consisting of only two cliques, for which this couple is unique) such
that
e LUM=N;

e LNM is a minimal separating set;

e each pair of nodes i € L\M, j € M\ L is separated by LNM.

The set of all these couples will be denoted by symbol % (G) - for examples

concerning all the graphs in Figure 1 see Table 1. Now, we are ready to

introduce a class of subsets of Xy whose structures comply with graph G

(these sets will be used in the definition of graphical models in Section 4):
R(G)={ACXN:V(L,M) € #(G) (A=AL®AM)} (4)

Table 1 .¥(G) for graphs in Figure 1

Graph G Couples (L,M) from .#(G) Graph G Couples (L,M) from .#(G)

@  ({1,2,3,4},{3,4,5,6}) ) ({1,2,4},{2,3,4,5,6})
({1.2.3.4,6}, {3,4,5}) ({1.2,3,4},{3.4,5,6})
({1.2.3.4,5},{6}) ({1.2.3,4,5},{3.5.6})

@  ({1,2,3,4,5},{6}) ({1,2,3,4,6},14,5,6})
({1.2.3},{1,3,4,5,6}) ©  ({1,2,4},{2,3,4,5,6})
({1,2,3,6},{1,3,4,5}) ({1,2,4,6},{2,3,4,5})
({1,2,3,5,6},{1,4,5)) ({1,2,3,4},{3,4,5,6})
({1,2.,3,5},{1,4,5,6}) ({1.2.3,4,6},{3,4,5})
({1,2.3,4},{3,4,5,6}) ({1,2,3,4,5}, {4,6})
({1,2,3,4,6}, {3.4,5})

2.2 Probabilistic Factorization

Consider a probability measure & on Xy and L,M C N such that LUM =N.
We say that © factorizes with respect to a couple (L,M) if the exist functions

¢:X,,—v[0.+oo). W:XM%[O,+°°).
such that for all x € Xy
(x) = ¢(x*F) - w(xtM).

It is well known that m factorizes with respect to (L,M) if and only if for
all x € Xy _ i :
ﬂ.'(.\') : n.H'_ IM(.{’"“ M) = nJJ(le) . nlM(AAlM)\

which corresponds to the conditional independence L\M 1L M\ L|LNM [r].

An Af

Th
which
(N.E]

Co
proba
functi

such 1

Wi
repres
paran
abiliti
graph
condi
to G -

2.3

The |
Demp
plausi
assign
signm
functi

for wl
positi’
Ha

ment

3 F

Uncor
Shafei
Juncti
(14351
use arn




usek An Attempt to Define Graphical Models 365

juple This notion forms a basis for a more general notion of a graphical model,
n is which is a probability distribution factorizing with respect to a graph G =

uch (N,E) (8].

Consider a graph G = (N,E) with r cliques K;,K>,...,K,. We say that a
probability distribution & factorizes with respect to graph G if there exist r
functions ¢, @,,..., ¢y,

o xl\', — [O +°°)~

such that for all x € Xy

r
7(x) = [T 0:(%).

i=1
What is the advantage of graphical models? Naturally, first of all we can
represent such a distribution with the help of (in the binary case) []/_, 2/
parameters (factors), which is usually much less than 2", the number of prob-
abilities necessary to define a general n-dimensional distribution. Moreover,
| graphical models have their “semantics” expressible with the help of their
conditional independence structure: If distribution 7 factorizes with respect
to G = (N,E) and K C N separates in G nodes i, j € N, then i 1L j|K [x].

2.3 Basic Assignment Notation

The role of a probability distribution from a probability theory is in
Dempster-Shafer theory played by any of the set functions: belief function,
plausibility function, commonality function or basic (probability or belief)
assignment [4, 9]. In this text we will exclusively use normalized basic as-
signments for the purpose. Such a basic assignment m on X (K C N) is a
function
m: P (Xg) — [0,1],

for which m(0) = 0, and ¥,cx, m(A) = 1. All the sets A for which m(A) is
positive are called focal elements of m.

| Having a basic assignment m on Xx we will consider its marginal assign-
ment on Xy (for L C K), which is defined (for each 0 # B C X, ):

m'(B) = 2 m(A).

ACXg:AlL=B

3 Factorization and Independence

Unconditional (marginal) independence has been introduced in Dempster-
Shafer theory in several equivalent ways; mostly as an application of con-
Junctive combination rule (non-normalized Dempster’s rule of combination)
l (1, 3, 7, 10], or with the help of commonality functions (12, 11]. Here, we will

use another (and as it was showed in [6] still equivalent) definition.
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Let K.L C N be disjoint. For a basic assignment m the independence K 1L
L[m) holds if for all A C XkuL

K L ue K « |L
KU — mK . miL if A=AK @A (5)
0 otherwise. g

Having a probability measure 7 defined on a 2-dimensional space X; X X3
and factorizing with respect to ({1},{2}) we know that there exist functions
¢ and y such that for each x € X x Xz

(x) = o (x ) - y(xH2). (6)

It means that |X;|-|Xz| probabilities of measure 7 is defined with the help
of |X;| and |X;| values of the factor functions ¢ and y. This fits the product

rule expressed by formula (6).
Is it possible to transfer this simple idea directly into Dempster-Shafer
theory? Basic assignment m on X, x X; is defined with the help of 2% |-1X2|

values, whereas factor functions
u :.@(X|)——*[O.+°°). VZ..@(X;))—*[O.-FOG),

are defined with the help of 2Xi| and 22! values, respectively. Thus using an
analogy to a product rule we can get only 2/% I+1X2| different values. However
noticing that factorization (in this simple 2-dimensional situation) should
yield the independence {1} 1L {2}, and looking at the definition formula (5),

we see that we do not need to define values of m for all subset A C X x X3,
but only for those A for which A = Al @ A2

Generalizing the above consideration to a more complex, overlapping fac-
torization we proposed the following definition of factorization in [5].

Definition 1. Simple Factorization. Consider two nonempty sets KUL =
N. We say that basic assignment m factorizes with respect to (K,L) if there
exist two nonnegative set functions

u: P(Xg) — [0,4e2), V: P(XL)— [0, +o0),

such that for all A C XkuL

d(AK) - yp(A) ifA= AKX @ AL
m(A) =
0 otherwise.
It is almost obvious that for this notion the following simplified version of
Factorization Lemma is valid [13].

Lemma 1. Let K,L CN be disjoint and nonempty, KUL = N. m factorizes
with respect to (K,L) if and only if K\L 1L L\K|KNL [m].
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An Attempt to Define Graphical Models

4 Graphical Models

Definition 2. Let G = (N,E) be a graph with r cliques K,,K>,...,K,. We say
that basic assignment m factorizes with respect to graph G if there exist r
functions py, us Hr, (4i: P(Xk,) — [0,+4=2)), such that for all A C Xy

I w(AK), if Ac2(G),
i=1

m(A) =
0 otherwise.

Ezample 1. Consider a 6-dimensional basic assignment factorizing with re-
spect to the graph in Figure 1(d). If all X; are binary, then general basic
assignment may have up to 2% — 1 focal elements. Nevertheless, since the
considered graph consists of 5 cliques: {1,2,3}, {1,4}, {3,5}, {4,5} and {6},
all the necessary factor functions are defined with by 28 +3.24 + 22 — 308
numbers.

We believe that the above presented example sufficiently illustrates an effi-
ciency with which graphical models can be represented in Dempster-Shafer
theory. What remains to be showed that it possesses also the second advan-
tageous property of probabilistic graphical models, i.e. that the dependence
structure of the distribution is somehow encoded in the graph. We do not
have enough space to formalize the property in a form of a theorem and to
prove it but an analogy of the probabilistic statement presented at the end of
Section 2.2 holds: If basic assignment m factorizes with respect to G = (N, E)
and K C N separates nodes i, in G, then i 1 j| K [m].

For this, however, we have to say what we understand by conditional inde-
pendence in Dempster-Shafer theory. Namely, we cannot apply the definition
used by most of the other authors (e.g. [2, 10, 12]) but the following definition
introduced in [6].

Definition 3. Conditional Independence. Let K,L,M C N be disjoint,
K,L nonempty. We say that for a basic assignment m conditional indepen-
dence K 1L L|M [m| holds if for any A C Xxurum such that A = ALKUM g gLLUM
the equality

m'K J!""M(A) ArrrlM(A4M) = m-K'“:M(A E""""w) -t "M(A-“"M)

|KULUM (A)

holds, and m = 0 for all the remaining A C XM, for which A #

ALKLJA’IxAH, 'M.

5 Conclusions

We have introduced graphical models in Dempster-Shafer theory as a sim-
ple and natural generalization of probabilistic graphical models. Analogously
to probabilistic case, also for Dempster-Shafer graphical models one can
show that they can be efficiently represented with a reasonable number of
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parameters and that some conditional independence relations can be read
from the respective graphs. This holds, however, only when a new definition
of conditional independence in Dempster-Shafer theory (see Definition 3) is
accepted. Thus the paper brings an additional reason supporting this new
definition. Recall that the new concept of conditional independence does not
suffer from inconsistency with marginalization (for details and a Studeny’s
example see [2]), for Bayesian basic assignments coincides with probabilistic
conditional independence, and meets all the semigraphoid axioms.
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