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Evaluating Stability and Comparing Output
of Feature Selectors that Optimize Feature
Subset Cardinality

Petr Somol and Jana Novovicova

Abstract—Stability (robustness) of feature selection methods is a topic of recent interest, yet often neglected importance, with direct
impact on the reliability of machine learning systems. We investigate the problem of evaluating the stability of feature selection
processes yielding subsets of varying size. We introduce several novel feature selection stability measures and adjust some existing
measures in a unifying framework that offers broad insight into the stability problem. We study in detail the properties of considered
measures and demonstrate on various examples what information about the feature selection process can be gained. We also
introduce an alternative approach to feature selection evaluation in the form of measures that enable comparing the similarity of two
feature selection processes. These measures enable comparing, e.g., the output of two feature selection methods or two runs of one
method with different parameters. The information obtained using the considered stability and similarity measures is shown to be
usable for assessing feature selection methods (or criteria) as such.

Index Terms—Feature selection, feature stability, stability measures, similarity measures, sequential search, individual ranking,
feature subset-size optimization, high dimensionality, small sample size.

1 INTRODUCTION

FEATURE Selection (FS) has been a highly active area of
research in recent years due to its potential to improve
both the performance and economy of automatic decision
systems in various applicational fields. Depending on the
outcome of an FS algorithm, the result can be either a set of
weighting-scoring, a ranking, or a subset of features. It has
been pointed out recently that not only the model perfor-
mance but also the stability (robustness) of the FS process is
important [1], [2], [3], [4]. Domain experts prefer FS
algorithms that perform stably when only small changes are
made to the data set. Although low stability does not
necessarily imply low classification rate (e.g., in presence of
redundant, equally relevant features), it is often desirable to
prefer unambiguous FS results. However, in many cases low
stability follows from (and may help to indicate) fundamental
problems in FS process. Nevertheless, relatively little atten-
tion has been devoted to the stability of FS methods so far.
In order to measure stability of FS algorithm, we need a
measure of similarity for each of the above mentioned
representations. Some recent works in the area of FS
methods’ stability focus on Pearson’s correlation coefficient
in order to measure similarity between two weighting-
scorings produced by a given FS algorithm and Spearman’s
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rank correlation coefficient to measure similarity between
two rankings [2], [5]. Mainly, the attention is devoted to the
stability of FS methods that produce a subset of features.
Measuring the stability is based on various stability indexes,
including measures based on the Hamming distance to
measure similarity between two subsets of features, [1], on
the adaptation of the Tanimoto distance [5], stability index,
[3], Shannon entropy, [4], and the consistency-based mea-
sures [6]. A similarity measure for two sets of FS results based
on weighted bipartite graph modeling is considered in [7].
Stability measures proposed in [3] and [4] assume constant
subset size in each FS trial. Most of these recent works focus
on the stability of single FS methods, while in [8] an ensemble
of feature selectors is constructed and studied. The stability
of FS procedures depends on sample size, criteria utilized to
perform FS, and complexity of FS procedure [7], [9].

In this paper, we review and extend the framework of
stability measures capable of evaluating feature selectors
that yield subsets of varying size, i.e., where subset size may
differ in each FS trial. The significant advantage of subset
size-optimizing feature selectors (among others, the family
of genetic algorithms [10], [11] or recent algorithms like
Dynamic Oscillating Search [12]) is the fact that they exempt
users from the necessity to choose the desired subset size—
the choice that is often made based on insufficiently
founded grounds, potentially degrading FS outcome.

The paper is organized as follows: A review of recent
stability measures is given in Section 2. The framework of
measures permitting varying subset size is devised in
Section 2.1. In Section 3, the notion of intermeasures is
introduced, allowing evaluation of the similarity of multiple
FS processes’ output. Section 4 puts measures into a
taxonomy and discusses their properties. Section 5 presents
examples based on real data. Section 6 summarizes the
paper and suggests topics for further research.

Published by the IEEE Computer Society
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2 THE PROBLEM OF FEATURE SELECTION
STABILITY

It is common that classifier performance is considered the
ultimate quality measure, even when assessing the FS
process. However, misleading conclusions may be easily
drawn when ignoring stability issues. Unstable FS perfor-
mance may lead to degraded performance of the final
classifier due to failure to identify the most relevant features.

Following [5], we define the stability of the FS algorithm
as the robustness of the feature preferences it produces to
differences in training sets drawn from the same generating
distribution. The stability of the FS process for a given data
set is the stability of the appearance of certain features after
resampling the original data set. Let Y = {f1,..., fiy|} be
the set of all features of size (cardinality) |Y|. In the
following, we assume FS algorithms to express the feature
preferences in the form of a subset of features S C Y.

Let S ={Sy,...,S,} be a system of n feature subsets,

Si={fuli=1,....d;, fr, €Y,dj € {1,...,[Y[}},
j=1,...,n,n>1nelN,

obtained from n runs of the evaluated FS algorithm on
different samplings of a given data set. Let S;; and Sj; be
subsets of features, S;4,Sj; CY, of the same size,
1 <d <Y]|. Let the measures evaluating stability of an FS
process represented by system S be denoted as intramea-
sures (i.e., evaluating single system properties).

Dunne et al. [1] suggest measuring the stability of an FS
method by the Average Normalized Hamming Distance
(ANHD). Let m; be the binary vector with |Y| dimensions
corresponding to the subset S; defined as

m; = (myi,. .. L My)),s (1)
where mj, € {0,1}, forall j=1,...,n, k=1,...,|Y], mj; =
1 if feature f;, € Y occurs in subset S; and mj;, = 0 if feature
fr € Y does not occur in subset S;.

The ANHD is defined in [1] as follows:

2 n—1 n

ANHD(S) :mz > HD(m;,mj).  (2)

i=1 j=it1
Here,

[Y]
HD(my,my) = [mag, — myl 3)
T=1

is the Hamming distance between the given pair of binary
vectors m; and m; corresponding to the two subsets S; and
S;. This measure determines how much variation there is in
the distribution of features present in the subsets selected in
different runs of the FS algorithm, with 0 indicating no
variation and 1 indicating maximum variation. The ANHD
is in the range [0, 1].

Kalousis et al. [2], [5] proposed measuring similarity
between two feature subsets S; and S; from system S using
the Tanimoto index (coefficient) defined as the size of the
intersection divided by the size of union of subsets S; and
Sj, [13]

_1SinSy
IESET
_[Sil 181 = 2[Si NS

i +1S,] = [Si NSy

Sk (Si,S;)

=1-TD(S;,S;)
(4)

where T'D(S;, S;) is the Tanimoto distance, which measures the
dissimilarity between two subsets S; and S;. The similarity
index Sk(S;,S;) takes values from [0,1], with 0 indicating
empty intersection between two subsets S;,S; of arbitrary
size and 1 indicating that the two subsets are identical.
Kuncheva [3] introduced the stability index for a system

S ={S1d,-..,Sna} for a fixed subset size, d,
2 n—1 n
Zs5(S) = m;];; Ic(Sia, Sia), (5)

where I¢(S;q4, Sjq) is the consistency index for two subsets S;g
and S;; defined in [3] as

SiaNSjal - |Y — 2
IC(Sid7de) = | d(|]Y|| —|d|) : (6)

The maximum value of the index, Ic(Si,Sji) =1, is
achieved when [S;s N Sj4¢| = d. The minimum value of the
index is bounded from below by —1. The index I¢(S;q, Sjq)
is not defined for d =0 or d = |Y].

In [4], the following stability measure based on Shannon
entropy is proposed:

K([Y].d)
Ya=— Dja 108, Pid, (7)
=1
where the convention that 0-log,0 =0 is used. Here,
K(]Y],d) is the number of all possible subsets of size d from
Y,ie,K(|Y|,d) = (‘Z'), while s;4 is the number of occurrences
of the set S;4 in the sequence of n subsets of size d; pjg = 2 is
the relative frequency of the feature subset S, in the system S,

K(Y],d) K(¥Ld) o
~ 2 Ja
j=1 J=1

The stability measure (7) takes values in the range
[0, log(min{rn, K([Y],d)})].

Note that the stability measures proposed in [3] and [4]
can be used only for fixed size of the subsets of features in
the system S.

2.1 Stability Measures for Use with Varying Feature

Subset Sizes

The framework of currently available measures suffers two
drawbacks: 1) Values yielded by various measures for the
same system are differently bounded and thus hardly
comparable, 2) most of available measures are considered
only for FS problems with prespecified subset size d (to be
denoted d-parametrized in the following) although many
important FS methods allow the subset size to be optimized
in the course of search (to be denoted d-optimizing).

In this section, we provide a framework of modified and
newly defined measures to tackle the above problems. The
desirable properties of considered stability measures
StabMeasure(S) of the system S are given below.
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[u—

0 < StabMeasure(S) < 1.

2. StabMeasure(S) value close to 1 implies high level
of FS algorithm stability and a value close to 0
implies low level of FS algorithm stability.

3. & may consist of subsets of varying size.

First, we introduce the concept of evaluating FS stability

based on feature occurrence statistics. Let X be the subset of
Y representing all features that appear anywhere in S:

X—{ff eV 00 =Js, X£0 @
i=1

where F; is the number of occurrences (frequency) of
feature f € Y in system S. Let NV denote the total number of
occurrences of any feature in system S, i.e.,

N = ZFfZ|S|

geX i=1

NeN, N>n. (9)

The consistency measure for measuring the stability of the
system is developed in two steps.

STEP 1—define the measure of occurrence stability of the
feature f € X in the system S. The minimum value F,;, of
Fy for all features f & X in the system S is 1 and the
maximum value F,,,, equals n. We require that the measure
of stability of the feature f € X in the system S takes value
from [0,1] with 0 meaning that f occurs only in one of the
n subsets of the S and 1 that f occurs in each subset of the
system S.

Definition 1. We define the consistency C(f)
f € X in the system S as

of the feature

Fj - Fmin

C(f) - FHLG.:L' - Fmin .

(10)

The consistency C(f) of the feature f & X has the
following two properties:

1. C(f) =0 if the frequency of f € X is Fy = 1.

2. C(f) =1if the frequency of f € X is Fy =n.

STEP 2—extend the definition of consistency to evaluate
whole system:

Definition 2. The consistency C(S) of system S of feature
subsets is defined as the average of consistencies over all
features in the set X:

ZC

feX

F = me

. 11
Fmi n ( )

lX‘ fex m[u -

This measure, however, overemphasizes the presence of
low frequency features (see Section 4.2 for discussion).

Therefore, we define a measure in which the more
frequent features are expected to contribute proportionately
more to the overall stability of the system S. The value %
denotes the relative frequency of the feature f € X in the
system S. The weighted sum of the consistencies of a single
feature with weights equal to % provides the more reliable
stability measure:

Definition 3. The weighted consistency CW (S) of the system S
is defined as

R P

fGX maxr
where wy = Wf 0<wr <13 ;exwp=L
Because F; =0 for all f € Y\ X, the weighted consistency
CW (S) can be equally expressed:

Fy j Fy - F, min _
- Fmin

N F"L(LL

Fr Fr—1
CW(S) = N oot
Y

7exX

It is obvious that CW(S) = 0 if and only if (iff) N = [X],
ie., iff Fy =1 for all f € X. Whenever n > |X|, some feature
must appear in more than one subset and, consequently,
CW(S) > 0. Similarly, CW(S) =1 iff N =n|X], otherwise
all subsets cannot be identical.

Clearly, for any N, n representing some system of subsets
S and for given Y there exists a system S, with such
configuration of features in its subsets that yields the minimal
possible CW(-) value, to be denoted CW,,;,(N,n,Y), being
possibly greater than 0. Similarly, a system S, exists that
yields the maximal possible CW(-) value, to be denoted
CWiaz (N, n), being possibly lower than 1 (note the case
when N mod n # 0).

It can be easily seen that CW,,;,(-) gets high when the
sizes of feature subsets in system approach the total number
of features |Y| because, in such a system, the subsets
necessarily get more similar to each other. Consequently,
using measure (11) or (12) for comparison of the stability of
various FS methods may lead to misleading results if the
methods tend to yield systems of differently sized subsets.
We will refer to this problem as “the problem of subset-size
bias.” Note that most of the available stability measures are
affected by the same problem. For this reason, we introduce
another measure, to be called the relative weighted consis-
tency, which suppresses the influence of the sizes of subsets
in system on the final value.

(13)

Definition 4. The relative weighted consistency CW,(S,Y)
of system S characterized by N,n and for given Y is defined as

CW(S) — CWyin(N,n,Y)

(S, Y) = ) 14
CWra(S,Y) CWae(N, 1) — CWyin(N, 0, Y) (14)
where CW,(S,Y) = CW(S) for CWyae(N,n) = CWin

(N,n,Y).

Denoting D = Nmod |Y| and H = N modn for simpli-
city, it has been shown in [6] that

_ N2 —|Y|(N - D) — D?
Cszn(Na n7 Y) - ‘Y|N(’I’l _ 1) ’ (15)
and
H?>+ N(n—1)— Hn
CVVm(l.’L‘(Nv n) - N(n _ 1) . (16)

The relative weighted consistency then becomes:

Y|(N = D+ ey Fy(Fy = 1)) = N* + D?
Y|(H2 +n(N — H) — D) — N2 + D?
(17)

CW,a(S,Y) =
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T7 10 13 16 19 N 30 33 36 39 42
Fig. 1. lllustration of CW measure bounds.

The weighted consistency bounds CW,,.(N,n) and
CWiin(N,n,Y) are illustrated in Fig. 1. Note that CW,
may be sensitive to small system changes if N approaches
maximum (for given [Y| and n).

It can be seen that, for any N, n representing some system
of subsets S and for given Y, itis true that 0 < CW,(S,Y) <
1 and, for the corresponding systems S,,;, and Sy, it is true
that Cm’cl(smin) =0and CVVT@I('Smuz) =1

Measure (14) does not exhibit the unwanted behavior of
yielding higher values for systems with subset sizes closer
to Y], i.e, it is independent of the size of feature subsets
selected by the examined FS methods under fixed Y. We
can say that this measure characterizes for given S,Y the
relative degree of randomness of the system of feature
subsets on the scale between the maximum and minimum
values of the weighted consistency (12).

Next, following the idea of Kalousis et al. [2], we define a
conceptually different measure. It is derived from the
similarity measure, Sg(S;,S;), between two subsets of
features S; and S; defined in (4).

Definition 5. The Average Tanimoto Index of system S is
defined as follows:

n—1 n

Z Z Sk (S:,85).

11/L+1

ATI(S) (18)

ATI(S) is the average similarity measure over all pairs of
feature subsets in S. It takes values from [0, 1], with 0
indicating empty intersection between all pairs of subsets
S;,S; and 1 indicating that all subsets of the system S are
identical.

Next, we consider a Hamming Distance-based measure.
It can be shown that the ANHD proposed in [1] and defined
here in (2) can be rewritten using the frequency F; of
features f € Y in a simpler form.

Lemma 1. The Average Normalized Hamming Distance can be
expressed in the form

ANHD(S) = A DY > Fy(n (19)
fevy
Proof. It holds that
n_ Y]
ANHD(S) = IF Z > erm;c |-
| | =1 j=i+1 k=

Let F, be the frequency of the feature f, €Y in the
system S. Without loss of generality, we can suppose

that mi, = mop = - =mp = 1 and mp 41 = Mp 40k =

-~ =my,y; = 0. It means that |m;, — mpx| =1 for all
i1=1,...,F; and for all [ =1,...,n — F}; otherwise the
absolute differences equal to zero. Therefore,

Y| n-1 n [Y]|
Z ‘mﬂ\*m]”—ZF]\n*F]‘)

k=1 i=1 j=i+1 k=1
= Fi(n—Fy).

fey

a

Next, following the ideas in [1] and [3], let us denote the
Normalized Hamming Index (NHI) between two binary
vectors (1) corresponding to subsets S; and S; to be

C[Si\Sj[+18;\ Sil
Y] ’

1
1-—HD(S;,S;) =1
Y| !

NHI(S;,S;) =
(20)

where
HD(S;,8;) = [S;i \ S;| +[S; \ Si

is the Hamming Distance defined in (3) between two binary
vectors (1) corresponding to the sets S; and S; in set
notation. The NHI can be directly used in our context.

(21)

Definition 6. The Average Normalized Hamming Index
over all n(n — 1)/2 pairs of binary vectors (1) corresponding
to all pairs of subsets S; and S; is defined as:

n—1 n

Z Z NHI(S;,S;).

z1]z+l

ANHI(S) = (22)

It follows from Lemma 1 that the ANHI can be rewritten
by using the frequency F; of the feature fe€Y in the
following simpler form:

ANHI(S) =

n(n—1 |Y\2Ff

fey

—F). (23

Eventually, we introduce a frequency-based measure
expressing the confidence of the feature selector about
either selection or exclusion of each feature.

Definition 7. The Pseudo-Hamming index PH(S) of system S
is defined as

— Fy)

Zmax (Ft, n

er

~1. (24)

It takes values from [0, 1], with 1 indicating that all features
are selected either always or never and 0 indicating that
each feature appears in exactly half of all FS trials, i.e.,
features are selected/excluded with most uncertainty.
Note that all measures discussed in this section except
CW,¢ suffer the “subset-size-bias problem.” The properties
of all introduced measures are discussed further in Section 4.

3 INTERMEASURES

The measures discussed so far (intrameasures, see Section 2)
are usable for evaluating the internal stability of one FS
process. However, it may be valuable to compare two FS
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processes. This would enable, e.g., evaluating the impact of
various parameters of FS methods on the result of the
selection process, comparing the behavior of two different
FS methods on the same data, or evaluating how, for the
given data set, different criteria differ in preferences of
particular features, or comparing two FS processes on two
data sets in an identical FS setting. This information cannot
be obtained using intrameasures; two FS processes that yield
results with similar or equal stability (according to any one
intrameasure) may well differ in their preference of
particular features. Therefore, we propose several inter-
measures to enable comparison of multiple FS methods’
outputs. The intermeasures should provide complementary
information to intrameasures. Therefore, each of the follow-
ing intermeasures is defined as an analogy to some
intrameasure, based on the same or related principle.

Let 8'={S|,...,8,}, be a system of m;>1 (m €IN)
feature subsets S’ ={fulki=1,....d, fr,e Y, d e{1,.
[Y|}}, i=1,...,n;, obtained from n; runs of the evaluated

FS algorithm on d1fferent samplings of a given data set with
1 =1,2 denoting the indices of the two compared systems.
Let X; be the subset of Y representing all features that
appear anywhere in S':

ny

={fifeY,Fp>0y=Jsi, Xi#0, (25
i=1

where F’ be the number of occurrences (frequency) of
feature f in system S'. The desirable properties of each
newly defined intermeasure InterMeasure(S',S?) are:

1. 0< InterMeasure(Sl,Sz) <1.

InterMeasure(S',S?) value close to 1 implies high

similarity and a value close to 0 implies low

similarity of the two systems S' and S”.

S' and S? may consist of subsets of varying size.

4. S'and S* may be systems of varying size (n; and n,
need not be the same).

hed

First, we define measures comparing two systems by means
of average difference between relative feature frequencies.

Definition 8. The intersystem consistency IC(S1, S2) between
two systems S* and S* is defined as

1

‘Xl UX2| FEXTUX, n

1 2
i

IC(8',8%) =1 (26)

ng.

Analogously to C, the measure IC is oversensitive to low-
frequency features (see Sections 4.2 and 4.3). Therefore, we
define its more reliable weighted counterpart:

Definition 9. The intersystem weighted consistency
ICW (S',8%) between two systems S* and S? is defined as

Icw(sh, 8% =1- i 27
(85,8 =1=3 jwy| o=, (27)

fey
where

Fl F?
max(ﬁ,n—f))

Fl B2
D gey max(4, L)

wy =

Remark. The weighing in (27) assigns the most importance
to features that are most frequent in 1) only one or
2) both of the systems. Both of these cases are to be
considered equally important as they represent the cases
of 1) minimum similarity or 2) maximum similarity of
the two systems with respect to the evaluated feature.

Both IC and ICW take values from [0,1], with 0
indicating that no feature appears in more than one system
and 1 indicating that the relative frequencies are equal for
each feature in both systems, i.e., feature selector con-
fidence regarding each feature is equal among the two
compared systems.

Next, we define straightforward analogies to the ATI and
ANHI measures:

Definition 10. The intersystem Average Tanimoto Index
(IATI) between two systems S* and S* is defined as

ny  n |Slﬂ82

ny - ng - IY\ ZZ ISjuss|

i=1 j=1

TATI(S',S?) = (28)

TATI(S',8%) takes values from [0,1] with 0 indicating
empty intersection between any pair of subsets, with one
from S! and the other from S?, and 1 indicating that all
subsets in both systems S' and S” are identical.

Definition 11. The intersystem Average Normalized Ham-
ming Index between two systems S' and S” is defined as

ni na

o ‘Y‘ZZHD 585,

i=1 j=

TANHI(S',S8*) =1~ (29)

where HD(-, ) is defined in (21).

The IANHI can be expressed in the simpler form by
using the frequencies F} and F}.

Lemma 2. The intersystem Average Normalized Hamming Index
can be expressed in the form:

TANHI(S) =1 — [FL(
ni s Y] fze; it (30)
+ Ff(ny — F})].
Proof. It holds
TANHD(S) = 1 — IANHI(S)
n ng Y]
2 DD mi = mi,
Tnima |Y‘11]1k1
where m| = (mgl,...,mélY‘), 1=1,2, j=1,...,n, is the

binary vector with |Y| dimensions corresponding to the
subset Sﬂ Let F} denote the frequency of the feature f; €
Y in the system &', I = 1, 2. Without loss of generality, we
can suppose that



6
11 o1
My =My, = - =Mp . =1,
1 = 1 — ... = 1 =
Mpry g = Mgt gy =0 = My, =0,
2 _ 2 = 2 =
My = My, = -+ =My = 1,
2 — 2 — ... = 1 =
My = Mp2gop = 00 = My = U

It means that |mj —mj, ,[=1 for all i=1,...,F]
R,

and for all r=1,...,ny — F?, and |7mjpkl+&]C —mi, =1

for all j=1,...,F? and for all s=1,...,n — F};

otherwise the absolute differences equal to zero.

Therefore,

Y]

iy — iy =D [Fi (n2 = FY)
1i=1 j=1 =1

)]

ny o n

N

Y

k

a

The information that can be gained using the new
intermeasures is discussed in Section 4 and illustrated in
Section 5 (see Tables 9 and 10).

Remark. The intermeasures can be computed for L(L — 1)/2
pairs of systems, Stand 8™, I,m =1,...,L, and the final
intermeasure is the average intermeasure over all pairs.

4 PROPERTIES OF THE CONSIDERED MEASURES

In this section, we discuss the properties of the considered
measures viewed from various perspectives. First, we
assign each measure to a taxonomy, then we focus on
properties that may have practical implications. We will
investigate measures’ behavior on synthetic examples
simulating changing incidence of either the most relevant
(constantly present in each subset) or the least relevant
(randomly occurring) features.

Note. For the sake of explanation clarity, in all illustra-
tions in this section, we resort to FS processes yielding
subsets of constant size. In all randomized tests, values are
drawn randomly from a uniform distribution.

4.1 Taxonomical View

The notion of FS stability as such is difficult to formalize
unanimously. As shown above, a number of FS stability
measures can be defined, with each measure expressing a
slightly different aspect of the problem. Nevertheless, some
common properties of certain measures can be identified.
To make further discussion clearer, we introduce several
basic differentiation approaches. First, the considered
measures can be divided according to evaluation scope:

e  Feature-focused measures—evaluate overall feature
occurrence frequency over the system as a whole
(regardless of concrete feature presence in concrete
subsets).

e  Subset-focused measures—evaluate features with
respect to their occurrence in each particular subset
in the system.

The feature-focused measures include: C (11), CW (12), CW,
(14), AN HI due to the existence of its form (23), PH (24), IC
(26), ICW (27), and TANHI due to the existence of its form
(30). The information given by feature-focused measures is
useful for assessing the confidence of feature selector

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

VOL. 32, NO. X, XXXXXXX 2010

St S,:

{1,2,3,4,5,6,7} {1,2,3,4}

{1,2,3,4,5,6} _ {1,2,3,4} _

H 2348 ATI(S)=0.5 W23 ATIS)-0564

{1,2,3,4) CS)=C(5)=0.5 {1,2,3,4}

{1,2,3}  PH(S)= PH(S,)=0.51 {1,2,3,8)  1C(S,5)=1

ﬂﬁ} CW(S,)=CW(5,)=0.66 ﬂg g' g% ICW(S,.5,)=1
CW,,(S)= CW,,(5,)=033 PR AT, 5)=0.562
ANHI(S,)=ANHI(S,)=0.619 TANHI(S,,S,)=0.673

Fig. 2. Comparing the behavior of the considered measures on a
synthetic example.

regarding particular feature preference. The subset-focused
measures include: ATT (18), Zs (5), a4 (7), and TATI (28).
They assign the most importance to concrete feature
configurations in each subset. Therefore, they are more
sensitive even to slight fluctuations in the investigated FS
process. It should be noted that feature-focused measures
give a coarser overview. As illustrated in Fig. 2, different
systems with equal overall feature statistics (and, accord-
ingly, equal feature-focused measure values) may consist of
notably different subsets and, accordingly, yield different
subset-focused measure values.

Next, the considered measures can be divided according
to the importance assigned to feature exclusion:

e  Selection-registering measures—ignore the informa-
tion on the stability of feature exclusion (|Y| not
taken into account).

e  Selection-exclusion-registering measures—take into ac-
count both the stability of presence and the absence
of features in subsets (knowledge of Y required).

The selection-registering measures include: 44 (7), C (11), CW
(12), ATI (18), IC (26), ICW (27), and T ATI (28). The selection-
exclusion-registering measures include: Z¢ (5), ANHI (22), PH
(24), and TANHI (29). The selection-exclusion-registering
measures may give a fuller view of feature selector behavior.
However, the information they give may become biased if
d < [Y| like in many high-dimensional problems where the
large number of consistently excluded features may mis-
leadingly indicate high FS stability. Note: CW,; requires |Y|
for computing CW bounds but is not defined to evaluate the
exclusion stability of features.

Next, the considered measures can be divided according to

their behavior with respect to the “subset-size-bias problem”:

®  Subset-size-biased measures—yield values bounded
more tightly than by [0, 1] depending on the size of
subsets in a system.

e  Subset-size-unbiased measures—for each system con-
taining subsets of arbitrary sizes, there exists
“minimal” (resp. “maximal”) configuration of fea-
tures in the respective subsets for which the measure
yields 0 (resp. 1).

The subset-size-biased measures include all considered mea-
sures except CW,;. They may be misleading when used for
comparing the stability of various FS processes that tend to
yield subsets of different prevailing size. Due to existence of
subset-size-dependent bounds, the subset-size-biased mea-
sures may yield considerably different values for feature
selectors that select features with similar (un)certainty (e.g., in
the presence of a large number of redundant features) but
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Fig. 3. Intrameasure sensitivity to single feature frequency change.

different subset-size preference. The only subset-size-unbiased
measure in the presented framework is CW,.;.

Finally, as discussed in Sections 2 and 3, we distin-
guish FS process stability measures from FS process
similarity measures:

e Intrameasures—evaluate the stability of one FS
process.

o Intermeasures—compare output of multiple FS
processes.

Basic comparison of the behavior of various measures is
given in Fig. 2. The two example systems S; and S, have
equal feature frequency characteristics although the subsets
in them are composed differently. Note that feature-focused
intrameasures yield, for both systems, the same values.
Accordingly, feature-focused intermeasures yield 1 indicating
maximum similarity.

Those measures, normalized to [0,1] and capable of
evaluating systems with varying subset size, will be
investigated in more detail in the following.

4.2 Properties of Intrameasures

As suggested in the previous section, each FS stability
measure yields slightly different type of information. Never-
theless, all of them should be expected to rate higher such
systems that reflect high feature selector confidence. De-
pending on the particular measure definition, this may mean
that features get consistently selected or excluded or that the
selected subsets do not differ much among each other.

In Fig. 3, we illustrate how the considered intrameasures
respond to changing occurrence of one feature in a system.
For i =0,...,30, we evaluate systems S;) consisting of n =
30 subsets selected from Y = {1, 2, 3}. In system S;), feature 1
is always selected, feature 2 is selected i times, and feature 3 is
never selected. In this example, the measures CW, ANHI,
ATI, and PH clearly reflect the notion that in a consistent
system each feature is either consistently selected or
consistently excluded. Accordingly, these measures indicate
deteriorating stability in system Sy;) for i approaching % = 15.

Two of the measures exhibit notably different behav1or.
Note that C'W,; cannot be interpreted in the same sense as the
other considered measures. Instead, it indicates the relative
amount of randomness inherent in the system with respect to
system size n, total number of feature occurrences N and
given |Y|. In Fig. 3, CW,; correctly indicates that S is, for
each i =0,...,30, the system with the least random feature
occurrence possible. The graph also illustrates a fundamental
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Fig. 4. Intrameasure sensitivity to changing the proportion between
stably and unstably selected features (|Y|= 100, d = 30, from which
i features are fixed across the trials and 30 — i features are randomly
drawn).

flaw in the behavior of C, which tends to indicate exagger-
atedly unstable system in presence of isolated features with
very low frequency. Remark: The weighted consistency CW
was defined to overcome this problem.

Fig. 4 illustrates intrameasure response in the case of FS
output consisting of both stably selected and unstably
selected features. For i =0,...,30, we evaluate systems S

con51st1ng of subsets Sk €Sy Sk C Y \Y\ = 10()
|S |730 k=1,...,1,000 havmgthe formS = (! >UR()
where C CY, \C | =1, 1s a constant subset for each k =

1,...,1,000 and subset R cy, |R |—30—z, is drawn
randomly from Y\ C%.

In Fig. 4, most measures respond correctly to the
changing proportion of stably and unstably selected
features. The differences in measures’ behavior are empha-
sized with low ¢ values. Note that the selection-exclusion-
registering measures yield higher values than the selection-
registering ones. The graph gives another example of
potentially misleading C' performance. Note that only the
subset-size-unbiased method CW,,; yields 0 for ¢ = 0.

4.2.1 Complementarity of Information Gained from
Evaluating Various Intrameasures

Assessing the stability of an FS process based on any single
measure only may lead to misleading conclusions. For
instance, very low AT value may not necessarily indicate
failure to identify important features—ATI is likely to be
low in the presence of highly relevant but redundant
features that may appear in various combinations in
selected subsets. On the other hand, selection-exclusion-
registering measures may evaluate such a system as highly
stable, provided the remaining features are of low im-
portance and, as such, consistently excluded. However,
high ANHI or PH value may lead to misleading conclu-
sions about high stability in cases of high problem
dimensionality where most of features remain excluded
and high instability among the selected features gets
neglected. Similarly, low C value suggests that, on average,
features get selected only rarely. Yet that does not
necessarily indicate a severely unstable system; if, at the
same time, CW value is high, then part of the features get
selected consistently with high confidence. To conclude, no
single measure is capable of expressing all the information
that can be useful to assess the stability of an FS process. It is
recommended to consider evaluating a set of measures of
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different type (both selection-registering and selection-
exclusion-registering and both feature-focused and subset-
focused as well as subset-size-unbiased one) to get reason-
able information about the evaluated FS process.

4.3 Properties of Intermeasures

The purpose of intermeasures is to compare the output of
multiple FS processes and to assess their “similarity.”
Comparing multiple subset systems may reveal differences
in feature preference among various feature selectors or
among differently parameterized runs of the same feature
selector. Thus, intermeasures provide complementary in-
formation about FS processes that cannot be gained using
intrameasures.

In analogy to intrameasures, there is no unanimous
definition of the term “similarity” of multiple FS processes’
output. Again, the available intermeasures give various
types of information that is not interchangeable.

In Fig. 5, we illustrate how the considered intermeasures
respond to changing occurrence of one feature in system. For
1=0,...,30, we compare the output of systems pairs S
and 82 w1th common Y = {1,2,3,4}. System S 0 contams
30 subsets, where feature 1 is always selected, feature 2 is
selected 7 times, and features 3 and 4 are never selected.
System S contains 30 subsets, where features 1 and 3 are
always selected and features 2 and 4 are never selected.

In this example, the intermeasures should indicate
growing dissimilarity between Sb and §? for increasing i.
This is clearly the case with the selection-registering IATI
and selection-exclusion-registering IANHI, which yields
values on a higher level as it takes the constant exclusion
of feature 4 into account. Measure /C exhibits a problem
similar to C (see Figs. 3 and 4), where the occurrence of a
low frequent feature inadequately increases its value when ¢
changes from 0 to 1. Measure ICW suppresses the negative
impact of isolated features by means of weighing, but at a
cost of counterintuitive behavior in this example (/CW does
not decrease monotonically with increasing ¢). Neverthe-
less, both IC and ICW correctly evaluate the pair S 52 as
more similar than the pair S 30 S

Remark. Although the example in Fig. 5 seems to indicate
inferior usability of IC' and ICW, in a different context
they prove more reliable than IATI and IANHI. In
Section 4.4, it will be shown that both IC and ICW
respond better in the presence of random features. The
principal difference between intrameasures and inter-
measures can be illustrated by evaluating the systems in
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Fig. 5 using intrameasures. Note that systems Sb) for
1=0,...,30 would yield selection-registering measure
values equal to those in Fig. 3. Note that all intramea-
sures would yield 1 for systems SZO), 8230), and S”.

Fig. 6 illustrates intermeasure response on a pair of
increasingly distinct, slightly unstable systems Assuming
Y| = 100, we compare systems S;, and S (1) each containing
1,000 subsets of d = 20 features. Subsets in S (i) are drawn
randomly from Z() cy, |Z1 | = 30, and subsets in S7, are
drawn randomly from ZZ) cy, |Z2 | =30, where for
i=0,...,30, the overlap (snnulatmg the increasing simi-
larity of the two systems) is \Z(Z N Z 5| =i. Drawing
features from Z{, and Z( snnulates the situation when
there are 30 relevant but redundant and indistinguishable
features from which only 20 get selected in each FS trial.

This example gives another view of the differences in
intermeasure behavior. Both /C' and ICW indicate well the
similarity of the compared systems for ¢ = 30. However,
I AT is the only measure to reflect that, for ¢ = 0, there is no
feature occurring in both of the systems S (10) and 8(20)

4.3.1 Complementarity of Information Gained from
Evaluating Various Intermeasures

Analogously to intrameasures, no single intermeasure can
be considered sufficient to evaluate the similarity of two
systems in entirety. The available intermeasures have been
defined with the intention to provide complementary
information to particular intrameasures. In analogy to C,
the measure IC evaluates the similarity of feature frequen-
cies in the two compared systems. In analogy to CW, the
weighted measure ICW puts emphasis on comparing
frequencies of the more frequent features. IATI, resp.
ITAHNI, has been defined to yield analogical information to
ATI, resp. AHNI. Evaluating both AT and JAHNI may
give complementary information about the proportion of
features being selected and those excluded consistently in
both systems (see Fig. 6 where, for i = 0, the JANHI = 0.6
indicates that 60 percent of features have been excluded in
both systems, while TAT'I = 0 indicates that the rest appear
in the systems with completely different preferences).

4.4 Ability to Identify Randomness in Feature
Selection Process

An important property of an FS process stability measure is

the ability to indicate randomness (or feature preference
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Fig. 7. The response of intrameasures to randomness in FS process.

uncertainty). Fig. 7 shows that most of the considered
intrameasures do not indicate randomness clearly. In the
experiment, 1,000 subsets were drawn randomly from Y,
[Y| = 30, for each subset size d = 1,...,30. It can be clearly
seen that the selection-registering measures yield increasing
values with increasing subset size, while the selection-
exclusion-registering measures yield increasing values with
subset size getting farther from 1| Y| (the only exception being
CW,). This behavior follows from the simple facts that with
increasing subset size it is more likely that there will be more
overlap among subsets, even when features are selected
randomly, while with decreasing subset size there will be
more overlap between excluded features. This effect (“the
subset-size-bias problem”) makes it difficult to compare the
stability of multiple FS methods yielding differently sized
subsets using any subset-size-biased measure.

The only measure capable of identifying randomness
regardless subset size is CW,,;, which has been defined for
this purpose. Its performance in this respect is well visible
in Figs. 4 and 7. For randomly selected subsets, it yields
values close to 0.

Note. If the size of selected subsets is close to |Y|, then
randomness in the FS process results in ANHI value close
to 0.5 (see [1] for reasoning) and PH value close to 0 with a
sufficient number of trials.

Intermeasures can be used to compare an FS process
against a knowingly random FS process (assuming equal
Y). Identifying randomness in this way is, however,
possible only in cases when the average size of subsets in
both compared systems is similar. (All considered inter-
measures are subset-size-biased.) In such a case, the measures
IC and ICW yield values close to 1 if both systems consist
of randomly selected subsets (i.e., feature frequencies are
roughly similar in both systems).

Fig. 8 illustrates the behavior of intermeasures when
comparing two systems of random subsets of differing
sizes. In both systems, 1,000 subsets are drawn randomly
from Y, |Y| = 30, with different subset sizes in each system,
as indicated in Fig. 8. It can be seen that with increasing
difference between the systems’ subset sizes, all measures
indicate lower systems’ similarity, despite the fact that both
systems always consist of random subsets.

Fig. 9 illustrates the behavior of intermeasures when
comparing two systems of random subsets of equal sizes. In
both systems, 1,000 subsets are drawn randomly from Y,
[Y| = 30, with equal subset sizes in both systems. It can be
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Fig. 8. Comparing two systems of random subsets of different sizes.

seen that the feature-focused, selection-registering IC and ICW
clearly identify the closeness of feature frequencies, while
the subset-focused IATI and selection-exclusion-registering
ITANH]I evaluate system differences in more detail, which
leads to emphasis of differences between the contents of the
randomly selected subsets and eventually to lower measure
values.

Remark. The shapes of graphs in Figs. 7 and 9 illustrate well
the principal closeness between ANHI and TANHI and
between ATT and TATI.

4.5 The Impact of Very High Problem
Dimensionality

Many FS tasks today involve data sets of very high
dimensionality, e.g., in genetics, image analysis, or text
categorization. It is known that very high problem
dimensionality causes serious problems in machine learn-
ing. Among others, the effects of the “curse of dimension-
ality” [14] seriously degrade the ability of learning
algorithms to devise robust models what leads to degraded
generalization ability. In FS context, very high dimension-
ality prevents many well-known sophisticated methods
from being used at all due to search time complexity.
Moreover, the effects of overselection [9] are emphasized.
High dimensionality also affects the information that can
be gained using stability measures. Although the principle of
the considered stability measures is dimensionality indepen-
dent, higher dimensionality may shift values closer to bounds
and consequently make them more difficult to interpret.
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Fig. 9. Using intermeasures to compare two systems of random subsets
of equal sizes.
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It is the increasing differences between selected subset
size and problem dimensionality and accordingly changed
sampling properties that lead to stability measure output
shift. Fig. 10 illustrates this behavior. In the experiment,
1,000 subsets are drawn randomly for each |Y| with
constant subset size d = 50.

4.6 Stability of Stability Measures

The value yielded by various stability measures depends
on the size of the investigated system (number of FS trials).
In Fig. 11, it can be seen that, in order to get reliable
stability measure response, the number of evaluated FS
trials should be reasonably high, preferably not lower than
problem dimensionality. The experiment in Fig. 11 is
repeated for various numbers of subsets “selected” from Y,
where |Y| =100. Assuming fixed Z; CY, |Z;| =15 and
fixed Zs CY, |Ze| =60, ZyNZy =, each subset X C Y is
“selected” so as to contain 15 consistently occurring and
15 less consistently occurring features, ie., each subset
X =71 UX;,, where features in X, are drawn randomly
from Z, so that |Xs| = 15.

5 EXPERIMENTAL EVALUATION ON REAL DATA

In this section, we investigate the behavior of all considered
measures on real FS tasks using low-to-mid and high-
dimensional data. We will also investigate the impact of
modifying FS method parameters and the impact of
improving estimator properties.

In order to illustrate the performance of the considered
measures, we have conducted a series of FS experiments on
standard data from the UCI Repository [15]: wine data
(13-dim., 3 classes of 59, 71, and 48 samples), wdbc data
(80-dim., 2 classes of 357 and 212 samples), sonar data
(60-dim., 2 classes of 103 and 105 samples), spectf data
(44-dim., 2 classes of 212 and 55 samples), mammo data
(65-dim., 2 classes of 57 and 29 samples) and cloud data
(10-dim., 2 classes of 1,024 and 1,024 samples). Note that the
UCI data represent the type of real-world problems char-
acterized by low to moderate problem dimensionality and
limited (even insufficient) amount of training samples. This
type of problem often appears in medicine (or economics),
where data gathering is costly and access to patient (or
company-internal) data is often restricted.
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Fig. 11. lllustrating the stability of stability measures with respect to
number of FS trials.

To illustrate another common type of classification
problem, we evaluate all considered measures on high-
dimensional text categorization task [16] using the Reuters-
21578 datal (10,105-dim., 33 classes, 2 classes dominant with
3,924 and 2,292 samples, others with less than 300 samples,
total of 8,941 samples). The data have been preprocessed by
means of removing all nonalphabetic characters, words
containing nonalphanumeric characters, words with less
than three occurrences, stopwords, and by means of
Porter’s stemming.

5.1 Experimental Setup: Search Methods

In our experiments, we use several FS methods of various
properties and optimization performance. Apart from best
individual features (BIF [17], [18]) and random selection, we
investigate the family of sequential FS methods, covering
methods of various properties and optimization strength,
including Sequential Forward Selection [19], Sequential
Forward Floating Selection [20], as well as the recent
Dynamic Oscillating Search [12].

To simplify further discussion, let us overview the
principle of sequential FS methods. Most of them share the
same “core mechanism” of adding and removing features
to/from a current subset. The respective algorithm steps can
be described simply as follows (in nongeneralized form [21]):

Definition 12. For a given current feature set Xy, let f* be the
feature such that

* = arg max J(XyU , 31
£ = arg max J(X,0{F) G
where J(-) denotes the criterion function used to evaluate
candidate feature subsets. Then, we shall say that ADD(Xy) is
an operation of adding feature f* to the current set Xy to
obtain set Xqy1 if

ADD(Xq) = XgU{f"} =Xap1, XX CY.

Definition 13. For a given current feature set X, let f~ be the
feature such that

= argrj}é%J(Xd\{f}), (32)

where J(-) denotes the criterion function used to evaluate
candidate feature subsets. Then, we shall say that RMV (X) is

1. http://www.daviddlewis.com/resources/testcollections/
reuters21578.
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an operation of removing feature f~ from the current set X4 to
obtain set X4y if

R]WV(Xd) =Xy \ {fi} =X41, XgXg1CY.
In order to simplify the notation for a repeated
application of FS operations, we introduce notation

X440 = ADD(X441) = ADD(ADD(X,)) = ADD*(X,),
X4 = RMV(X4-1) = RMV(RMV(Xy)) = RMV*(X,),

and, more generally,

X5 = ADD(Xy), Xg5 = RMV°(X,).

Now the considered sequential FS methods can be
described as follows:

Sequential Forward Selection (SFS [19]) yielding a subset of
d features:
1) Xy = ADD().

Sequential Forward Floating Selection (SFFS [20]) yielding a
subset of d features, with optional search-restricting
parameter A € {0,1,...,|Y| —d}:

1) Start with Xy =0, k= 0.

2) X1 = ADD(X}), k= k+ 1.

3) Repeat X;—1 = RMV(X},), k =k — 1 as long solutions

already known for the lower k improve.
4) If k<d+Agoto?2

Dynamic Oscillating Search (DOS [12]) yielding a subset of
optimized size k, with search-restricting parameter A > 1;
default A = |Y|):

1) Start with X;, = ADD?*((}), k = 3. Set “oscillation
cycle depth” to 6 = 1.

2) Compute ADD?(RMV?(X;)); if any intermediate subset
X;, i €{k—4,...,k} is found better than X, let it
become the new X, with & =4, let § = 1 and restart
step 2.

3) Compute RMV°(ADD’(X;)); if any intermediate subset
X;, je{k,...,k+ 8} is found better than X, let it
become the new X, with k£ = j, let 6 = 1 and go to 2.

4)Ifd<Aleté=6+1and go to 2.

Specifically for the purpose of high-dimensional FS, we
also include the simplest form of Oscillating Search [22] that
is, unlike the methods above, extremely time efficient at the
cost of reduced search effectivity.

Oscillating Search (OS [22]) sequentially improves given
initial solution X,. Here, in simplified form to enable
high-dimensional FS:
1) X; = ADD(RMV(Xy)); if X is better than X, let it
become the new X, and restart step 1.
2) XI = RMV(ADD(X,)); if X] is better than X, let it
become the new X; and go to step 1.

The considered methods BIF, SFS, SFFS, and OS are
d-parameterized. Because we primarily focus on stability
measures that enable evaluating systems of subsets of
varying size, we define a d-optimizing extension of
d-parameterized methods. The respective d-parameterized

method is applied repeatedly for each subset size
d=1,...,]Y|, then, among the |Y| results, the one with
highest criterion value (and lowest subset size in case of
ties) is eventually selected. We will refer to d-optimizing
forms of BIF, SFS, and SFFS as to BIF*, SFS*, and SFFS*.

For comparison, we also include random selection,
where both the subset-size choice and feature selection are
performed randomly according to uniform value distribu-
tion without respect to any criteria or data.

5.2 Experimental Setup: Selection Criteria

We conducted two series of experiments. With UCI data,
we tested the FS methods in the wrapper [23] setting, i.e., we
used classifier accuracy as the FS criterion. We included
three conceptually different classifiers (see, e.g., [13]) in our
tests: gaussian classifier or bayesian classifier assuming
normal distribution, 3-nearest neighbor with majority voting
(BNN), and support vector machine with radial basis function
kernel (SVM) [24].

With the high-dimensional Reuters data, neither the
wrapper setting nor the complex search algorithms are
applicable due to computational complexity. Therefore, in
this case, we resorted to filter [23] setting using only BIF and
OS as search methods, considering three distance functions as
criteria. We consider the multinomial model for bag of words
representation for text documents [25]. To evaluate indivi-
dual features, we employed the average mutual information
between class of document and the word in the document
known as the Information Gain (IG) [26], [27], [25] and the
multiclass Individual Bhattacharyya distance (IB) for one
feature corresponding to one word in the given vocabulary of
different words that occur in the collection of documents [22].
To evaluate feature subsets within the OS course of search, we
employed multiclass Bhattacharyya distance [22].

If not stated otherwise, the following setup was used in
all experiments. The number of FS trials (size of evaluated
system of subsets) was set to n = 100. From each data set,
25 percent of data in each class was reserved for testing and
as such excluded from FS process. In each FS trial, 90 percent
of the remaining data was randomly sampled to form a trial-
local data set. In the wrapper FS setting, the criterion value
has been obtained as the average over 10 classification rates
obtained using 10-fold holdout, where, in each loop, the
trial-local data had been randomly scattered to 60 percent
training, 30 percent validation, and 10 percent unused data.
In the filter setting, the criterion values have been computed
from the training data part only.

All reported classification rates have been obtained on
independent test data.

5.3 Experiments: Evaluating Stability
of Wrapper-Based Feature Selection

Tables 1, 2, and 3 and Figs. 12, 13, 14, 15, 16, and 17 collect
the results obtained for each UCI data setup. Graphs show
stability values, and tables report the classification rate and
subset size as optimized by each respective FS process.

Note that the sequence BIF*, SFS*, SFFS*, and DOS
roughly orders the considered FS methods according to
growing complexity and optimization performance (and
presumably growing risk of feature overselection [9]). The
ordering is well visible in all Tables 1, 2, and 3 on the
achieved criterion values.
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TABLE 1
Feature Selection Results on Wine Data, 13-dim., 3-Class, and WDBC Data, 30-dim., 2-Class

XXXXXXX 2010

a) WINE data b) WDBC data
FS Crit. value Classif. rate | Subset size Time Crit. value Classif. rate | Subset size Time
Wrap. Meth Mean | S.Do. Mean | S.Do. Mean | S.Do. (hm) Mean ‘ S.Do. Mean | S.Do. Mean ‘ S.Do. (hm)
Gauss. rand 442 | 072 | 429 | .106 | 597 | 3.50 || 00:00 900 | .061 | 912 | .073 145 | 8.09 || 00:00
BIF* .601 | .023 | 532 | .036 241 | .814 || 00:00 940 | .003 | 940 | .007 | 22.7 | 7.64 || 00:00
SFS* .645 | .025 | 515 | .065 | 3.27 | .772 00:00 962 | .004 | 947 | .014 | 837 | 3.51 00:07
SFFS* 672 | .013 | 579 | .068 | 3.61 | 1.18 || 00:01 966 | .003 | 954 | .016 | 9.18 | 3.24 || 00:57
DOS 676 | .013 | .557 | .066 356 | 1.04 || 00:01 971 | .002 | 961 | .013 8.13 | 2.45 || 01:44
3NN rand 856 | .116 | .878 | .107 | 6.72 | 3.50 || 00:00 939 | .043 | 938 | .044 144 | 7.31 00:00
BIF* 969 | .005 | 959 | .018 | 9.14 | 1.89 || 00:00 969 | .002 | 963 | .006 | 23.7 | 3.71 00:02
SFS* 978 | .006 | 972 | .021 7.71 | 1.58 || 00:00 978 | .002 | 956 | .015 11.5 | 5.37 || 00:30
SFFS* 985 | .003 | 968 | .022 757 | 1.81 00:02 981 | .002 | 958 | .012 13.2 | 5.16 || 02:10
DOS 987 | .003 | 966 | .022 6.51 | 1.56 || 00:04 983 | .002 | 958 | .012 10.8 | 4.24 || 05:56
SVM rand 861 | 116 | .892 | .125 | 6.54 | 3.17 || 00:00 945 | .049 | 953 | .054 15.0 | 8.56 || 00:00
BIF* 983 | .005 | .932 | .023 9.16 | 1.43 00:00 977 | .003 | .979 | .001 21.6 | 3.28 || 00:03
SFS* 986 | .004 | 951 | .026 743 | 1.70 || 00:01 983 | .002 | 967 | .012 10.7 | 4.25 || 00:34
SFFS* 991 | .002 | 948 | .025 | 828 | 1.67 || 00:06 985 | .002 | 968 | .012 12.5 | 4.40 || 02:31
DOS 993 | .002 | 946 | .021 7.3 1.64 || 00:11 987 | .000 | 966 | .011 945 | 3.11 07:33
TABLE 2
Feature Selection Results on SONAR Data, 60-dim., 2-Class and SPECTF Data, 44-dim., 2-Class
a) SONAR data b) SPECTF data
FS Crit. value | Classif. rate | Subset size Time Crit. value | Classif. rate | Subset size Time
Wrap. Meth Mean I S.Dv. Mean l S.Do. Mean | S.Dv. (hm) Mean | S.Dv. Mean | S.Dv. Mean l S.Dv. (hl’l’l)
Gauss. rand 593 | .070 | 531 | .096 30.8 | 16.6 || 00:00 776 | .035 | .759 | .046 | 20.2 11.8 || 00:00
BIF* 705 | .016 | .507 | .045 10.1 | 4.51 00:05 .800 | .001 | .783 | .020 | 4.18 7.59 || 00:01
SFS* 795 | .015 | 551 | .091 143 | 4.97 || 01:39 .806 | .004 | .758 | .034 14.5 5.16 || 00:22
SFFS* 819 | .015 | 548 | .085 16.7 | 5.10 || 10:53 814 | .008 | .746 | .036 12.3 4.94 || 01:33
DOS 835 | .012 | 581 | .102 134 | 4.08 || 42:56 821 | .007 | .750 | .034 10.8 4.66 || 07:40
3NN rand 761 | .061 | 437 | .096 29.6 | 17.3 || 00:00 745 | .021 | .722 | .038 | 21.8 11.9 || 00:00
BIF* 855 | .010 | .649 | .084 | 20.7 | 7.16 || 00:01 804 | .011 | .762 | .037 | 6.12 7.20 || 00:01
SFS* .885 | .013 | 516 | .086 20.7 | 8.35 || 00:30 846 | 011 | .746 | .041 8.31 4.26 || 00:19
SFFS* 906 | .012 | 496 | .076 | 229 | 8.31 02:10 859 | .012 | .752 | .039 10.1 5.28 || 01:33
DOS 922 | .009 | 535 | .076 158 | 5.29 || 07:15 .870 | .009 | .758 | .031 7.63 2.87 || 03:31
SVM rand 737 | .050 | 606 | .110 | 28.2 | 17.3 || 00:00 789 | .018 | .774 | .029 20.88 | 12.9 || 00:00
BIF* 823 | .013 | .608 | .057 | 244 | 14.4 || 00:04 815 | .007 | .783 | .014 38.44 | 6.34 || 00:05
SFS* 875 | .014 | .614 | .046 18.1 | 9.03 || 02:39 .850 | .010 | .766 | .032 1747 | 7.80 || 01:46
SFFS* 895 | .012 | .624 | .041 179 | 8.16 13:41 875 | .009 | .77 .029 12.31 | 6.02 06:32
DOS 913 | .008 | .620 | .039 143 | 4.62 52:11 894 | .007 | .776 | .029 11.5 2.36 || 24:11
TABLE 3
Feature Selection Results on MAMMO Data, 65-dim., 2-Class and CLOUD Data, 10-dim., 2-Class
a) MAMMO data b) CLOUD data
FS Crit. value | Classif. rate | Subset size Time Crit. value | Classif. rate | Subset size Time
Wrap. Meth Mean | S.Do. Mean | S.Do. Mean | S.Do. (hm) Mean | S.Do. Mean ‘ S.Do. Mean | S.Do. (hm)
Gauss. rand 645 | 016 | .666 | .037 | 315 | 17.6 00:00 759 | .238 | 748 | .226 5.27 | 2.38 || 00:00
BIF* 701 | .019 | .685 | .057 | 3.13 | 1.97 || 00:07 997 | .001 | 994 | .004 | 3.05 | 2.15 || 00:00
SFS* 746 | .020 | .671 | .081 5.33 | 2.38 || 02:17 998 | .001 | 993 | .013 | 4.52 | 1.37 || 00:01
SFFS* 754 | .022 | 648 | .079 | 5.56 | 2.52 09:21 999 | .000 | 992 | .013 | 4.41 | 1.15 || 00:03
DOS .788 | .019 | .631 | .072 6.01 | 1.69 || 65:28 999 | .000 | 981 | .017 | 3.92 | 1.10 || 00:03
3NN rand 633 | .044 | 661 | .070 | 309 | 16.9 || 00:00 976 | .070 | 938 | .128 | 4.84 | 2.39 || 00:00
BIF* 792 | .026 | .757 | .068 109 | 7.51 00:00 1 0 1 0 1 0 00:07
SFS* 872 | .037 | 810 | .117 | 10.1 | 5.71 00:07 1 0 1 0 1 0 00:23
SFFS* 909 | .035 | .886 | .102 7.28 | 4.58 || 00:40 1 0 1 0 1 0 00:46
DOS 936 | .010 | 936 | .064 | 543 | 1.25 || 02:33 1 0 1 0 1 0 01:41
SVM rand 687 | .048 | .690 | .041 334 | 18.0 || 00:00 929 | .134 | 881 | .151 493 | 2.65 || 00:02
BIF* 794 | 022 | 699 | .040 | 54.6 | 14.9 || 00:01 1 0 1 0 1 0 00:24
SFS* 890 | 015 | .777 | .071 13.6 | 8.21 00:23 1 0 1 0 1 0 01:12
SFFS* 897 | .013 | .790 | .074 158 | 9.53 02:16 1 0 1 0 1 0 02:09
DOS 919 | .008 | .779 | .076 104 | 3.96 || 09:27 1 0 1 0 1 0 04:32

Let us point out some of the most notable phenomena
that can be observed regarding the presented stability
results. First, it can be seen that in most cases there is visible
agreement among the considered measures in terms of

trends—better (or worse) FS stability is reflected in higher
(or lower) value of most of the stability measures. Notable
correspondence in behavior can be seen especially among

the measures within the selection-registering group and
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Fig. 12. Comparing feature selector stability on WINE data. (a) Wrapper: Gauss. (b) Wrapper: 3NN. (c) Wrapper: SVM.
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Fig. 13. Comparing feature selector stability on WDBC data. (a) Wrapper: Gauss. (b) Wrapper: 3NN. (c) Wrapper: SVM.
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Fig. 14. Comparing feature selector stability on SONAR data. (a) Wrapper: Gauss. (b) Wrapper: 3NN. (c) Wrapper: SVM.
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Fig. 15. Comparing feature selector stability on SPECTF data. (a) Wrapper: Gauss. (b) Wrapper: 3NN. (c) Wrapper: SVM.

within the selection-exclusion-registering group. (The infor-
mation given by C is to be considered supplemental only
due to its flaws, as reported in Section 4.) Second, the value
level differs considerably among the considered measures,
clearly showing the differences in their meaning. Third, the
overall stability level in most experiments only rarely
approaches 1, showing that FS tasks would be better

approached with caution to prevent unaccounted failure
of the devised decision rules.

According to [3], BIF is recommendable for cases when
other FS methods fail to produce stable output. In our
experiments, the most notable difference between stability
measure values of BIF* and the other methods appears in
Figs. 13b, 13c, 14a, 14b, 15a, and 15c. In accordance with [3],
in these cases (with the exception of Guass. wrapper in
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Fig. 16. Comparing feature selector stability on MAMMO data. (a) Wrapper: Gauss. (b) Wrapper: 3NN. (c) Wrapper: SVM.
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Fig. 17. Comparing feature selector stability on CLOUD data. (a) Wrapper: Gauss. (b) Wrapper: 3NN. (c) Wrapper: SVM.

Table 2a), BIF* proves to be the best performing FS method
in terms of classification accuracy on independent data as
confirmed by statistical significance t¢-test at significance
level 0.05.

Less difference in terms of method stability can be
observed among SFS*, SFFS*, and DOS, with DOS being
most different from the other two methods. Despite its
stronger optimization performance, DOS often yields more
stable results than SFS* and SFFS* (see especially Figs. 13,
14, and 16). This can be explained by the fact that DOS is
defined to guide the course of search toward smaller subsets.

The feature overselection [9] problem can be observed in
Tables 1, 2, and 3 whenever BIF* overperforms other
methods in terms of classification accuracy on independent
data as well as in cases when the classification accuracy
differs considerably from reported criterion value. Never-
theless, the examples also suggest that stronger feature
selectors do not always overfit more than weaker selectors.
This is especially the case if training data are sufficiently
large with respect to dimensionality or the criterion to be
optimized has sufficient generalization ability (e.g., Gaus-
sian classifier in Fig. 13 and Table 1b, SVM in Fig. 14 and
Table 2a, or 3NN in Fig. 16 and Table 3a, all cases confirmed
by statistical significance t-test at significance level 0.05).
Note also that DOS often yields the lowest variance in
subset size among all considered methods.

The information given by various stability measures can
complement each other toreveal more details of the evaluated
FS process. Let us comment on several observations.

1. Note in Fig. 16a the consistently high difference
between the values yielded by selection-exclusion-
registering and selection-registering measures. This
suggests that a large number of features are
consistently excluded while the rest appear in the
selected subsets with low stability. It suggests high

redundancy among the limited number of features
that get selected.

2. Note in Fig. 16 and Table 3a that C,,; was the only
stability measure to suggest a problem with BIF* on
mammo data. In this case, BIF* produced wrong
large feature subsets, resulting in poor classification
performance (compare to random selection). Here,
the subset-size-biased measures fail to identify wrong
BIF”* stability. Similarly as with wdbc data, compare
the CW,; stability reported for BIF* in Figs. 13a and
13b. Note in Table 1b that, with Gaussian wrapper,
BIF* is overperformed by stronger FS methods while
CW, is low, but, with 3NN, the opposite is true and
CW,¢ is high.

3. InFig. 17a, note that the value of C is close to 0.5 for
both DOS and random selection. The value of PH is
high for DOS but very low for random selection.
This may suggest that most of the features get
selected either with very high or very low overall
frequency, with neither group being prevalent. If
this was not the case and higher or lower frequencies
prevailed, then the C value would be more distant
from 0.5. If a significant number of relative frequen-
cies was distant from both 0 and 1, then the PH
value for random selection would be higher and the
PH value for DOS would be lower.

5.4 Experiments: Evaluating Stability
of High-Dimensional Feature Selection

Figs. 18 and 19 and Table 4 collect the results obtained for the
10,105-dimensional Reuters data. The high dimensionality
effectively prohibits the use of wrappers as well as search-
based subset-size optimization. Thus, we followed the
standard approach of selecting features by means of BIF
based on filter criteria. Fig. 18a shows stability values for BIF
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Fig. 18. Comparing BIF-IB and OS(BIF-IB) filter stability on high-dimensional REUTERS text data. (a) Filter: BIF-IB. (b) Filter: OS(BIF-IB, A = 1).
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Fig. 19. Comparing BIF-IG and OS(BIF-IG) filter stability on high-dimensional REUTERS text data. (a) Filter: BIF-IG. (b) Filter: OS(BIF-IG, A = 1).

TABLE 4
Classification Accuracy as Result of High-Dimensional Filter FS on Reuters Data

a) BIF - 1B b) OS (BIF — IB)
Crit.value Classif.rate qé Crit.value Classif.rate ‘é’
d Mean [ $Do | Mean | spDo || {5 Mean | $Do | Meam | spo | 5
12 0.76 | .016 | .624 | .002 7m 1.34 | .018 | .664 | .005 25m
25 1.34 | .045 | .723 | .007 7m 199 | .027 | .771 | .007 1h
50 215 | .039 | .780 | .003 7m 271 | .028 | .842 | .005 2h
100 3.08 | .041 | .840 | .004 || 7m || 3.58 | .037 | .889 | .003 || 5h
200 411 | .039 | .889 | .003 || 7m || 453 | .039 | .915 | .003 || 25h
400 511 | .044 | 907 | .003 || 7m || 542 | .047 | .925 | .003 || 55h
600 560 | .059 | 918 | .002 || 7m || 5.85 | .062 | 929 | .002 || 133h
800 5.92 | .056 | 924 | .002 7m 6.13 | .057 | 932 | .003 223h
1000 || 6.15 | .056 | 927 | .003 || 7m || 6.34 | .057 | 933 | .002 || 42%h
¢) BIF - IG d) OS (BIF - IG)
Crit.value Classif.rate é’ Crit.value Classif.rate °é
d Mean ‘ S.Do. Mean | S.Do. | g Mean | S.Do. Mean | S.Do. ‘ p
12 077 1 .080 | 596 | .017 || 5bm |[[ 1.34 | .021 | .662 | .003 || 23m
25 1.32 | .026 | .701 | .006 5m 2.00 | .026 | .770 | .007 1h
50 2.08 | .039 | .788 | .005 || 5m || 2.71 | .030 | .841 | .005 || 3h
100 2.77 | .047 | .831 | .005 5m 3.60 | .038 | .889 | .003 8h
200 3.60 | .041 | .871 | .003 || 5bm || 4.54 | .041 | .916 | .003 || 27h
400 402 | .057 | .881 | .003 || 5m || 541 | .053 | 925 | .003 || 146h
600 413 | .061 | .879 | .003 || 5m || 5.85 | .058 | 929 | .003 || 336h
800 415 | .059 | .877 | .003 5m 6.14 | .057 | 931 | .002 523h
1000 416 | .054 | 875 | .003 5m 6.34 | .065 | 932 | .002 920h

with Individual Bhattacharyya [22], and Fig. 19a with
Information Gain [26], [25]. The respective classification
accuracies using Multinomial Bayes classifier [25] are
reported in Table 4. In addition to the two simple BIF setups,
weinclude experiments aimed atimproving the BIF solutions
by means of subsequent OS-based search optimizing the
Bhattacharyya distance [22]. In Table 4, OS is confirmed to be
capable of improving both BIF-based solutions.

Table 4 shows slight superiority of IB over IG in BIF-
based search. For subset sizes roughly above 200, the
difference becomes more notable (better classification
accuracy on independent data has been confirmed here
by statistical significance ¢-test at significance level 0.05).
Both BIF solutions are nevertheless overperformed by the
OS solutions, most notably with subset sizes roughly up to
400 features (confirmed by statistical significance t-test at
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TABLE 5
Comparing d-Optimizing and d-Parametrized Methods on MAMMO Data

FS Crit. value | Classif. rate | Subsetsized || PH | AN | CW | CW | ATI | C Time
Wrap. Meth. Men | $Do. | Mean | sDe | Men | spo HI rel (h:m)
3NN BIF* 792 | 026 | 757 | .068 | 10.89 | 7.51 769 | .835 | .509 | .420 .361 186 || 00:00
BIF 735 | .034 | 775 | .081 | 11 0 .816 | .869 | .614 | .539 450 | 261 || 00:00

SES* 872 |1 .037 | 810 | .117 | 10.14 | 5.71 768 | 808 | .386 | .284 268 | 152 || 00:07

SES .845 | .038 | .784 | .108 | 10 0 775 | .819 | 413 | 313 272 | 158 || 00:01

SFES* 909 | .035 | 886 | .102 | 7.28 4.58 .879 | .893 | 521 [ .481 454 | 112 || 00:40

SFFS 875 | .044 | 829 | 118 | 7 0 .866 | .888 | .482 | .425 344 | 118 || 00:21

TABLE 6
Evaluating the Impact of More Thorough Estimation on SPECTF Data

Est. Crit. value | Classif. rate | Subsetsize || PH | AN | CW | CW | ATI | C Time

Wrap. Meth. Mean | S.Do. Mean | S.Do. Mean | S.Do. HI rek (hm)
3NN ho3 888 | .009 | 752 | .042 | 847 | 4.42 || .642 | 723 | 281 | .123 169 | .184 || 01:47
+SES*  hol0 871 | .010 | 753 | .034 | 8.01 | 3.00 || .698 | .775 | .382 | .253 256 | .178 || 05:34
ho50 .869 | .010 | 757 | .022 | 7.53 | 1.84 || .810 | .859 | .587 | .528 496 | 201 || 18:17

hol00 || .870 | .009 | 760 | .014 | 7.77 | 1.34 || .883 | 902 | .722 | .684 647 | 261 || 33:20

ho200 || .869 | .009 | .758 | .017 | 811 | 1.11 || 942 | 946 | .854 | .835 804 | .346 || 64:48

ho300 || .870 | .007 | .760 | .009 | 822 | 0.98 || 949 | 952 | .871 | .865 .849 | 286 || 97:46

significance level 0.05). Note that both OS initialized by
BIF-IB and OS initialized by BIF-IG tend to converge to
very similar solutions. This is confirmed by the notably
similar graphs in Figs. 18b and 19b. Let us comment on
several observations.

The overall stability of FS on Reuters data appears to be
very high (compare to results in Sections 5.3 and 4.5)
despite the high problem dimensionality. With increasing
subset size it slightly declines, but for all considered
d values it is clear that the importance of individual
features is evaluated with high confidence throughout the
FS process (note the very high ANHI and PH values).

A sharp decline in selection-registering measure values
can be observed for IG-based solutions of subset size 400
and larger. Unlike IB, IG ability to distinguish among less-
important features apparently declines after about 200-400
most important features have been selected as confirmed
in Table 4.

A slight local increase of selection-registering measure
values can be observed in both Figs. 18 and 19 for subsets of
roughly 50 features. Apparently, a group of preferable
features roughly of this size can be well distinguished from
the rest. However, redundancy is likely to be present within
this group as indicated by lower stability measure values
obtained when selecting only 25 features.

5.5 Experiments: Fixed versus Varying Subset Size
Table 5 illustrates the difference between d-optimizing and
d-parameterized forms of several feature selectors. Fixed
d value has been chosen for each d-parameterized experi-
ment to be as closest as possible to the subset-size
preference of the method’s d-optimizing form.

The d-optimizing forms yield higher criterion values in
accordance with the fact that their search space is larger. In
terms of classification accuracy on independent data as well
as FS stability, it appears that in this experiment stronger
d-optimizing methods benefit more from the extended
search scope. Note that SFFS™ yields better classification
accuracy on independent data as well as better stability than
SFFS (better SFFS* classification accuracy confirmed by
statistical significance t-test at significance level 0.05). With

BIF* and BIF, the opposite is true (better BIF classification
accuracy confirmed by statistical significance t-test at
significance level 0.05).

5.6 Experiments: Evaluating the Impact of More
Thorough Estimation

An important question is the reliability of classification
accuracy estimation in the course of FS process. Tables 6 and
7 show experiments with increasing number of holdout
loops. Table 6 collects experiments for 3NN-SFS* where
more thorough estimation in wrapper criterion value
computation has been tested with the aim to decrease
feature preference fluctuations and consequently to improve
poor FS stability on spectf data. The tables clearly show that
more thorough estimation leads to better stability (indicated
unanimously by all measures) and more stable subset-size
preference at the cost of prolonged computation.

Table 7 compares the output of FS processes for 10-fold
and 100-fold holdout estimation. Higher values indicate
lower output change. Note that BIF* is indicated here by
most measures in most cases (especially by the selection-
exclusion-registering measures) as the method being the least
affected by changing estimator performance. This confirms
its suitability for problems where estimation may be
difficult, i.e., in small sample problems.

TABLE 7
Comparing FS Output Based on
10-Fold and 100-Fold Holdout Estimation on WDBC Data

FS Ic IcCwW TATI IAN
Wrap. Meth. HI
Gauss.  BIF* .814 | .809 775 .786
SFS* 910 | .882 .320 .683
SFFS* 910 | .887 372 .720
3NN BIF* 979 | 987 .838 .857
SFS* .883 | .877 377 .658
SFFS* .858 | .861 401 .637
SVM BIF* 941 | 972 .878 902
SFS* .894 | .892 .334 .635
SFFS* 905 | .920 .369 .627
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TABLE 8
Experiment: Evaluating the Impact of FS Method Search Scope Extension on MAMMO Data
FS Crit. value | Classif. rate | Subset size PH | AN | CW | CW | ATI | C Time
Wrap. Meth. Mean | S.Du. Mean | S.Do. Mean | S.Do. HI rel (hm)
gauss. DOS(3) 755 | .028 | .66 .086 | 3.76 | 1.66 892 | 911 | 230 | .201 .158 .058 || 00:02
DOS(7) 767 | .025 | .66 .078 4.69 | 1.79 871 | .890 | .235 193 151 .072 00:05
DOS(15) 776 | .022 | 647 | .087 557 | 2.10 842 | .863 | .201 142 125 .082 00:24
DOS(25) 776 | .022 | 657 | .058 5.63 | 1.68 .839 | .865 | 222 164 136 .083 01:57
3NN DOS(3) 887 | .063 | 863 | .106 | 4.09 | 1.27 || 935 | 945 | 564 | .551 426 .102 00:05
DOS(7) 922 | .038 | 911 | .097 49 1.11 948 | 953 | .685 676 562 .140 00:10
DOS(15) 931 | .018 | 929 | .066 541 | 143 952 | 958 | .747 764 .645 146 00:17
DOS(25) 933 | .011 | 945 | .049 538 | 1.51 956 | 961 | .766 .785 .660 171 00:34
SVM DOS(3) 890 | .024 | 801 | .079 | 593 | 1.68 891 | 911 | 511 473 .359 .101 00:14
DOS(7) 899 | .021 | 807 | .084 6.41 | 1.93 890 | 907 | 531 .506 377 112 00:30
DOS(15) 911 | .013 | .793 | .064 798 | 2.69 .856 | .883 | .524 466 376 122 01:09
DOS(25) 915 | .011 | .774 | .073 9.16 | 3.10 .828 | .858 | .498 428 .353 137 02:25

5.7 Experiments: Evaluating the Impact of FS
Method Parameter Change

The outcome of some FS methods depends on parameters to
be set by user. Parameters usually affect the scope of search,
allowing either faster or more thorough FS process.
Similarly to the choice between simple and complex FS
methods, setting parameters of a method may affect its
susceptibility to feature overselection.

In Table 8, we collect results for various values of DOS
parameter A on MAMMO data. It can be seen that higher A
leads in all cases to higher achieved criterion value at the cost
of higher computational time. The impact on classification
accuracy onindependent data, however, differs on each of the
three tested wrappers. With the Gaussian wrapper, all
selection-registering measures report very low values without
clear connection to the A value, which coincides with the
Gaussian wrapper’s unsatisfactory performance in this case.
With 3NN, all stability measures report considerable stability
improvement with increasing A. High stability is accompa-
nied here by high classification accuracy on independent data
and low subset-size variance, confirming 3NN as the best
wrapper choice in this experiment (3NN wrapper classifica-
tion accuracy superiority confirmed here by statistical
significance ¢-test at significance level 0.05). With SVM, the
increase of A leads to a slight decrease of stability, as
indicated by all measures. This undesirable behavior copies
here the degradation of classifier generalization ability.

5.8 Experiments: Comparing the Output of Two
Feature Selection Processes

Tables 9 and 10 collect the intermeasure results obtained
for each considered wrapper setup. The information given
by various intermeasures can reveal interesting details of
the evaluated FS process. Let us comment on several
observations.

1. In Table 9, a prevailing ordering can be recognized
among FS method pairs (lowest output similarity
first): BIF*-DOS, BIF*-SFFS*, BIF*-SFS*, SFS*-DOS,
SFS*-SFFS*, SFFS*-DOS. This suggests that the
newer (more complex) the method is, the less
difference there is in its output with respect to its
predecessor.

2. Apart from the trivial cloud data case in Table 9
where both 3NN and SVM identify correctly the
single sufficient feature (see also Table 3), the
highest agreement can be seen between all FS

methods on wine data with 3NN and SVM. Accord-
ingly, in Table 1, the difference between all FS
methods remains only about 1 percent both in terms
of criterion value and classification accuracy. The
difference in subset-size preferences is low as well.

3. Note that in Table 9 for wdbc data, BIF* produces
output considerably different from all other FS
methods. Fig. 13 confirms that indeed even the BIF*
stability differs considerably from the other methods.
This observation puts the stability performance of all
methods except BIF* on wdbc data in question.

4. In Table 10, for wine data, it can be seen that there is
high similarity between feature subsets produced by
3NN and SVM but the output of Gaussian wrapper
differs considerably from both 3NN and SVM
(observable with all FS methods). This may suggest
a problem with Gaussian wrapper, i.e., its ability to
model wine data well enough. Accordingly, Table 1
confirms the poor performance of Gaussian classifier
on wine data.

5. In Table 10, for mammo data and BIF¥, it can be seen
that there is high similarity between feature subsets
produced by 3NN and gaussian wrapper but the
output of SVM wrapper differs considerably from
the other two. Table 3 confirms poor BIF* perfor-
mance with SVM. Note that this is not the case with
stronger feature selectors (see Table 10).

6 CONCLUSIONS

The primary purpose of evaluating FS stability is to reveal
possible overtraining and other issues in machine learning
process and consequently to prevent degraded performance
of devised decision rules. FS stability measures can be
additionally used to evaluate and compare properties of
various FS methods and criteria as some tools may show to
be inherently more stable than others. Consequently, the
right tools for specific tasks can be chosen.

The notion of FS stability is difficult to formalize
unanimously. Various measures can be defined, with each
measure expressing a slightly different view of the problem,
while none can give the full picture. Moreover, measure
behavior is affected by factors like problem dimensionality or
whether or not the FS process yields subsets of constant size.

We focused primarily on the problem of evaluating FS
processes that optimize subset size, ie., where subset
sizes may vary across FS ftrials, as the battery of tools
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TABLE 9

Comparing Outputs of Various Feature Selectors Using Intermeasures (a—IC, b—ICW, c—IATI, and d—IANHTI)
s £2oog B g 8y, b owg B g 8|, b g B g &
2 2 2 n n @ 2 2 2 n n <5 2 2 2 @ n =5
E E £ & & % |E E B & & % |E B B & & 5

WINE data WDBC data MAMMO data
s a | 87 718 75 876 903 933 || 505 511 458 927 893 925 || 945 941 921 967 947 962
¢ b || 795 616 665 811 865 933 || 473 484 437 89 846 916 || 922 896 845 948 84 934
S o || 514 380 419 472 509 500 || 271 277 248 298 306 346 || 176 157 127 133 122 131
d | 847 773 790 786 801 794 || 406 404 381 679 703 710 || 904 897 888 868 862  .860
a || 784 745 728 914 865 917 || 572 598 534 920 940 907 || 883 868 847 .94 903 956
Z b |l 782 758 718 920 864 929 || 513 557 481 922 931 911 || 795 734 677 912 855 934
& | 601 582 561 589 564 598 || 390 428 364 352 347 359 || 236 256 275 326 367 542
d || 674 655 652 687 684 713 || 491 512 466 608 637 620 || 791 819 840 846 871 925
a || 812 878 838 899 918 918 || 578 619 560 919 911 8% || 367 400 314 946 926 906
S b |l 778 80 805 903 924 931 || 483 551 455 914 911 905 || 365 396 311 937 902  .900
% |l 21 702 665 615 618 643 || 354 415 342 323 310 331 || 200 236 164 265 289 288
d | 69 762 739 702 719 729 || 491 533 491 605 642 629 || 320 341 284 729 786  .766

SONAR data SPECTF data CLOUD data
s @ | 798 75 778 931 924 929 || 764 802 813 913 880 933 [[ 701 702 688 934 816 .88l
2 b 7 663 637 919 904 925 || 730 752 751 886 .845 926 || .686  .664 569 915 764 855
S o 193 179 a74 237 234 259 || 130 111 095 215 190 197 || 426 407 348 602 557 601
d || 724 687 723 678 711 698 || 669 702 721 612 615 649 || 679 679 670 770 747 776
a || 731 712 738 913 872 874 || 900 875 890 938 941 941 || 1 1 1 1 1 1
Z b |l 655 652 58 898 862 873 || 865  .802 816 916 921 934 || 1 1 1 1 1 1
& | 22 205 208 275 246 291 || 435 131 126 215 211 247 || 1 1 1 1 1 1
d || 620 611 650 597 637 648 || 755 726 764 727 760 748 || 1 1 1 1 1 1
a || 788 764 746 937 897 921 || 663 495 558 829 853 918 || 1 1 1 1 1 1
S b || 91 666 622 928 86 921 || 631 495 553 832 83 918 || 1 1 1 1 1 1
% c || 253 250 235 253 245 278 || 428 414 379 737 676 821 || 1 1 1 1 1 1
d || 587 582 599 644 671 692 || 487 448 450 747 696 823 || 1 1 1 1 1 1

TABLE 10
Comparing the Output of Various Feature Selection Criteria
w  Wrap. BIF* SFES* SFFS* DOS

g Inter- Gaus. Gaus. 3NN Gaus. Gaus. 3NN Gaus. Gaus. 3NN Gaus. Gaus. 3NN

meas. B3NN SVM SVM | 3NN  SVYM SVM | 3NN SVM SVM | 3NN SVM  SVM

1€ 428 464 857 | 474 498 846 | 485 468 812 | 487 494 835

Z  Icw 288 312 .888 361 .387 832 | 377 404 .818 .359 406 .838

E TATI 187 213 .760 156 .168 543 | 164 188 561 127 169 562

TANHI .397 421 .801 384 413 .651 .387 375 .653 402 407 691

o Ic .851 .831 926 .795 .800 914 | 746 .765 .898 728 739 .885

2 row .863 .849 948 .706 .694 908 677 682 .895 611 .600 .869

g TATI 714 .706 .820 215 195 314 | 229 221 343 199 186 320

TANHI .753 754 .842 581 578 .614 | 540 545 584 | 582 599 646

~ IC .709 .663 .786 .801 .844 .861 .780 .851 .810 797 .826 813

<ZC cw 487 .509 723 .757 .783 828 | .720 771 764 | .679 723 726

O IATI 244 187 424 166 165 209 201 196 230 158 180 198

D rANHI .689 .607 .691 .589 .621 .588 565 .617 582 .647 .680 .665

L[E ic .864 .659 .678 774 .560 .399 .789 341 292 772 378 307

U Icw 719 .663 .659 702 526 .355 721 337 286 .706 .367 307

E TATI .017 511 .059 114 301 146 117 271 222 .081 227 174

N raNHT .787 577 540 596 430 310 .608 303 258 .651 303 269

O 1c .849 209 324 .880 .851 915 .888 813 .867 | .850 .838 910

é cw 629 197 316 715 .702 .892 .629 .663 .854 | 535 .607 .867

< 1ATI 153 .056 .166 102 108 244 | .088 .084 274 | 071 .073 381

S IANHI .837 .196 281 .802 .762 767 | .833 721 779 .845 .780 .882

usable for this purpose has been very limited. First, we
reviewed the currently available FS stability measures.
Then, we proposed several new measures, provided
modified or simplified forms of existing ones (e.g.,
feature-frequency-based form of Average Normalized
Hamming Index), identified their principal differences,
and eventually organized them in a unifying framework.
We showed that the diverse measures may complement
each other in evaluating the FS process.

We pointed out the “subset-size-bias problem.” Most of
the discussed measures (i.e., (11), (12), (18), (23), (24), and
(26)-(29) ) have been defined to yield values from [0, 1], but
their actual bounds depend on the size of subsets in the
evaluated system and may be tighter than [0,1]. These
bounds make it difficult to compare measure values for
systems of differently sized subsets. The relative weighted
consistency measure has been devised to overcome the
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problem and to allow more reliable comparison of the
stability of various feature selectors.

Next, we introduced the family of intermeasures. Note
that two processes that yield results with similar or equal
stability (according to any one stability measure) may well
differ in their preference of particular features. Intermea-
sures can be used for revealing this difference.

The considered measures have been evaluated on a
series of experiments. In the experiments, we investigated
the properties of various feature selectors, the impact of
very high dimensionality as well as changing estimator
properties. It has been confirmed that in cases of severely
unstable FS performance, it is recommended to resort to the
simple best individual features FS method. The feature
overselection [9] problem that may affect stronger FS
methods often hinders FS results and leads to degraded
classification performance on independent data. Never-
theless, strong selectors (as the dynamic oscillating search)
have been found best performing and/or the most stable
ones in several of our examples. Thus, it is recommended to
select the right tool for each task with caution, possibly with
assistance of some of the discussed measures.
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