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Abstract. The contribution deals with the problem of competing risks (of
competing events) in the statistical events occurrence analysis. In such a setting,
one event excludes the occurrence of the other. Moreover, their latency may
be dependent. Therefore, instead the analysis of marginal distributions (or
intensities) of events, it is more convenient to model their real incidence, via
so called incidence function. We present methods of such an incidence analysis
and illustrate it on an example with unemployment data.
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1 The event-history analysis

The beginning of statistical event-history analysis can be traced back to the life-tables construction by
actuaries and demographers several centuries ago. Later on, remarkable progress of theory and method-
ology is due so called survival analysis developed mainly in areas of biostatistics, medical statistics and
also technical reliability analysis. The main characteristic of the model of an event occurrence is the rate
or intensity with which the events occur. In biostatistics, the goal is usually in observing the time until a
single non-repeatable event (e. g. death). In contrast, in the field of social or demographic studies, several
kinds of events may be followed (e. g. transition among several labor states, several important events in
the life), some of them repeatable (e. g. change of job or marriage). Event-history data gives the type
of event together with the time at which it happened, so that each observed event has also its “mark”
indicating what (and to whom) occurred.

In the area of social sciences, the event-history models are considered for instance in monographs of
Tuma and Hannan [8], Gourieroux [2] or Winkelmann [9]. A fundamental paper of Heckman and Singer
[4] is also devoted to the continuous time models (i. e. models of intensities) for econometrics duration
analysis. The latest ideas and techniques in the area of statistical event-history analysis are connected
with the theory and application of the stochastic counting processes (cf. Andersen et al. [1]).

1.1 Counting process – definition and examples

A multivariate counting process N(t) = {N1(t), N2(t), . . . , Nn(t)} is a stochastic process having n com-
ponents Ni(t), each of them counting the number of a (registered, observed) specified event. So that it
can describe n types of events, or follow the occurrence of only one event, for n objects. The time t runs
as a rule from 0 to some finite T at which the observation is terminated and the data are collected. It
could be the calendar time, in other cases it could be a kind of relative time (as the age). It is assumed
that Ni(0) = 0 at the beginning and that Ni has jump of size +1 at the moment when the event is
observed. As sometimes we are not able to observe complete history, some events remain non-recorded,
they are censored.

Further, let Ii(t) be the indicator process, Ii(t) = 1 if events of i-th object can be observed at moment
t, Ii(t) = 0 otherwise. In other words, Ni(t) is exposed to the risk of the count only if Ii(t) = 1. Let there
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exist a nonnegative function

hi(t) = lim
d→0

P{Ni(t+ d−)−Ni(t) = 1|Ii(t) = 1}
d

.

It is called the hazard function (or hazard rate). Then λi(t) = Ii(t)hi(t) is the intensity. Finally, define
the cumulative hazard rate Hi(t) =

∫ t
0 hi(s) ds and cumulative intensity Li(t) =

∫ t
0 λi(s) ds. Then the

process Mi(t) = Ni(t) − Li(t) is a martingale with zero mean, non-correlated increments, Mi(t) are
non-correlated mutually.

2 Problem of competing risks

Let us recall first an example from Han and Hausman [3]. The data contain n = 1 055 records of people
who have lost their job and are either searching for a new one or waiting for reemployment by the
previous employer. The duration of unemployment is the variable of our interest, so that the time from
the onset of unemployment is the reference time t. We assume that the histories of different individuals
are independent each of other, therefore the individual times may be shifted in such a way that t = 0 is
the moment of the loss of job. Each record contains values Ti, δi, Xi, where Ti is the moment of a new
employment (then δi = 1) or the moment of recall (δi = 2) or the moment of censoring (δi = 0). The
time scale is given in weeks, from 0 to 70 weeks. Xi denotes a set of covariates (constant in the time),
e. g. age at t = 0, years of schooling (continuous variables), sex, race, marital status, occupation, industry
and some others discrete categorical variables. The task is to estimate hazard rates of obtaining a new
job and of the recall – so that two competing risks are examined (and the censoring is the third way of
the end of the record of each person). In [3] a parametric model of unemployment duration is considered.
In the present paper a more general semi- and non-parametric setting will be employed.

The analysis of cases with multiple competing events is complicated by the fact that the occurrence of
one event excludes the occurrence of others. In this sense, times to events are dependent, and it is hard to
model such a dependence – just because estimated marginal distributions lack reasonable interpretation.
Of course, we can consider cause – specific hazard functions for events j = 1, 2, . . . ,K (in the example
we had K = 2),

hj(t) = lim
d→0

P (t ≤ T < t+ d, δ = j |T ≥ t)
d

,

or overall hazard rate for all events together,

h(t) = lim
d→0

P (t ≤ T < t+ d |T ≥ t)
d

.

Here we assume that the hazard rates do not depend on i, they are the same for each person. If we integrate
them, we obtain cumulated hazard rates Hj(t), H(t), and also overall survival function S(t) = P (T >

t) = exp(−H(t)). Notice that h =
∑K
j=1 hj . Instead of marginal survival functions Sj(t) = exp(−Hj(t))

representing an ideal nonrealistic case when only j-th risk is present, we are more interested in modeling
actual incidence of event j, via so called cumulative incidence functions

F ∗j (t) = P (T ≤ t, δ = j) =
∫ t

0
S(s) · hj(s) ds.

Notice that it has certain properties of distribution function, but its limF ∗j (t) = P (δ = j) < 1 if t tends

to infinity. Further, it holds that S(t) = 1 −∑K
j=1 F

∗
j (t). It is seen that marginal Fj(t) = 1 − Sj(t)

overestimates actual incidence of event j.

2.1 Estimation method

All cumulative hazard rates can be estimated standardly by the Nelson–Aalen estimator, namely

Ĥj(t) =
∫ t

0

n∑
i=1

dNij(s)
I(s)

, Ĥ(t) =
K∑
j=1

Ĥj(t), (1)
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where again i is the index of object (person) and j of type of event (in the case of presence of censoring
from right side, index j = 0, for value δi = 0, denotes an end of observation caused by censoring). Overall
survival function can then be estimated by the Kaplan Meier estimator, or directly as

Ŝ(t) = exp(−Ĥ(t)).

Asymptotic properties of estimates of incidence functions

F̂ ∗j (t) =
∫ t

0
Ŝ(s) dĤj(s) (2)

follows from the properties of good asymptotic properties of Ŝ and Ĥj and are derived for instance
in Lin [6]. In general, limit distribution of

√
n(F̂ ∗j (t) − F ∗j (t)) is that of Gauss random process, with

estimable covariance structure. As it is not a martingale, further inference (e.g. statistical tests) is not
easy. Notice, however, that in the simplest case without censoring F ∗j (t) and S(t) correspond, at each
fixed t, to probabilities in a multinomial distribution, the estimates correspond to relative occurrence,
so that their properties simplify. In general, confidence regions for statistical testing are obtained by a
Monte Carlo random generation.

3 Regression models

Generally, the intensity can depend on some explanatory variables, covariates. This dependence is mod-
eled via regression models. The values of covariates can again be given by an observed random process
depending on time. Let us denote it Xi(t), for i-th object (person). Then, the regression model for inten-
sity assumes that the random point process behavior is governed by a (bounded and smooth, say) hazard
function h(t, x) from [0, T ]×X to [0,∞), where X is the domain of values of X(t). The intensity is then

λi(t) = h(t,Xi(t)) · Ii(t),

so that it is actually a random process, too. Corresponding theory as well as the methodology of statistical
analysis is collected in many papers and monographs devoted to statistical survival analysis, see for
instance [1] and [5].

3.1 Examples of regression models

The idea to separate common hazard rate from the influence of covariates led to the multiplicative model,
called also the proportional hazard model,

h(t, x) = h0(t) · exp(b(x)).

Function h0(t) is the baseline hazard function, b(x) is the regression (response) function. If the response
function is parametrized, we obtain semiparametric Cox’s model. Its most popular form assumes that
h(t, x) = h0(t) exp(βx).

Alternatives are for instance the Aalen’s additive regression model or the accelerated time model
used frequently in reliability analysis. In the present paper the Cox’s model is utilized, hence we shall
employ ’maximum partial likelihood’ estimators of parameters β and the Breslow-Crowley estimator of
the increments of cumulated baseline hazard function H0(t) =

∫ t
0 h0(s)ds. Function h0(t) is then obtained

by kernel smoothing of these increments.

3.2 Estimation in Cox’s model

In the setting of counting processes, the conditional likelihood (given intensities λi(t)) is

Lc =
n∏
i=1

[∏
t<T

λi(t)
dNi(t) exp

{
−
∫ T

0
λi(t) dt

}]
.

Here λi(t) = Ii(t) · h(t,Xi(t)), dNi(t) = 1 just at the moment of count of Ni(t), dNi(t) = 0 otherwise.
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In the case of multiplicative model, the Cox’s partial likelihood function is available for the estimation
of b(x) independently on h0(t). The logarithm of partial likelihood is

`P =
n∑
i=1

∫ T

0
log

[
exp b(Xi(t))∑n

j=1 exp b(Xj(t)) Ij(t))

]
dNi(t),

and an “ideal” estimate of function b(x) should maximize it. Thus, in the framework of Cox’s model
where b(x) = βx, we search for optimal parameters β. Estimates are asymptotically normal, that is why
we are able to compute the test statistics having approximately Gaussian or chi-squared distribution.

3.3 Incidence in regression model

This problem is analyzed for instance in Scheike and Zhang [7]. When the value of covariate is x and is
constant in time, the cumulative incidence functions have the form

F ∗j (t;x) = P (T ≤ t, δ = j |x) =
∫ t

0
exp

−∫ s−

0

k∑
j=1

hj(u;x) du

 · hj(s;x) ds,

where, as before, the first term represents overall survival function (when the value of covariate equals x)
and hj(s;x) is a cause j specific hazard function. So that each component of F ∗j can be estimated by an
appropriate procedure. For instance if hj(t;x) follow Cox’s model, the methods described in preceding
part can be employed. Naturally, it is even more difficult to establish (at least asymptotic) properties
of incidence functions estimates. An overview of contemporary state of the art and ideas of further
methodology development are collected also in [7].

In the case of time-dependent covariates it is seen that F ∗j (t;x) depend on the whole path of x(s), s < t.
So that we can predict the incidence only if we are able to predict the development of covariates.

There are, naturally, many other interesting questions concerning the influence of covariates to inci-
dence, and mutual relationship of incidence of different events. Thus, in medical studies it is expected
that the decrease of risk of one cause (of a disease) can lead to increased incidence of another cause
(though the overall incidence decreases). In the situation of our example with unemployment data, the
dependence of competing risks could be quite different. We shall illustrate it in the next part.

4 Example

The data of the following example are artificial, however they reflect a situation typical e.g. for academic
institutions in the beginning of 90-ties (and also at present), namely a forced temporal reduction of staff.
The data are available at http://simu0292.utia.cas.cz/volf/MME 2010/.

Let us follow, during a period [0, T ], T = 120 months, a “fate” of n = 185 employees of a company.
Let the unvoluntary departure (“firing”) and voluntary change of job be two events of our interest
denoted by j = 1, 2, no other censoring is involved, the rest of people remains with the company up
to T , where the observation period ends. Assume that the i-th employee joined the company at a time
Si ∈ [0, T ]. At that moment the corresponding counting processes Nji(t) started to be at risk of jump.
Here i = 1, ..., n, j = 1, 2, we denote Tji times of occurrence of j-th event for person i. We actually
observe Ti = minjTji, so that the indicator Ii(t) = 1[Si < t ≤ Ti] is common for both risks. Most of
records have Ti = T , i. e. the majority of employees were still with the company at the end of the study.
There were together 59 events of type 1 and 25 of type 2.

Figure 1. shows estimated cause specific hazard rates obtained by a smoothing technique from Nelson-
Aalen estimates (1), and also their sum. It is seen that during the first 8 years the overall hazard rate
is almost constant. However, in last years there were 2 periods of forced reduction of the company staff,
the intensity of ”voluntary” departures reacted with a slight delay (uncertainty of present job increased
the search for a new one).

Then, Figure 2. displays estimated marginal distribution functions Fj (dashed) and incidence functions
F ∗j - see (2). As expected, the latter are lower than marginal ones, with difference increasing with time.
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Figure 1: Estimated hazard rates for events 1 and 2 (above), estimate of overall hazard rate (below)
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Figure 2: Estimates of marginal distribution functions Fj (dashed) and incidence functions F ∗j (full), for
event 1 (above) and event 2 (below)

4.1 Analysis in Cox’s model

Both risks to leave the job depend on a number of other attributes, on properties of the employee as well
as on the situation of the company. Let us consider, in our illustrative example, just four “subjective”
covariates entering the model. Let Xi(t) be (X1i(t), X2i(t), X3i, X4i), where X1i is the age of the i-th
employee at time t, X2i is the length of previous employment in the company, up to t. Further, X3i is the
job category. There were 5 categories, from the highest (1) to the lowest (5) qualification (see the data),
X4i = 1 for male, = 2 for female employee. X3 and X4 are discrete and constant in the time, while both
X1 and X2 are time dependent. Let for k = 1, 2 Xki = Xki(Ti) be the value of k-th covariate for i-th
person at the moment Ti. Then the value of this covariate at time t < Ti is Xki(t) = max{0;Xki−(Ti−t)}.
Further, let us define Ii(t) = 1 for t ∈ (max{0;Ti −X2i}, Ti] – the period during which the person i has
been with the company, Ii(t) = 0 otherwise.

Let us analyze the data in the framework of Cox’s model. Table 1 displays the partial likelihood-based
estimates of parameters βk, k = 1, . . . , 4, together with the P-values Pk of the test of hypothesis βk = 0.
The results from Table 1 suggest the following conclusions: For the first event (j = 1) the hypothesis that
the risk does not depend significantly on a covariate is rejected for components X2 (just on 10% level of
the test) and X4. People with longer record in the company were more likely to leave, women had higher
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risk of forced leave. When the second event (j = 2) is considered, the hypothesis of negligible dependence
is rejected for X2, too, and for X3 (voluntary departures of people with higher qualification were more
frequent).

j = 1 j = 2

k βk Pk βk Pk

1 0.0075 0.567 -0.0259 0.220

2 0.0712 0.098 0.1428 0.044

3 0.1124 0.388 -0.4773 0.053

4 0.7474 0.005 -0.2057 0.622

Table 1: Estimated Cox’s model parameters and P-values of test βk = 0

5 Conclusion

The problem of competing risks has been studied and the difference between expected marginal occurrence
and real incidence of events has been analyzed. Further, the evaluation of incidence in the framework
of a regression model for events intensities, and also the response of one event incidence to the change
of intensity of competing event were discussed. The method has been illustrated on an example with
unemployment data, where two competing risks of voluntary and forced change of job were considered.
naturally, the approach can find application in other areas dealing with count data and occurrence of
competing events.
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