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a b s t r a c t

This paper sheds some new light on projection quantiles. Contrary to the sophisticated
set analysis used in Kong and Mizera (2008) [13], we adopt a more parametric approach
and study the subgradient conditions associated with these quantiles. In this setup, we
introduce Lagrange multipliers which can be interpreted in various interesting ways,
in particular in a portfolio optimization context. The corresponding projection quantile
regions were already shown to coincide with the halfspace depth ones in Kong and Mizera
(2008) [13], but we provide here an alternative proof (completely based on projection
quantiles) that has the advantage of leading to an exact computation of halfspace depth
regions from projection quantiles. Above all, we systematically consider the regression
case, which was barely touched in Kong and Mizera (2008) [13]. We show in particular
that the regression quantile regions introduced in Hallin, Paindaveine, and Šiman (2010)
[6,7] can also be obtained fromprojection (regression) quantiles, whichmay lead to a faster
computation of those regions in some particular cases.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Multiple-output quantile regression

Applications of the celebrated theory of quantile regression [11] are without number, virtually in all quantitative fields,
including economics and econometrics, biomedical studies and clinical trials, biostatistics, and environmental studies;
see [9] for an extensive presentation of the topic. Quantile regression techniques have been quickly extended to nonlinear
and nonparametric (functional) regression, and modified for handling count, longitudinal, time series or censored data.

On the other hand, their extension to the multiple-output case has been a long-standing statistical challenge. And
despite several attempts to define multiple-output regression quantiles (see, e.g., [2,3,12]), this theory still remains mostly
univariate. In fact, Koenker [9] himself reports multiple-output quantile regression on the list of ‘‘problems that fall into the
twilight of quantile regression research’’.

In aworldwheremultivariate data are the rule rather than the exception, this single-output nature of quantile regression
clearly constitutes a severe limitation. Themain issue is of course the lack of a satisfactory and universally accepted concept
of multivariate quantiles; we refer to [23] for an excellent survey of the huge literature devoted to multivariate quantiles.
The problem is even more delicate if the ultimate goal is to define a concept of multiple-output regression quantile because
not every multivariate quantile can be generalized to the regression context.
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1.2. Two recent proposals

Interestingly, two concepts of multivariate quantiles that are potentially useful for multiple-output quantile regression
were investigated very recently by Kong and Mizera [13] and by Hallin, Paindaveine, and Šiman [6,7]—hereafter KM08 and
HPŠ10, respectively. Both are of a directional nature and define, for distributions on Rm, quantiles that are indexed by an
order τ ∈ (0, 1) and a direction u ∈ Sm−1

:= {y ∈ Rm
: ‖y‖ = 1}, or equivalently, by the vector τ = τu ranging over the

open unit ball (deprived of the origin) Bm
:= {y ∈ Rm

: 0 < ‖y‖ < 1}.
In the KM approach,2 the (τu)-quantile of anm-dimensional random vector Ymay simply be defined as the point

qKM,τu := qτ (u′Y)u (∈ Rm) (1.1)
or as the hyperplane πKM,τu, orthogonal to u at qKM,τu, where qτ (X) := inf{x ∈ R : P[X ≤ x] ≥ τ } stands for the univariate
τ -quantile of the randomvariableX (KM08also considers other versions of univariate quantiles). The quantile biplot contours
B(τ ) := {qKM,τu : u ∈ Sm−1

} (indexed by τ ), which are naturally associated with the point-valued quantiles qKM,τu, are
hardly satisfactory since they lack any reasonable form of equivariance, heavily depend on the choice of an origin, and
moreover exhibit disturbingnon-convex shapeswith a tendency to self-intersection.However, defining the ‘‘upper’’ quantile
halfspaces

H+

KM,τu := {y ∈ Rm
: u′y ≥ u′qKM,τu}, (1.2)

the hyperplane-valued quantiles determine fixed-τ regions

RKM(τ ) :=


u∈Sm−1

{H+

KM,τu}, τ ∈ (0, 1), (1.3)

which happen to coincide (Theorem 3 in KM08) with the celebrated halfspace depth ones—we refer to [17,21,26] for
a comprehensive treatment of (location) depth. Multiple-output regression quantiles based on this directional quantile
concept are briefly discussed in KM08 too; see also [25].

Of course, sample quantile regions R(n)
KM(τ ) and quantile biplot contours B(n)(τ ) can be defined as the natural empirical

analogs of the population objects above, and R(n)
KM(τ ) still coincides with the (sample) halfspace depth region of order τ .

However, the construction of any such R(n)
KM(τ ) or B(n)(τ ) via KM quantiles in principle involves computing infinitely many

univariate quantiles (one for each u ∈ Sm−1), which of course is impossible in practice. The competing approach fromHPŠ10
(which was inspired by an original idea from [16]) does much better in this respect.

With the same notation as above, the HPŠ10 τ-quantiles are defined as the standard regression τ -quantile hyperplanes
πHPŠ,τu obtained when regressing Yu := u′Y on the marginals of Y⊥

u := 0′

uY and a constant term, where 0u stands for an

arbitrary m × (m − 1) matrix such that the columns of (u
... 0u) constitute an orthonormal basis of Rm (see the location

version of Definition 2.3 below); the vector u therefore indicates the direction of the ‘‘vertical’’ axis in this single-output
regression. Denoting the halfspace ‘‘above’’ πHPŠ,τu by H+

HPŠ,τu
(where ‘‘above’’ is with respect to the natural orientation of

this vertical axis), it turns out that the resulting quantile regions

RHPŠ(τ ) :=


u∈Sm−1

{H+

HPŠ,τu
}, τ ∈ (0, 1), (1.4)

also coincide with the halfspace depth ones. This extends to the sample case, where the regions R(n)
HPŠ

(τ ) coincide with their

KM08 counterparts R(n)
KM(τ ). Unlike their KM counterparts π

(n)
KM,τu, however, there is typically only a finite collection of HPŠ10

quantile hyperplanes π
(n)
HPŠ,τu

for fixed τ (these hyperplanes are then piecewise constant functions of u), a collection that

includes all prolonged facets of the halfspace depth region R(n)
HPŠ

(τ ) = R(n)
KM(τ ). Froma theoretical point of view,HPŠ quantiles,

when compared to KM quantiles, therefore are more directly related to sample halfspace depth regions. From a practical
point of view, this of course may be seen as a strong hint that the HPŠ quantiles provide a much better way of computing
halfspace depth regions (again, obtaining these regions from KM quantiles in principle requires computing the intersection
in the sample version of (1.3), which runs over an infinite collection of quantile halfspaces).

1.3. Our contribution

In KM08, projection quantiles are thoroughly investigated by means of set analysis in the location case, and may be
defined via various different concepts of univariate quantiles. In contrast, the present paper focuses on the standard
univariate quantile qτ (.) defined above, adopts a more parametric approach, and considers the general regression case
throughout (which is hardly touched in KM08). In particular, we study the subgradient conditions associated with (location
and regression) projection quantiles, introduce the corresponding Lagrange multipliers and interpret them in various ways,
in particular in a portfolio optimization context.

2 FromSection 2 onwards,wewill often rather speak of the projection approach, mainly because Kong andMizera [14] reports that the univariate quantiles
of projections considered in KM08 were not regarded there as the basis of a multivariate quantile concept.
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We then turn to projection quantile regions. (i) In the location case, we present an alternative proof (completely
based on projection quantiles) that the sample projection quantile regions R(n)

KM(τ ) coincide with the halfspace depth
ones. This proof further clarifies the link between projection quantiles and halfspace depth regions, and paves the way
to an exact computation of sample halfspace depth regions from these quantiles. This significantly improves over KM08,
where the only proposed strategy to obtain the regions R(n)

KM(τ ) consists in sampling Sm−1 in the sample version of (1.3),
which clearly yields approximate halfspace depth regions only. Most importantly, this exact computation surprisingly
may be faster than the one based on HPŠ quantiles in some particular cases. (ii) In the regression case, we could not
reduce the infinite intersection defining sample projection quantile regions to a finite one, so that exact computation
in principle remains infeasible. However, we show that the HPŠ regression quantile regions can be obtained exactly from
projection quantiles (which is much less trivial than in the location case; see Section 4.2 for details). Parallel with the
location case, this may result in a faster computation of HPŠ regions in some particular cases. Our Matlab implementation
of the algorithm for computing (regression) quantile regions from projection quantiles can be freely downloaded from
http://homepages.ulb.ac.be/~dpaindav and is extensively described in the companion paper [18].

The outline of the paper is as follows. Section 2 gives a unified presentation of projection quantiles and HPŠ quantiles
in the general regression case. Section 3 derives and interprets the gradient conditions for projection quantiles, and links
these quantiles to portfolio optimization. Section 4 turns to quantile regions: we first present (Section 4.1) an alternative
proof that sample projection quantile regions coincide with the halfspace depth ones in the location case, and show that
this proof leads to an exact computation of halfspace depth regions from projection quantiles. Then we define (Section 4.2)
projection quantile regions in the regression case and establish that the HPŠ regression quantile regions can be obtained
exactly from projection quantiles. Section 5 briefly discusses computational aspects of projection quantiles and projection
quantile regions, leaving the details to [18]. The paper endswith an Appendix (collecting technical proofs) and a commented
picture gallery.

2. The projection and HPŠ multiple-output regression quantiles

Consider themultiple-output regression setup inwhich somem-variate random vector Y = (Y1, . . . , Ym)′ of responses is
to be related to a p-variate random vector X = (X1, . . . , Xp)

′ of regressors, where X1 = 1 a.s. and the other Xj’s are random.
In the sequel, we let X =: (1,W′)′, which makes of {(w′, y′)′ : w ∈ Rp−1, y ∈ Rm

} = Rp−1
× Rm the natural space for

considering fitted regression objects. For p = 1, we obtain the important location case, in which multiple-output regression
quantiles simply reduce tomultivariate quantiles.

Themultiple-output directional regression quantileswe introduce below are indexed by vectorsτ ranging over the (open)
unit ball (deprived of the origin) Bm

= {y ∈ Rm
: 0 < ‖y‖ < 1} of the response space Rm. To stress their directional nature,

we factorize the index τ into τ =: τu, where τ = ‖τ‖ ∈ (0, 1) is the order of the quantile and u ∈ Sm−1 is its direction.
Letting t → ρτ (t) := t(τ − I[t<0]) denote the usual τ -quantile check function, we consider the following broad class of
directional regression quantiles.

Definition 2.1. Let M = {Mu : u ∈ Sm−1
} be a family of convex subsets of Rm+p making the mapping u → Mu injective

and reducing to M = {Mu := {(a′, b)′ ∈ Rp+1
: b = u} : u ∈ {−1, 1}} form = 1. Then, for any τ = τu, with τ ∈ (0, 1) and

u ∈ Sm−1, the M-type regression τ-quantile of Y with respect to X = (1,W′)′ is defined as any element of the collection
ΠM,τ of hyperplanes πM,τ := {(w′, y′)′ ∈ Rm+p−1

: b′
M,τy = a′

M,τ(1,w
′)′} such that

(a′

M,τ, b
′

M,τ)
′
∈ argmin

(a′,b′)′∈ Mu

Ψτ (a, b), with Ψτ (a, b) := E[ρτ (b′Y − a′X)]. (2.1)

Each hyperplane πM,τ characterizes a lower (open) and an upper (closed) regression quantile halfspace H−

M,τ = H−

M,τ(aM,τ,

bM,τ) := {(w′, y′)′ ∈ Rm+p−1
: b′

M,τy < a′
M,τ(1,w

′)′} and H+

M,τ = H+

M,τ(aM,τ, bM,τ) := {(w′, y′)′ ∈ Rm+p−1
: b′

M,τy ≥

a′
M,τ(1,w

′)′}, respectively.

The convexity assumption on the Mu’s is motivated by theoretical and practical considerations and turns the
minimization problem (2.1) into a standard convex optimization exercise. The injectivity assumption ensures that the
resulting multiple-output regression quantiles bear a clear directional information. As for the specific form of M in the
single-output case m = 1, it guarantees that the quantiles of Definition 2.1 there reduce to the standard Koenker and
Bassett [11] quantiles. Finally, we stress that first-order moment assumptions on Y and W are tacitly part of Definition 2.1
(and, unless otherwise stated, also of Definitions 2.2 and 2.3 below).

Just as in the single-output case, theminimizationproblem (2.1)mayhave several solutions, yielding distinct hyperplanes
πM,τ. However, as shown by Proposition 2.1 below, this does not occur under

Assumption (A). The distribution of Z := (W′, Y′)′ is absolutely continuous with respect to the Lebesgue measure on
Rm+p−1, with a density that has connected support, and admits finite first-order moments.

Proposition 2.1. Under Assumption (A), the minimizer (a′
M,τ, b

′
M,τ)

′ in (2.1), hence also the resulting quantile hyperplaneπM,τ,
is unique for any τ ∈ Bm.

http://homepages.ulb.ac.be/~dpaindav
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In this work, the emphasis will mainly be on the collection M given by

Mproj = {Mproj,u := {(a′, b′)′ ∈ Rm+p
: b = u} : u ∈ Sm−1

}, (2.2)

which leads to projection regression quantiles—reducing, in the location case, to the directional quantiles considered
in KM08. Modifying slightly the definition of projection quantiles by subtracting the constant quantity Ψτ (0,u) from
the corresponding objective function in (2.1) does not affect projection quantiles, but allows one to avoid any moment
assumption on Y—hence anymoment assumption at all in the location case p = 1. More specifically, we adopt the following
definition, which requires finite first-order moments forW only.

Definition 2.2. For any τ = τu, with τ ∈ (0, 1) and u ∈ Sm−1, the projection regression τ-quantile of Y with respect to
X = (1,W′)′ is defined as any element of the collection Πproj,τ of hyperplanes πproj,τ := {(w′, y′)′ ∈ Rm+p−1

: u′y =

a′

proj,τ(1,w
′)′} such that

aproj,τ ∈ argmin
a∈Rp

(Ψproj,τ(a) − Ψproj,τ(0)), (2.3)

where Ψproj,τ(a) := Ψτ (a,u) = E[ρτ (u′Y − a′X)]. The corresponding lower (open) and upper (closed) regression quantile
halfspaces are H−

proj,τ = H−

proj,τ(aproj,τ) := {(w′, y′)′ ∈ Rm+p−1
: u′y < a′

proj,τ(1,w
′)′} and H+

proj,τ = H+

proj,τ(aproj,τ) :=

{(w′, y′)′ ∈ Rm+p−1
: u′y ≥ a′

proj,τ(1,w
′)′}, respectively.

In the location case (p = 1), we have πproj,τ = πKM,τu and H+

proj,τ = H+

KM,τu; see (1.2). In the general regression case, the
quantiles from Definition 2.2 clearly reduce to the ordinary regression quantiles of the projection u′Y on the marginals of
W and a constant term, which enlightens many of their features. Clearly, projection quantiles are intrinsically univariate.
Nevertheless, the concept of projection quantiles is richer than one would expect at first sight.

Another interesting choice of M leads to the regression quantiles introduced in Definition 6.1 of HPŠ10. This definition
can equivalently be reformulated as follows.

Definition 2.3. For any τ = τu, with τ ∈ (0, 1) and u ∈ Sm−1, the HPŠ regression τ-quantile of Y with respect to
X = (1,W′)′ is defined as any element of the collection ΠHPŠ,τ of hyperplanes πHPŠ,τ := {(w′, y′)′ ∈ Rm+p−1

: u′y =

d′
τ0

′

u(w
′, y′)′ + cτ} such that

(cτ, d′

τ)
′
∈ argmin

(c,d′)′∈Rm+p−1
E[ρτ (u′Y − d′0′

u(W
′, Y′)′ − c)], (2.4)

where0u stands for an arbitrary (m+p−1)×(m+p−2)matrix such that thematrix (u̇
... 0u) is orthogonal for u̇ = (0′

p−1,u
′)′.

The HPŠ quantiles are also standard single-output regression quantiles of the same response u′Y as in the projection
approach, but this time with regressors consisting of the marginals of 0′

u(W
′, Y′)′ and a constant term. As shown by the

following result, these quantiles also fit in the class of directional quantiles introduced in Definition 2.1 and are associated
with

MHPŠ = {MHPŠ,u := {(a′, b′)′ ∈ Rm+p
: b′u = 1} : u ∈ Sm−1

}. (2.5)

Proposition 2.2. Fix τ = τu, with τ ∈ (0, 1) and u ∈ Sm−1, and assume that the underlying distribution has finite first-order
moments. Then any MHPŠ-type regression τ-quantile hyperplane πMHPŠ,τ

of Y with respect to X = (1,W′)′ is a HPŠ regression
τ-quantile hyperplane πHPŠ,τ from Definition 2.3, and vice versa.

In linewith thenotation already introduced inDefinition 2.3, the quantitiesπMHPŠ,τ
, aMHPŠ,τ

, bMHPŠ,τ
, H−

MHPŠ,τ
, andH+

MHPŠ,τ

fromDefinition 2.1will simply be denoted asπHPŠ,τ, aHPŠ,τ, bHPŠ,τ, H−

HPŠ,τ
, andH+

HPŠ,τ
, respectively. For HPŠ quantiles, it is not

possible to get rid of the first-order moment conditions, even in the location case; see the comment above Assumption (A)
in HPŠ10. More importantly, note that the projection quantiles from Definition 2.2 are actually constrained (with a y-space
projection orthogonal to u) versions of the HPŠ quantiles.

In the sequel, we focus on Mproj and MHPŠ. Still, there may be other interesting choices of M = {Mu}, leading to original
concepts of multiple-output regression quantiles. In this context, we thank an anonymous referee for pointing out [24] as a
possible source of inspiration for defining suchM. The definition of alternative collectionsM of interest and the investigation
of the resulting regression quantiles are, however, beyond the scope of the paper. Here, we only point out that it seems
desirable to restrict to sets Mu that (i) are defined by means of equality constraints that are linear—or at least linearizable—
in (a′, b′)′ (to keep the computational burden as light as possible) and that (ii) keep b away from the zero vector of Rm

(because otherwise we could always get (a′
M,τ, b

′
M,τ)

′
= 0). Clearly, both Mproj and MHPŠ meet these properties.

Finally, we consider the empirical case. Assume that a sample of n observations Zi := (W′

i, Y
′

i)
′, i = 1, . . . , n, is available

(in the sequel, we often use this simple notation instead of (X′

i, Y
′

i)
′

:= (1,W′

i, Y
′

i)
′, i = 1, . . . , n). Empirical regression

quantiles can then simply be obtained as the natural sample analogs of the population concepts in Definition 2.1. To be
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more specific, we define the sample M-type regression τ-quantile of the Yi’s with respect to the Xi’s, i = 1, . . . , n, as any
element of the collection Π

(n)
M,τ of hyperplanes π

(n)
M,τ := {(w′, y′)′ ∈ Rm+p−1

: b(n)′
M,τy = a(n)′

M,τ(1,w′)′} such that

(a(n)′
M,τ, b

(n)′
M,τ)

′
∈ argmin

(a′,b′)′∈Mu

Ψ (n)
τ (a, b), with Ψ (n)

τ (a, b) :=
1
n

n−
i=1

ρτ (b′Yi − a′Xi). (2.6)

These empirical quantiles allow one to define in an obvious way the sample analogs H(n)−
M,τ and H(n)+

M,τ of the lower and upper
quantile halfspaces H−

M,τ and H+

M,τ of Definition 2.1. Corresponding sample quantities will be denoted by symbols used for
the population ones and equipped with (n).

Of course, empirical distributions are inherently discrete, so that sample τ-quantiles and halfspaces are not uniquely
defined in general. However, the set of minimizers of (2.6) must be connected and convex for any given τ, which readily
follows from the convexity of minimized objective functions.

3. Fixed-u analysis of projection regression quantiles

In this section, we derive and discuss the subgradient conditions associated with projection regression quantiles. For the
sake of comparison, we also extend the HPŠ quantile subgradient conditions to the regression setup (in HPŠ10, they are
explicitly stated in the location case only). Finally, we link projection quantiles with portfolio optimization.

3.1. Subgradient conditions

Under Assumption (A), the objective function a → Ψproj,τ(a) − Ψproj,τ(0) = E[ρτ (u′Y− a′X)] − E[ρτ (u′Y)] appearing in
Definition 2.2 is convex and continuously differentiable on Rp, so that projection regression quantiles can equivalently be
defined as the collection of hyperplanes πproj,τ associated with the solutions aproj,τ of the system of equations

gradaΨproj,τ(a) = −E[X(τ − I[u′Y−a′X<0])] = 0. (3.1)

Alternatively, recalling the constrained optimization problem in Definition 2.1, one may consider the optimization
problem with Lagrangian function Lproj,τ(a, b, λ) := Ψτ (a, b) − λ′(b − u), which yields the gradient conditions

(grad(a,b,λ)Lproj,τ(a, b, λ))(aproj,τ,bproj,τ,λproj,τ) = 0 (3.2)

(the only points in Rp+2m where (a, b, λ) → Lproj,τ(a, b, λ) is not continuously differentiable are of the form (0′, 0′, λ′)′,
and therefore cannot be associated with a minimum of (2.3)). Letting again Z := (W′, Y′)′, (3.2) can be rewritten as

0 = (gradaLproj,τ(a, b, λ))(aproj,τ,bproj,τ,λproj,τ) = −τE[X] + E[X I
[Z∈H−

proj,τ(aproj,τ)]] (3.3a)

0 = (gradbLproj,τ(a, b, λ))(aproj,τ,bproj,τ,λproj,τ) = τ E[Y] − E[Y I
[Z∈H−

proj,τ(aproj,τ)]] − λproj,τ (3.3b)

0 = (gradλLproj,τ(a, b, λ))(aproj,τ,bproj,τ,λproj,τ) = −(bproj,τ − u). (3.3c)

For such a constrained optimization problem, gradient conditions in general are necessary but not sufficient. In this case,
however, sufficiency is clearly achieved since the necessary condition (3.3a) is equivalent to the sufficient one in (3.1)
(whereas (3.3b) may be viewed as defining λproj,τ only). To interpret these gradient conditions, note that (3.3a) and (3.3b)
are equivalent to (with H−

proj,τ := H−

proj,τ(aproj,τ))

P[Z ∈ H−

proj,τ] = τ (3.4a)

1
1 − τ

E[W I
[Z∈H+

proj,τ]
] −

1
τ
E[W I

[Z∈H−

proj,τ]
] = 0 (3.4b)

1
1 − τ

E[Y I
[Z∈H+

proj,τ]
] −

1
τ
E[Y I

[Z∈H−

proj,τ]
] =

1
τ(1 − τ)

λproj,τ. (3.4c)

Clearly, (3.4a) provides projection regression τ-quantiles with a natural probabilistic interpretation, as it keeps the
probability of their lower halfspaces equal to τ(= ‖τ‖). As for (3.4b) and (3.4c), they show (combined with (3.4a))
that the line segment joining the probability mass centers 1

τ
E[Z I

[Z∈H−

proj,τ]
] and 1

1−τ
E[Z I

[Z∈H+

proj,τ]
] of the lower and upper

τ-quantile halfspaces is parallelwith the vector (0′, λ′

proj,τ)
′. In particular, bothmass centers share the first p−1 coordinates.

The reasonwhywe consider the constrained version of the optimization problemdefining projection regression quantiles
is that the gradient conditions (3.2) are actually richer than the original ones in (3.1), as the latter do not say anything about
y-space projections of these two probability mass centers.

This relative location in the response space (see (3.4c)) actually clarifies the role of the Lagrange multiplier λproj,τ. In
general, such a multiplier only measures the impact of the boundary constraint (in this case, the constraint bproj,τ = u), but
here appears as a functional that is potentially useful for measuring directional outlyingness and tail behavior or for testing
(spherical or central) symmetry of the underlying distribution; see Fig. A.7 for an illustration. Besides, if we premultiply
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(3.3a) with a′

proj,τ and (3.3b) with b′

proj,τ, add both resulting equations and then apply (3.3c), we obtain

Ψproj,τ(aproj,τ) = u′λproj,τ, (3.5)
so that we can easily extract the minimum achieved in (2.3) from λproj,τ for any given τ.

If HPŠ quantiles are considered, then the Lagrangian function is LHPŠ,τ(a, b, λ) := Ψτ (a, b) − λ(b′u − 1) and similar
arguments as above show that the resulting quantiles can equivalently be defined by

P[Z ∈ H−

HPŠ,τ
] = τ (3.6a)

1
1 − τ

E[W I
[Z∈H+

HPŠ,τ
]
] −

1
τ
E[W I

[Z∈H−

HPŠ,τ
]
] = 0 (3.6b)

1
1 − τ

E[Y I
[Z∈H+

HPŠ,τ
]
] −

1
τ
E[Y I

[Z∈H−

HPŠ,τ
]
] =

1
τ(1 − τ)

λHPŠ,τu, (3.6c)

where we let H−

HPŠ,τ
= H−

HPŠ,τ
(aHPŠ,τ, bHPŠ,τ) and bHPŠ,τ must satisfy the boundary constraint b′

HPŠ,τ
u = 1.

These subgradient conditions can clearly be interpreted in the same way as those for projection quantiles, and indicate
that both types of quantiles are equally rich. Still, one might argue that projection quantiles are linked in a simpler way
to the direction u in which they are computed, since u always provides the normal direction to (the y-space projection
of) projection (τu)-quantile hyperplanes whereas the corresponding normal direction for HPŠ (τu)-quantile hyperplanes is
the one bearing the vector bHPŠ,τ (that depends on u in a more complicated way). The simple relation between projection
quantiles and the corresponding direction u is, however, just a corollary of the intrinsically univariate nature of projection
quantiles.

Let us now turn to the sample case, and let us focus on projection quantiles again. The sample objective function in the
projection (i.e., M = Mproj) version of (2.6) is not continuously differentiable, but still has directional derivatives in all
directions, which can be used to formulate fixed-u subgradient conditions for the sample τ-quantiles. It is easy to check
that the coefficients (a(n)′

proj,τ, b
(n)′
proj,τ)

′ and the corresponding Lagrange multiplier λ
(n)
proj,τ of any sample projection regression

τ-quantile π
(n)
proj,τ := {(w′, y′)′ ∈ Rm+p−1

: u′y = a(n)′
proj,τ(1,w

′)′} must satisfy

1
n

n−
i=1

I
[r(n)proj,iτ<0] ≤ τ ≤

1
n

n−
i=1

I
[r(n)proj,iτ≤0] (3.7a)

−
1
n

n−
i=1

W−

i I
[r(n)proj,iτ=0] ≤ τ


1
n

n−
i=1

Wi


−


1
n

n−
i=1

WiI
[r(n)proj,iτ<0]



≤
1
n

n−
i=1

W+

i I
[r(n)proj,iτ=0] (3.7b)

−
1
n

n−
i=1

Y−

i I
[r(n)proj,iτ=0] ≤ τ


1
n

n−
i=1

Yi


−


1
n

n−
i=1

YiI
[r(n)proj,iτ<0]


− λ

(n)
proj,τ

≤
1
n

n−
i=1

Y+

i I
[r(n)proj,iτ=0], (3.7c)

where we let r (n)
proj,iτ := u′Yi − a(n)′

proj,τ(1,W
′

i)
′ and write z+

:= (max(z1, 0), . . . ,max(zk, 0))′ and z−
:= (−min(z1, 0), . . . ,

−min(zk, 0))′ for any z ∈ Rk. These necessary conditions are obtained by requiring all 2(m+p) derivatives of the Lagrangian
function in the a and b semiaxial directions to be nonnegative. The inequalities in (3.7a)–(3.7c) must be strict if the sample
regression τ-quantile is uniquely defined.

Note that (3.7a) indicates that

N
n

≤ τ ≤
N + Z

n
, equivalently

P
n

≤ 1 − τ ≤
P + Z

n
, (3.8)

where N, P , and Z are the numbers of negative, positive, and zero values, respectively, in the residual series r (n)
proj,iτ, i =

1, . . . , n. This implies that, for non-integer values of nτ , projection τ-quantile hyperplanes have to contain some of the
Zi = (W′

i, Y
′

i)
′’s. Actually, if u is such that the ‘‘u-projected’’ observations (W′

i,u
′Yi)

′
∈ Rp are in general position, then

there exists a projection τ-quantile hyperplane π
(n)
proj,τ which fits exactly p observations, and (3.8) holds with Z = p; see

Sections 2.2.1 and 2.2.2 of [9]. However, as we will see in the sequel, the exceptions to this rule, namely the directions u for
which degeneracies occur in (W′

i,u
′Yi)

′, i = 1, . . . , n, play a crucial role in the computation of quantile regions. We also stress
that necessary subgradient conditions for sample HPŠ quantiles can be derived in the general regression case analogously
(the location case was already treated in HPŠ10). In fact, parallel with the population case, these necessary conditions are
obtained from (3.7a)–(3.7c) by replacing λ

(n)
proj,τ with λ

(n)
HPŠ,τ

u and r (n)
proj,iτ with r (n)

HPŠ,iτ
:= b(n)′

HPŠ,τ
Yi − a(n)′

HPŠ,τ
(1,W′

i)
′.
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As already mentioned, the sample gradient conditions just discussed are only necessary. The necessary and sufficient
ones, for sample projection quantiles or HPŠ quantiles, would directly follow from Theorem 2.1 in [9] thanks to their
representation as single-output regression quantiles (see the comments below Definitions 2.2 and 2.3, respectively).

We conclude this section with the remark that all the conditions for sample projection and HPŠ quantiles do not require
any finite moments, independence, continuity, or unimodality; actually, they do not require any assumption at all. Still,
the number N of negative residuals is always under control and we suggest that this proportion of negative residuals
should be preferred to probability of outlyingness measured by P[Z ∈ H−

proj,τ] and P[Z ∈ H−

HPŠ,τ
]. In fact, this suggestion

is already adopted by various technical norms that prescribe maximum frequency of failures no matter how much these
bad cases are intercorrelated. With this said, it is clear that, if the observations (W′

i, Y
′

i)
′, i = 1, . . . , n ≫ m, are i.i.d. with a

common distribution satisfying Assumption (A), then the standard asymptotic theory can be applied and (3.7a)–(3.7c) may
essentially be interpreted as if their population analogs (3.4a)–(3.4c) were almost satisfied, which would imply roughly the
same consequences.

3.2. Projection quantiles and portfolio optimization

A natural field of application for directional quantiles is portfolio optimization. To explain this, assume that the
m-dimensional random vector Y collectsm asset returns, and consider the portfolio Yω := ω′Y, where the vector of portfolio
weights ω = ωu (with u ∈ Sm−1) is a fixed non-zerom-vector.

Portfolio risk behavior can bemeasured by Value-at-Risk (VaR), tail conditional expectation (TailVaR) or shortfall (s); see
Bertsimas et al. [1]. We adopt their definitions but replace the weak inequalities there with strict ones (which clearly makes
no difference under Assumption (A)), that is,

VaRτ (ω) := E[ω′Y] − qτ (ω
′Y) (3.9)

TailVaRτ (ω) := −E[ω′Y|ω′Y < qτ (ω
′Y)] (3.10)

sτ (ω) := E[ω′Y] − E[ω′Y | ω′Y < qτ (ω
′Y)], (3.11)

where τ ∈ (0, 1) denotes the level of risk and qτ (.) is the same τ -quantile as in (1.1).
Since E[(τ − I[ω′Y−qτ (ω′Y)<0])qτ (ω

′Y)] = 0, we obtain that

sτ (ω) =
1
τ
E[ρτ (ω

′Y − qτ (ω
′Y))] =

ω

τ
E[ρτ (u′Y − qτ (u′Y))] =

ω

τ
Ψproj,τ(aproj,τ), (3.12)

which clearly relates shortfall (and indirectly also TailVaR) to (location) projection quantiles and shows that E[ω′Y]−ωaproj,τ
equals Value-at-Risk. Note further that (3.5) and (3.12) yield

sτ (ω) =
ω′λproj,τ

τ
,

which shows that the scaled Lagrangemultiplierλproj,τ/τ can also be interpreted in this portfolio optimization setup, namely
as a vector of individual asset contributions to the overall portfolio risk measured by shortfall.

Clearly, the relation (3.12) between shortfall and projection quantiles has two types of corollaries. First, it allows one to
infer properties of the projection quantile quantities from the many results on sτ (ω) already available in the literature. For
instance, it follows from [1] that, if Y is multinormal with mean µ and covariance matrix 6, then

Ψproj,τ(aproj,τ) =

u′6u

1/2
φ(Φ−1(τ )),

where φ and Φ stand for the density and distribution function of the standard normal distribution, respectively. More
generally, if the distribution of Y is elliptically symmetric with mean µ and finite covariance matrix 6, then we have that

Ψproj,τ(aproj,τ) =

u′6u

 1
2 c(τ ),where c(τ ) depends on the specific formof the elliptical distribution and can for instance be

obtained from [22]. Other properties state that Ψproj,τ(aproj,τ) = τu′E[Y] −
 τ

0 atudt , that both Ψproj,τ(aproj,τ)/τ and −aproj,τ
are non-increasing functions of τ , or that

max{τ(u′E[Y] − aproj,τ), (τ − 1)(u′E[Y] − aproj,τ)} ≤ Ψproj,τ(aproj,τ) ≤ (u′6u)1/2(τ (1 − τ))1/2,

where 6 stands for the finite covariance matrix of Y.
Second, we can bring to shortfall and portfolio optimization all the results regarding projection quantiles, including

regression generalization and efficient computation procedures; see Sections 4.1 and 5. Note that both the definition of
shortfall and the interpretation of λproj,τ can indeed be easily generalized to the regression case (p > 1) through

sregrτ (ω) :=
ω

τ
min
a∈Rp

E[ρτ (u′Y − a′X)] =
ω′λproj,τ

τ
, ω = ωu.

Clearly, TailVaR andVaR (aswell as someof the results given above) can also be extended in the same spirit to this generalized
regression context. Since the portfolio return and risk are likely to depend on many economic factors (or other covariates),
represented by X here, this extension to the regression setup makes good sense and might have priceless consequences in
finance and related areas.
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Although we focused above on projection quantiles, it is important to stress that such a portfolio interpretation can
similarly be derived for HPŠ quantiles if one restricts (as is natural) to weights ω that are optimal among those satisfying
ω′u = ω for givenu andω > 0. The important advantage of HPŠ quantiles here is their ability to find easily such optimal portfolio
weights (we simply have ωopt = ωbHPŠ,τu); in comparison, projection quantiles do not offer any possibility to optimize
weights without considering them all. Besides, all formulae already derived for projection quantiles can be translated into
formulae for HPŠ quantiles by considering the former in direction u1 := bHPŠ,τu/‖bHPŠ,τu‖, with aproj,τu1 = aHPŠ,τu/‖bHPŠ,τu‖

and λproj,τu1 = λHPŠ,τuu (and by further substituting all projection quantities with HPŠ ones).

4. Quantile regions

In this section, we first focus on the location case and define there the quantile regions associated with the directional
quantiles from Definition 2.1. As explained in the Introduction, the projection quantile regions coincide with the halfspace
depth ones, but this identification unfortunately does not provide any way to compute the latter exactly by means of
projection quantiles. However, as we show here, another proof of this identification leads to an exact computation of
these regions. Most importantly, we also consider quantile regions in the general regression case and show that the sample
quantile regions defined in HPŠ10 can also be obtained exactly from projection regression quantiles.

4.1. The location case

In the location case, τ -quantile regions, for any fixed τ(= ‖τ‖) ∈ (0, 1), can be obtained by taking the ‘‘upper envelope’’
of the corresponding (τu)-quantile hyperplanesπM,τu fromDefinition 2.1. More precisely, we define theM-type τ -quantile
region as

RM(τ ) :=


u∈Sm−1


{H+

M,τu}, (4.1)

where


{H+

M,τu} stands for the intersection of the collection {H+

M,τu} of all (closed) upper (τu)-quantile halfspaces
associatedwith theminimum in (2.1). If a sample of data pointsY1, . . . , Yn is available, empirical versions R(n)(τ ) result from
(4.1) by replacing the population quantile halfspacesH+

M,τu with their sample counterpartsH(n)+
M,τu (with the intersection over

all the halfspaces associated with the minimimum in (2.6)). The corresponding τ -quantile contours are naturally defined as
the boundaries ∂RM(τ ) and ∂R(n)

M (τ ) of RM(τ ) and R(n)
M (τ ), respectively.

These τ -quantile regions are closed and convex since they are obtained by intersecting closed halfspaces. For a general
M, there is no guarantee that they are nested (in the sense that RM(τ1) ⊂ RM(τ2) and R(n)

M (τ1) ⊂ R(n)
M (τ2) if τ1 ≥ τ2). Of

course, one can always obtain nested regions by defining the intersection quantile regions R∩
M(τ ) :=


t∈(0,τ ]

RM(t) and
R∩(n)

M (τ ) :=


t∈(0,τ ]
R(n)

M (t). But there is no need to consider such intersection regions for the projection and HPŠ regions
Rproj/HPŠ(τ ) and R(n)

proj/HPŠ
(τ ) (with obvious notation), since these are almost surely nested under Assumption (A), which

readily follows from their strong connection with halfspace depth regions in Theorem 4.1 below.
To state this theorem, let us recall that the order-τ halfspace depth region associated with the probability distribution P

is defined as D(τ ) = D(τ , P) := {y ∈ Rm
: HD(y, P) ≥ τ }, where

HD(y) = HD(y, P) := inf{P[H] : H is a closed halfspace containing y} (4.2)
is the halfspace depth of ywith respect to P. It can be shown that

D(τ ) =


{H : H is a closed halfspace with P[H] > 1 − τ }, (4.3)

for any τ > 0; see Proposition 6 in [21]. Sample versions of HD(y) and D(τ ) are simply given by HD(n)(y) := HD(y, Pn)
and D(n)(τ ) := D(τ , Pn), respectively, where Pn stands for the empirical measure associated with the observed n-tuple
Y1, . . . , Yn at hand. Clearly, there are at most n compact sample halfspace depth regions

D(n)


ℓ

n


=


{H : H is a closed halfspace with nPn[H] ≥ n − ℓ + 1}, ℓ = 1, . . . , n; (4.4)

see (4.3). We then have the following result.

Theorem 4.1. (i) Under Assumption (A), Rproj(τ ) = D(τ ) = RHPŠ(τ ) for all τ ∈ (0, 1). (ii) Assume that the data points
Yi, i = 1, . . . , n(≥ m + 1), are in general position. Then, for any ℓ ∈ {1, 2, . . . , n − m} such that D(n)( ℓ

n ) has a non-empty
interior, we have that R(n)

proj(τ ) = D(n)( ℓ
n ) = R(n)

HPŠ
(τ ) for any positive τ in [

ℓ−1
n , ℓ

n ).

The equality between HPŠ regions and halfspace depth regions was obtained in Theorems 4.1 and 4.2 of HPŠ10, whereas
the corresponding result for projection regions was proved in Theorem 3 of KM08. A direct corollary of Theorem 4.1 is that
the regions Rproj/HPŠ(τ ) and R(n)

proj/HPŠ
(τ ) are affine-equivariant, nested, and compact; see [21]. They are also always convex;

we refer to [8] for an extension of halfspace depth regions yielding possibly non-convex shapes.
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When it comes to computing the sample halfspace depth regions D(n)(τ ) for some fixed τ on the basis of Theorem 4.1(ii),
it appears that the link of D(n)(τ ) to HPŠ quantiles is muchmore exploitable than that to projection quantiles, as is argued in
HPŠ10. Contrary to the strictly finite collection {π

(n)
HPŠ,τu

: u ∈ Sm−1
}, its projection counterpart {π

(n)
proj,τu : u ∈ Sm−1

} indeed

contains uncountably many hyperplanes (one for each u). Therefore the intersection defining R(n)
proj(τ ) runs over an infinite

number of upper halfspaces H(n)+
proj,τu, which seems impossible to compute in practice. Consequently, it is proposed in KM08

to sample the unit sphere Sm−1, a strategy that can clearly lead to approximate regions D(n)(τ ) only.
On the other hand, the ‘‘directional’’ decomposition of polyhedral halfspace depth regions D(n)(τ ) into projection upper

quantile halfspaces nicely provides their faceswith a neat and interesting quantile interpretation. Indeed, each face ofD(n)(τ )

is included in the projection quantile hyperplane π
(n)
proj,τu0 , where u0 stands for the unit vector orthogonal to that face and

pointing to the interior of D(n)(τ ).
To sum up, projection quantiles are helpful for the quantile interpretation of the halfspace depth regions D(n)(τ ), but

appear less useful for their exact computation than their HPŠ counterparts. However, as we show below, an alternative
proof of the identity R(n)

proj(τ ) = D(n)(τ ) reveals that D(n)(τ ) can also be computed efficiently from projection quantiles. First,
we need a couple of preliminary lemmas, proved in the Appendix.

Lemma 4.1. Assume that the observations are in general position and fix ℓ ∈ {1, 2, . . . , n−m} such that D(n)( ℓ
n ) has a nonempty

interior. Then D(n)( ℓ
n ) =


H

(n)
ℓ−1, where H

(n)
k := {H:H is a closed halfspace with nPn[∂H] = m and nPn[Hc

] = k}.

To state the second lemma, we define the collection of τ -critical directions as

C (n)
τ := {u ∈ Sm−1

: there exists at least one H(n)+
proj,τu with nPn[∂H

(n)+
proj,τu] = m}.

If τ is such that nτ is not an integer, then the projection (τu)-quantile hyperplane is unique for each direction u and thus
C (n)

τ = {u ∈ Sm−1
: nPn[∂H

(n)+
proj,τu] = m}. For such a value of τ , most directions u yield a halfspace H(n)+

proj,τu with exactly one
data point on its boundary.

Lemma 4.2. Fix ℓ ∈ {1, 2, . . . , n − m} and τ ∈ [
ℓ−1
n , ℓ

n ). Then

H
(n)
ℓ−j =


u∈C(n)

τ

{H(n)+
proj,τu : nPn[∂H

(n)+
proj,τu] = m and nPn[(H

(n)+
proj,τu)

c
] = ℓ − j} (4.5)

for any j = 1, 2, . . . ,min(m + δnτ ,ℓ−1, ℓ), where δr,s is equal to one if r = s and zero otherwise.

Note that the constraint nPn[∂H
(n)+
proj,τu] = m can be removed from the right-hand side of (4.5) without any loss of

generality if τ ∈ ( ℓ−1
n , ℓ

n ), since projection quantile hyperplanes (hence also upper quantile halfspaces) are uniquely defined
for such values of τ and since only critical directions are considered. We then have the following result, which is proved in
the Appendix.

Theorem 4.2. Assume that the data points Yi, i = 1, . . . , n (≥ m+1), are in general position and fix ℓ ∈ {1, 2, . . . , n−m} such
that D(n)( ℓ

n ) has a nonempty interior. Then, for any positive τ ∈ [
ℓ−1
n , ℓ

n ), we have that (i) R(n)
proj(τ ) = D(n)( ℓ

n ) and (ii) D(n)( ℓ
n ) =

u∈C(n)
τ


{H(n)+

proj,τu : nPn[∂H
(n)+
proj,τu] = m}.

Assume that the conditions of this theorem are fulfilled for some τ ∈ ( ℓ−1
n , ℓ

n ). While Part (i) of Theorem 4.2 simply
restates the projection result of Theorem 4.1(ii), Part (ii) has a number of important implications for the computation of
halfspace depth regions. Clearly, it implies that the problem of computing R(n)

proj(τ ) = D(n)( ℓ
n ) reduces to that of determining

the set of τ -critical directions C (n)
τ . But not only that: applying successively Lemmas 4.1 and 4.2 leads to

D(n)


ℓ + 1 − j
n


=


H

(n)
ℓ−j

=

 
u∈C(n)

τ

{H(n)+
proj,τu : nPn[∂H

(n)+
proj,τu] = m and nPn[(H

(n)+
proj,τu)

c
] = ℓ − j}

=

 
u∈C(n)

τ

{H(n)+
proj,τu : nPn[(H

(n)+
proj,τu)

c
] = ℓ − j}

for any j = 1, . . . ,min(m, ℓ), where the last equality follows from the remark below Lemma 4.2. In other words,D(n)(
ℓ+1−j

n )

can be obtained for such j’s by intersecting all the upper quantile halfspaces H(n)+
proj,τu that are associated with τ -critical

directions and cut off exactly ℓ − j observations. This means that a single C (n)
τ allows one to compute simultaneously several

(typicallym) halfspace depth regions in an exact way.
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The methodology can be used in practice because it is possible to determine C (n)
τ efficiently by means of parametric

programming. Clearly, critical directions are among those directional vectors u where the optimal basis of the associated
linear program can changewith u in themaximumnumber of ways (that is to say that each of the exactly fitted observations
may leave the corresponding projection (τu)-quantile hyperplane with a tiny change of u in a suitable direction). Wemake
this more precise in Section 5.2 below.

Of course, one can obtain Theorem 4.2 more directly from Theorem 4.1(ii). Yet our derivation allows one to derive this
result on projection quantiles by using projection quantiles only (whereas the proof based on Theorem 4.1(ii) requires
considering HPŠ quantiles, too). Now, contrary to the location case, we stress that no result available in the literature—
to the best of our knowledge—would allow one to establish easily the link between HPŠ regression quantile regions and
regression projection quantiles we provide below.

4.2. The general regression case

In the regression setup p ≥ 2, quantile regions RM(τ )/R(n)
M (τ ), parallel with the location case, can be defined through

RM(τ ) :=


u∈Sm−1


{H+

M,τu} (4.6)

and

R(n)
M (τ ) :=


u∈Sm−1


{H(n)+

M,τu}, (4.7)

where the second intersection in (4.6) (resp., (4.7)) is over all upper (τu)-quantile halfspaces associated with the minimum
in (2.1) (resp., (2.6)), and this still produces regions that are connected and convex. As in the previous section, we are
mainly interested in the projection and HPŠ regions Rproj(τ )/R(n)

proj(τ ) and RHPŠ(τ )/R(n)
HPŠ

(τ ), associated with Mproj and MHPŠ,
respectively.

4.2.1. Identification of projection and HPŠ regression quantile regions
Since Theorem 4.1 shows that projection and HPŠ quantile regions coincide in the location case, a natural question is

whether this extends to the regression case or not. As shown by the following result, the answer is positive for population
regions.

Theorem 4.3. Consider the regression setup with p ≥ 2. Then, under Assumption (A), Rproj(τ ) = RHPŠ(τ ) for all τ ∈ (0, 1).

The proof of this result (see the Appendix) is based on the fact that the subgradient conditions (3.4a)–(3.4c) and
(3.6a)–(3.6c) directly reveal that (i) any projection regression quantile halfspace H+

proj,τu is also a HPŠ regression quantile
halfspaceH+

HPŠ,τv
for a possibly different direction v ∈ Sm−1 (which establishes that RHPŠ(τ ) ⊂ Rproj(τ )) and that, conversely,

(ii) any HPŠ regression quantile halfspaceH+

HPŠ,τu
is also a projection regression quantile halfspaceH+

proj,τv, still for a possibly

different v ∈ Sm−1 (which establishes that Rproj(τ ) ⊂ RHPŠ(τ )).
Now, translating this into the sample case turns out to be unexpectedly complicated, as it is by no means obvious that

a projection regression quantile halfspace H(n)+
= H(n)+

proj,τu whose boundary hyperplane contains m + p − 1 data points (this
restriction is needed since HPŠ regression quantile hyperplanes typically interpolate m + p − 1 data points) can always be
identified with some sample HPŠ regression quantile halfspace H(n)+

HPŠ,τv
: while the boundary hyperplane of H(n)+ is clearly a

Koenker and Bassett regression quantile hyperplane when the ‘‘vertical direction’’ of this single-output regression is along
the vector (v′

w, v′
y)

′
∈ Sm+p−1 linking the probability mass centers ofH(n)+ and Rm+p−1

\H(n)+ (see—the sample version of—
(3.6) in HPŠ10), this direction in general does not belong to the response space of the consideredmultiple-output regression
problem (i.e., is not of the form (0′

p−1, v
′
y)

′), hence is not admissible for a HPŠ regression quantile hyperplane. Showing that
there always exists an admissible direction in which the Koenker and Bassett quantile upper halfspace remains H(n)+ is
extremely delicate yet possible, and is the most important step to establish the following result.

Theorem 4.4. Consider the regression setup with p ≥ 2, and assume that the data points (W′

i, Y
′

i)
′, i = 1, . . . , n (≥ m + p),

are in general position. Then, for all τ ∈ (0, 1),

R(n)prac
HPŠ

(τ ) :=


u∈Sm−1


{H(n)+

HPŠ,τu
: nPn[∂H

(n)+
HPŠ,τu

] = m + p − 1}

=


u∈C(n)

τ


{H(n)+

proj,τu : nPn[∂H
(n)+
proj,τu] = m + p − 1} =: R(n)crit

proj (τ ), (4.8)

where C (n)
τ denotes the collection of all τ -critical directions, that is, the collection of directions u ∈ Rm for which there exists a

projection (τu)-quantile hyperplane π
(n)
proj,τu fitting m + p − 1 observations (and not only p as in most directions u).
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Note that any direction u ∈ Sm−1 gives rise (for any τ ∈ (0, 1)) to (at least) one HPŠ quantile hyperplane π
(n)
HPŠ,τu

containingm + p − 1 data points, which explains that the regions R(n)prac
HPŠ

(τ ) in (4.8) may be non-empty. Theorem 4.4 then
shows that, if, for some fixed τ , all HPŠ (τu)-quantiles (u ∈ Sm−1) are uniquely defined, then the resulting HPŠ regression
quantile regions R(n)

HPŠ
(τ ) = R(n)prac

HPŠ
(τ ) and the ‘‘critical’’ projection regions R(n)crit

proj (τ ) do coincide. This identification in the
empirical case is, as explained above, highly non-trivial, and it allows one to compute HPŠ regression quantile regions from
projection quantiles, which may be computationally advantageous if m is very small (m = 2); we refer to the companion
paper [18] for extensive details.

The HPŠ quantile regions R(n)
HPŠ

(τ ) can be computed in practice only when all HPŠ (τu)-quantiles (u ∈ Sm−1) are

uniquely defined, and we then have R(n)
HPŠ

(τ ) = R(n)prac
HPŠ

(τ ). This explains the notation R(n)prac
HPŠ

(τ ) and shows that the fact

that Theorem 4.4 involves R(n)prac
HPŠ

(τ )—and not R(n)
HPŠ

(τ )—is not a limitation from the computational point of view.

For p ≥ 2, there is still an open question whether R(n)
proj(τ ) = R(n)crit

proj (τ ) or not. Of course, it is always possible—at
least for (very) small dimensionsm—to compute the regions R(n)

proj(τ ) approximately by sampling the unit sphere Sm−1, and
experiments of this type lead us to conjecture that, under the same conditions as in Theorem 4.4, R(n)

proj(τ ) = R(n)crit
proj (τ ). As

long as this remains a conjecture, however, the original projection regions R(n)
proj(τ ) cannot be computed exactly for p ≥ 2,

which makes the HPŠ approach superior in this respect.

4.2.2. Towards a point regression depth
Note that, due to the quantile crossing phenomenon, projection and HPŠ regression quantile regions need not have the

same nesting property as in the location case, which is especially apparent in the single-output setup known from the
standard quantile regression theory. This implies that wemust turn to projection and HPŠ intersection (regression) quantile
regions R∩

proj/HPŠ
(τ ) :=


t∈(0,τ ]

Rproj/HPŠ(t) and R∩(n)
proj/HPŠ

(τ ) :=


t∈(0,τ ]
R(n)
proj/HPŠ

(t), if nestedness is required.

The regions R∩

proj/HPŠ
(τ ) and R∩(n)

proj/HPŠ
(τ ) are nested, connected, and convex, and therefore implicitly define a (population

and sample, respectively) regression depth measure via

RD∩

proj/HPŠ
(w, y) := sup{τ ∈ (0, 1) : (w′, y′)′ ∈ R∩

proj/HPŠ
(τ )} (4.9)

and

RD∩(n)
proj/HPŠ

(w, y) := sup{τ ∈ (0, 1) : (w′, y′)′ ∈ R∩(n)
proj/HPŠ

(τ )}, (4.10)

with sup ∅ := 0. In viewof Theorem4.1, this regression depth naturally extends the halfspace depth in (4.2) to the regression
context, and this construction clearly makes it possible to define a concept of regression depth in all settings where quantile
regression works. Note that (4.9) and (4.10) define the depth of a point of the regression space, and not the depth of a
regression hyperplane as is the classical regression depth of [20]. To stress the difference, we will use the term point regression
halfspace depth for RD∩

proj/HPŠ
(w, y) and RD∩(n)

proj/HPŠ
(w, y).

The regions R∩

proj/HPŠ
(τ ) and R∩(n)

proj/HPŠ
(τ ) are important especially from the theoretical point of viewbecause of the induced

depth measures in (4.9) and (4.10). Unfortunately, the intersection defining R∩(n)
proj/HPŠ

(τ ) is virtually impossible to compute—

unless, of course, for p = 1 or m = 1. However, we might base our sample depth measure from (4.10) on the R(n)
proj/HPŠ

(τ )’s

and define a point regression halfspace pseudo-depth RD(n)
proj/HPŠ

(w, y), say. The term pseudo-depth stresses the possible lack

of monotonicity of this depth measure, which is the penalty for the possible non-nestedness of the R(n)
proj/HPŠ

(τ )’s. Note that
both point regression halfspace depth and pseudo-depth reduce to standard halfspace depth in the location case, and hence
can be regarded as extensions of the latter to the regression setup. Also, the regression regions R(n)

proj/HPŠ
(τ ) and R∩(n)

proj/HPŠ
(τ )

must contain the location halfspace depth regions computed from the data points (W′

i, Y
′

i)
′, i = 1, . . . , n, and hence are

non-empty for τ ≤ 1/(m + p); see Proposition 9 in [21].

5. Computational aspects for projection quantiles

Here we discuss the computation of the projection (regression) quantiles and projection (regression) quantile regions
introduced in the previous sections. First, we only briefly comment on the evaluation of fixed-u projection regression
quantiles since they are of a standard single-output regression nature. Then we describe how parametric programming
allows for computing quantile contours extremely efficiently. Finally, we define and interpret projection regression rank
scores.
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5.1. Fixed-u projection regression quantiles

Let (1,W′

i, Y
′

i)
′
= (X′

i, Y
′

i)
′, i = 1, . . . , n, be n observations from the regressionmodel considered in the previous sections.

Define

Uy
n×2m := (Yc

1, −Yc
1, . . . , Y

c
m, −Yc

m) and Vx
n×2p := (Xc

1, −Xc
1, . . . ,X

c
p, −Xc

p),

where Yc
j , j = 1, . . . ,m, and Xc

j , j = 1, . . . , p, stand for the jth column of the response data matrix Y := (Y1, . . . , Yn)
′ and

design data matrix X := (X1, . . . ,Xn)
′, respectively. For any τ ∈ (0, 1) and any u ∈ Sm−1, the resulting sample projection

regression (τu)-quantile then results from the linear programming problem (P) given by

min
z

c′

Pz subject to APz = bP, z ≥ 0,

with

z = (b1+, b1−, . . . , bm+, bm−, a1+, a1−, . . . , ap+, ap−, r′
+
, r′

−
)′ ∈ R2m+2p+2n,

cP = (0′

2m+2p, τ1
′

n, (1 − τ)1′

n)
′
∈ R2m+2p+2n, bP = (u′, 0′

n)
′
∈ Rm+n,

and

AP =


A1

P(m×(2m+2p+2n))
A2

P(n×(2m+2p+2n))


=


Mm×2m Om×2p Om×n Om×n
Uy

n×2m −Vx
n×2p −In×n In×n


,

where 1ℓ ∈ (1, . . . , 1)′ ∈ Rℓ, 0ℓ ∈ (0, . . . , 0)′ ∈ Rℓ, and M = (mi,j) is the (m× 2m) matrix defined bymi,2i−1 = 1, mi,2i =

−1, andmi,j = 0 otherwise. The dual twin brother (D) of (P) is of the form

max
µP=(µb ′

, µr
P
′
)′
u′µb

subject to

µb
= −Y′µr

P, X′µr
P = 0p, and − τ1n ≤ µr

P ≤ (1 − τ)1n.

Both (P) and (D) have at least one feasible solution, and hence also an optimal one. Although (P) may have more distinct
optimal solutions, we need not be too worried about that under Assumption (A), since the asymptotic theory for single-
output sample regression quantiles then ensures that any sequence of such solutions converges almost surely to the unique
population regression τ -quantile as n → ∞. Besides, AP has full rank n + m and therefore each optimal solution to (P) can
be expressed as a linear combination of basic solutions that have at most n + m positive coordinates.

The optimal Lagrange multiplier vector µ
(n)
P corresponds to the equality constraints from (P). Therefore,

µb(n)
= nλ(n)

proj,τu.

The Strong Duality Theorem then guarantees that

Ψ
(n)
proj,τu(a

(n)
proj,τu) = u′λ

(n)
proj,τu,

which generalizes (3.5) to the sample case.
For any fixed u, one can compute the sample projection regression quantiles with the aid of standard quantile regression

solvers. In particular, there is an excellent package for advanced quantile regression analysis in R (see [10]) and the key
function for computing quantile regression estimates is also available forMatlab from Roger Koenker’s homepage.

5.2. Projection regression quantile contours

The previous subsection shows that fixed-u computation of projection regression quantiles is essentially straightforward.
The real challenge is to solve (P) efficiently for all directions u ∈ Sm−1 and for any given τ ∈ (0, 1) \ {

1
n , . . . ,

n−1
n }, say. As

mentioned in Section 4, we propose a solution that relies on parametric programming.
Under Assumption (A), it turns out that the whole space Rm may almost surely be segmented into a finite number of

non-degenerate cones Cq, q = 1, 2, . . . ,NC , in such a way that

(I) the signs of all coordinates of a(n)
proj,τu, u, and r(n)(τu) = r(n)+ − r(n)− are constant in the interior of any Cq, and that

(II) there exists a p-element row index set hq := {k1, . . . , kp} ⊂ {1, . . . , n} such that it holds, for any u ∈ Cq, A(hq) :=

(X(hq))
−1Y(hq), f hqτ (Xi, Yi) := τ − I[u′Yi−u′A′(hq)Xi<0] and µ

r(n)
P(τu)(hq) := ((µ

r(n)
P(τu))k1 , . . . , (µ

r(n)
P(τu))kp)

′, that

a(n)
proj,τu = A(hq)u,

λ
(n)
proj,τu = −

1
n

Y′µ
r(n)
P(τu) =

1
n

−
i∉hq

f hqτ (Xi, Yi)(Yi − A′(hq)Xi),

µ
r(n)
P(τu)(hq) =

−
i∉hq

f hqτ (Xi, Yi)(X′(hq))
−1Xi ∈ [−τ , 1 − τ ]

p,
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and

(µ
r(n)
P(τu))j =


(1 − τ) if r (n)

j < 0
−τ if r (n)

j > 0

for any j ∈ {1, . . . , n}, j ∉ hq.

We see that both λ
(n)
proj,τu and µ

r(n)
P(τu) do not depend on u in any Cq, while a(n)

proj,τu does depend on u there, in a linear
way. The set hq determines the observations fitted by the projection regression (τu)-quantile hyperplane and each cone
Cq corresponds to one optimal basis of (P). Clearly, the faces of these cones are associated with those vectors u for which
one coordinate of r(n), a(n)

proj,τu, or u changes its sign. We are mainly interested in the vertices of these cones because the
corresponding unit vectors u comprise all the directions that are called τ -critical in Section 4.

In the small-sample location case, τ -critical directions can usually be identified visually as the pin points (or change
points) of the corresponding quantile biplot B(n)(τ ); see the Introduction. This is because a(n)

proj,τu is then always equal to the
projection quantile of a data point and this observation in action changes in these directions in the maximum number of
ways.

The problem (P) falls into the category of linear programs with a parametric right-hand side. They are quite common in
practice, their theory is well developed, and a generalMatlab toolbox for them has also been written; see [15]. Surprisingly,
the task can be simplified substantially in our special case, which gives rise to a relatively fast, simple and reliable solver
presented and evaluated in [18]. This only confirms the trend that applications of parametric programming in computational
geometry still grow in number; see [19] for another recent paper on this topic.

Finally, we define projection regression rank scores ν(n)
τ ∈ [0, 1]n as

ν(n)
τ = τ1n + µ(n)

τ , ν
(n)
0 = 0n.

If all projection τ-quantiles are uniquely defined, then (ν(n)
τ )i < 1 if and only if the ith observation lies in the upper

τ-quantile halfspace, i = 1, 2, . . . , n. Consequently, the point regression halfspace pseudo-depth (see Section 4.2) of the ith
data point might then be expressed as

δi := sup{τ ∈ (0, 1) : sup{(ν(n)
τu )i : u ∈ Sm−1

} < 1}. (5.1)

This would exactly define the sample halfspace depth in the location case (and could be extended to the HPŠ approach
analogously).
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Appendix

Proof of Propostion 2.1. Let us show that the minimizer in (2.1) is unique under Assumption (A). For any fixed (a′

0, b
′

0)
′
∈

Mu, the function from Mu to R mapping (a′, b′)′ to E[(b′

0Y − a′

0X)I[b′Y−a′X<0]] is minimal at (a′

0, b
′

0)
′, and Assumption (A)

ensures uniqueness of this minimum. For all (a′, b′)′ = t(a′

1, b
′

1)
′
+ (1− t)(a′

2, b
′

2)
′, with t ∈ (0, 1) and (a′

1, b
′

1)
′
≠ (a′

2, b
′

2)
′

(both in the convex set Mu), we then have

Ψτ (a, b) = E[(b′Y − a′X)(τ − I[b′Y−a′X<0])]

= tE[(b′

1Y − a′

1X)(τ − I[b′Y−a′X<0])] + (1 − t) E[(b′

2Y − a′

2X)(τ − I[b′Y−a′X<0])]

< tE[(b′

1Y − a′

1X)(τ − I[b′
1Y−a′

1X<0])] + (1 − t) E[(b′

2Y − a′

2X)(τ − I[b′
2Y−a′

2X<0])]

= tΨτ (a1, b1) + (1 − t)Ψτ (a2, b2).

This shows that Ψτ is strictly convex on Mu, and hence the τ-quantiles defined through (2.1) are unique. �

Proof of Propostion 2.2. In this proof, we always take (without any loss of generality) 0u of the form

0u =


Ip−1 0
0 0y

u


in Definition 2.3. Now, writing d = ((dw)′, (dy)′)′, we have

E[ρτ (u′Y − d′0′

u(W
′, Y′)′ − c)] = E[ρτ ([u − 0y

ud
y
]
′Y − (c, (dw)′)X)],
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Fig. A.1. The plot contains n = 9 (red) points drawn from the bivariate distribution with independent U([−.5, .5]) (uniform over (−.5,.5)) marginals, and
shows how two successive halfspace depth contours, D(n)(τ1 = .1) (light green) and D(n)(τ2 = .2) (dark green), can be inferred from the τ2-quantile biplot
(blue contour). All the directions found by parametric programming (indicated by the blue segments leading from the origin) are also faces of all the cones
Cq and comprise not only all τ2-critical directions but also some others (such as the horizontal and vertical directions in this case). All these directions are
orthogonal to the corresponding projection τ2-quantile hyperplanes (gray or magenta) that include all the prolonged faces (magenta) of the two halfspace
depth contours displayed. Note that even the redundant τ2-quantile hyperplanes (gray) border the inner halfspace depth contour from the right side. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.2. The plot shows all the projection τ -quantile hyperplanes (blue, black or magenta) corresponding to the directions obtained from parametric
programming, for τ = .2 and n = 499 points from the bivariate distribution with independent U([−.5, .5]) marginals. The projection τ -quantile
hyperplanes really determining the shape of the halfspace depth contour D(n)(τ ) (green) are drawn in magenta and those corresponding to semiaxial
directions are plotted in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where [u − 0
y
udy

]
′u = 1. Therefore, if (cτ, d′

τ)
′ is a minimizer of (2.4), then (a′

HPŠ,τ
, b′

HPŠ,τ
)′ := ((cτ, (dw

τ )′), (u − 0
y
ud

y
τ)

′)′

minimizes the MHPŠ-based version of (2.1). On the other hand, since uu′
+ 0

y
u(0

y
u)

′
= Im, we can write

E[ρτ (b′Y − a′X)] = E[ρτ (u′Y − ((aw)′, −b′0y
u)0

′

u(W
′, Y′)′ − a1)]

for any b satisfying b′u = 1, where a =: (a1, (aw)′)′. Hence, for any minimizer (a′

HPŠ,τ
, b′

HPŠ,τ
)′ of the MHPŠ-based version

of (2.1), (cτ, d′
τ)

′
:= (cτ, (dw

τ )′, (dy
τ)

′)′ := (a1
HPŠ,τ

, (aw
HPŠ,τ

)′, −b′

HPŠ,τ
0

y
u)

′ minimizes the objective function in (2.4). The two
families of τ-quantile hyperplanes ΠHPŠ,τ and ΠMHPŠ,τ

thus coincide. �

Proof of Lemma 4.1. Recall that (4.4) states that D(n)( ℓ
n ) coincides with the intersection of all closed halfspaces containing

at least n−ℓ+1 observations. Actually, one can restrict to closed halfspaces containing exactly n−ℓ+1 observations; see [4],
page 1805. It can also be shown (see [5]) that D(n)( ℓ

n )—provided that its interior is not empty—is bounded by hyperplanes
containing at leastm points that span an (m − 1)-dimensional subspace of Rm. This establishes the result since we assume
that the observations are in general position and that D(n)( ℓ

n ) has a nonempty interior. �
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Fig. A.3. Halfspace depth contours D(n)(τ ) (green) and quantile biplot contours B(n)(τ ) (blue), for n = 999 and τ ∈ {.05, .10, .20, .30, .40}, obtained from
the bivariate distribution with independent U([−.5, .5]) (left) and U([1, 2]) (right) marginals. Quantile biplots are not even shift equivariant, but always
contain halfspace depth contours at the same level (which is trivial to prove). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. A.4. Halfspace depth contoursD(n)(τ ), for n = 9999, obtained from the bivariate standard normal distribution and for τ ∈ {.01, .05, .10, .15, . . . , .45}
(left), and from the bivariate distributionwith independent standard Cauchymarginals and for τ ∈ {.15, .20, . . . , .45} (right). Theymatch their theoretical
counterparts (circles and squares) very well.
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Fig. A.5. Halfspace depth contours D(n)(τ ), for n = 199, obtained from the trivariate standard normal distribution and for τ ∈ {.05, .10, .15, . . . , .40}
(left), and from the trivariate distributionwith independent standard Cauchymarginals and for τ ∈ {.15, .20, . . . , .40} (right). Theymatch their theoretical
counterparts (spheres and cubes) quite well, even for such a small sample size.
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Fig. A.6. Raw piecewise linear (blue) and convex (red) approximations of quantile biplots B(n)(τ ) of order τ = .10 and the resulting halfspace depth
contour D(n)(τ ) (green), with n = 199, from the trivariate standard normal distribution. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. A.7. Polar plots of the mappings u ∈ S1
→ ‖λ

(n)
proj,τu‖u/(supv∈S1 ‖λ

(n)
proj,τv‖) (left) and u → |a(n)

proj,τu|u/(supv∈S1 |a(n)
proj,τv|) (right), for τ = 0.1 and

n = 9999 points drawn from the bivariate standard normal distribution (green), the distribution with independent U([−.5, .5]) marginals (blue), and
the distribution with independent Exp(1) − 1 marginals (red), respectively. The resulting shapes clearly reflect the axes of symmetry of the underlying
distributions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Proof of Lemma 4.2. (i) Fix ℓ, τ , and j as in the statement of the lemma. Clearly,
u∈C(n)

τ

{H(n)+
proj,τu : nPn[∂H

(n)+
proj,τu] = m and nPn[(H

(n)+
proj,τu)

c
] = ℓ − j} ⊂ H

(n)
ℓ−j.

Now, fix H ∈ H
(n)
ℓ−j and let u be the unit vector that is orthogonal to ∂H and points to the interior of H . Then H is

a projection upper (τu)-quantile halfspace, since H satisfies the necessary and sufficient conditions equivalent to (3.8):
nτ ∈ [ℓ − j, (ℓ − j) + m] = [N,N + Z] (for τ > ℓ−1

n , this holds with strict inequalities so that H is then the unique such
upper halfspace). This shows thatwe indeedhaveH

(n)
ℓ−j ⊂


u∈C(n)

τ
{H(n)+

proj,τu : nPn[∂H
(n)+
proj,τu] = m and nPn[(H

(n)+
proj,τu)

c
] = ℓ−j},

which establishes the result. �

Proof of Theorem 4.2. Fix ℓ and τ as in the statement of the theorem, and define δnτ ,ℓ−1 as in Lemma 4.2. The definition of
R(n)
proj(τ ) (see (4.1) with M = Mproj) directly yields

R(n)
proj(τ ) ⊂


u∈C(n)

τ


{H(n)+

proj,τu : nPn[∂H
(n)+
proj,τu] = m} =

 
u∈C(n)

τ

{H(n)+
proj,τu : nPn[∂H

(n)+
proj,τu] = m}. (A.1)

Now, note that any upper halfspace H(n)+
proj,τu (irrespective of the number of data points contained in its boundary) satisfies

nPn[(H
(n)+
proj,τu)

c
] ∈ {ℓ − m − δnτ ,ℓ−1, ℓ − m − δnτ ,ℓ−1 + 1, . . . , ℓ − 1}, (A.2)

since (3.8) implies that N = nPn[(H
(n)+
proj,τu)

c
] ∈ [⌈nτ⌉ − m, ⌊nτ⌋] ⊂ [ℓ − m − δnτ ,ℓ−1, ℓ − 1].
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Fig. A.8. Two different views on the regression τ -quantile contours R(n)crit
proj (τ ), with τ ∈ {.01, .05, .15, .30, .45}, from 999 data points in a homoscedastic

((Y1, Y2)
′
= 4(X2, X2)

′
+ 2ε; left) and a heteroscedastic ((Y1, Y2)

′
= 4(X2, X2)

′
+ 2

√
X2ε; right) bivariate-output regression setting, where X2 ∼ U([0, 1])

and ε has independent U([−.5, .5]) marginals.

Using (A.2) jointly with Lemmas 4.1 and 4.2 yields 
u∈C(n)

τ

{H(n)+
proj,τu : nPn[∂H

(n)+
proj,τu] = m} =

 r
j=1

H
(n)
ℓ−j ⊂

r
j=1

D(n)


ℓ − j + 1
n


= D(n)


ℓ

n


, (A.3)

where we set r := min(m + δnτ ,ℓ−1, ℓ). Eventually, (A.2) shows that any H(n)+
proj,τu contains at least n − ℓ + 1 data points, so

that (4.4) proves that D(n)( ℓ
n ) ⊂ R(n)

proj(τ ). This, jointly with (A.1) and (A.3), establishes the result. �

Proof of Theorem 4.3. Asmentioned in Section 4, the result follows quite easily from the comparison of the projection and
HPŠ subgradient conditions (3.4a)–(3.4c) and (3.6a)–(3.6c). These two sets of subgradient conditions indeed imply that

H+

proj,τu = H+

HPŠ,τλproj,τu/‖λproj,τu‖
and H+

HPŠ,τu
= H+

proj,τbHPŠ,τu/‖bHPŠ,τu‖

for any τ ∈ (0, 1) and u ∈ Sm−1, which shows both RHPŠ(τ ) ⊂ Rproj(τ ) and Rproj(τ ) ⊂ RHPŠ(τ ). �

Proof of Theorem 4.4. We start with the proof of R(n)crit
proj (τ ) ⊂ R(n)prac

HPŠ
(τ ) for τ ∈ (0, 1). Recall that R(n)prac

HPŠ
(τ ) :=


u∈Sm−1

{H(n)+
HPŠ,τu

: nPn[∂H
(n)+
HPŠ,τu

] = m+p−1} and fix a halfspaceH(n)+
HPŠ,τu

= H(n)+
HPŠ,τu

(a(n)
HPŠ,τu

, b(n)
HPŠ,τu

) in this intersection. By defini-

tion, thismeans that (a, b) → Ψ (n)
τ (a, b) =

1
n

∑n
i=1 ρτ (b′Yi−a′Xi) achieves itsminimumoverMHPŠ,u := {(a′, b′)′ ∈ Rm+p

:

b′u = 1} at (a(n)
HPŠ,τu

, b(n)
HPŠ,τu

). By using convexity of the mapping (a, b) → Ψ (n)
τ (a, b) and the fact that Ψ (n)

τ (γ a, γ b) =

γΨ (n)
τ (a, b) for any positive real value γ , we obtain that a(n)

HPŠ,τu
/‖b(n)

HPŠ,τ
‖ coincides with the minimizer a(n)

proj,τu of the same

mapping over Mproj,u0 := {(a′, b′)′ ∈ Rm+p
: b = u0}, with u0 := b(n)

HPŠ,τ
/‖b(n)

HPŠ,τ
‖. Therefore H(n)+

HPŠ,τu
= H(n)+

HPŠ,τu
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Fig. A.9. Various cuts of the regression τ -quantile regions R(n)crit
proj (τ ) from the same two models (left and right, respectively) as in Fig. A.8 with n = 999

observations. The top plots provide regression τ -quantile cuts, τ ∈ {.01, .05, .10, .15, .20, . . . , .45}, through 10% (magenta), 30% (blue), 50% (green), 70%
(cyan) and 90% (yellow) empirical quantiles of X2; the bottom ones show regression τ -quantile cuts for the same τ values, and through 25% (blue), 50%
(green) and 75% (yellow) empirical quantiles of Y1 . Their centers provide information about trend, and their shapes and sizes shed light on variability. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a(n)
HPŠ,τu

, b(n)
HPŠ,τu

) = H(n)+
proj,τu0(a

(n)
proj,τu0) = H(n)+

proj,τu0 . We conclude that R(n)crit
proj (τ ) :=


u∈C(n)

τ


{H(n)+

proj,τu : nPn[∂H
(n)+
proj,τu] =

m + p − 1} ⊂ R(n)prac
HPŠ

(τ ).

We then turn to the proof that R(n)prac
HPŠ

(τ ) ⊂ R(n)crit
proj (τ ) for τ ∈ (0, 1), which is much more difficult. Fix a halfspace H =

H(n)+
proj,τuproj in the intersectionR(n)crit

proj (τ ) :=


u∈C(n)
τ


{H(n)+

proj,τu : nPn[∂H
(n)+
proj,τu] = m+p−1}. Denote by h := (i1, . . . , ik), 1 ≤

i1 < · · · < ik ≤ n, the index set of those k := m + p − 1 data points Zi = (W′

i, Y
′

i)
′ that are contained in ∂H . Let us also

write Xi := (1,W′

i)
′, W(h) := (Wi1 , . . . ,Wik), X(h) := (Xi1 , . . . ,Xik), Y(h) := (Yi1 , . . . , Yik), and Z(h) := (Zi1 , . . . , Zik).

The arrays W(s), W(t), X(s), etc. will be defined accordingly on the basis of the index sets s := {i1, . . . , ip} and t :=

{ip+1, . . . , ik}.
It follows from Proposition 2.2 that the HPŠ version of the problem in (2.6) is equivalent to the standard single-output

quantile regression of the responses u′Yi, i = 1, . . . , n, with respect to 0′

uZi, i = 1, . . . , n, and a constant term.
Consequently, Theorem 2.1 of [9] shows that H = H(n)+

HPŠ,τu
if and only if

− τ1k ≤ ξτ(h) := (X′

u(h))
−1
−
i∉h

(τ − I[Zi∉H])


1

0′

uZi


≤ (1 − τ)1k (A.4)

where Xu(h) := (1k
...Z′(h)0u) and the inequalities are considered coordinatewise.

It is clear (see Definition 2.3) that 0u can always be taken as

0′

u =


Ip−1 0
0 C


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for some (m − 1) × m matrix C, which allows one to decompose X′
u(h) into

X′

u(h) =


X(h)

CY(h)


=


X(s) X(t)

CY(s) CY(t)


.

Inverting this block matrix yields

(X′

u(h))
−1

=


X(s)−1

+ X(s)−1X(t)SCY(s)X(s)−1
−X(s)−1X(t)S

−SCY(s)X(s)−1 S


, (A.5)

where

S−1
:= C[Y(t) − Y(s)X(s)−1X(t)]. (A.6)

Now, defining the p-vector TX
D and the m-vector TY

D through
TX
D

TY
D


:=


T1
D

TZ
D


:= τ

−
Zi∈H\∂H


1
Zi


+ (τ − 1)

−
Zi∉H


1
Zi


,

let us consider

u = uw =
TY
D − vw

‖TY
D − vw‖

,

where vw := Y(s)X(s)−1TX
D − [Y(t) − Y(s)X(s)−1X(t)]w for some fixed (m − 1)-vector w. Definition 2.3 requires the

orthogonality condition Cu = 0, which implies−
i∉h

(τ − I[Zi∉H])


1

0′

uZi


= τ

−
Zi∈H\∂H


1

0′

uZi


+ (τ − 1)

−
Zi∉H


1

0′

uZi


=


TX
D

CTY
D


=


TX
D

Cvw


.

Hence, in view of (A.5), we obtain that

ξτ(h) = (X′

u(h))
−1
−
i∉h


τ − I[Zi∉H]

  1
0′

uZi


=


X(s)−1TX

D + X(s)−1X(t)SCY(s)X(s)−1TX
D − X(s)−1X(t)SCvw

−SCY(s)X(s)−1TX
D + SCvw


=


X(s)−1TX

D + X(s)−1X(t)SC[Y(s)X(s)−1TX
D − vw]

−SC[Y(s)X(s)−1TX
D − vw]


.

The definition of vw and (A.6) lead to

ξτ(h) =


X(s)−1TX

D + X(s)−1X(t)w
−w


. (A.7)

Since the observations are assumed to be in general position, the directional vector uproj (for which H = H(n)+
proj,τuproj ) can

always be changed a little into a unit vector ūproj such that ∂H(n)+
proj,τ ūproj

contains exactly p data points from the m + p − 1
indexed by h; see Section 5.2. If the observations are reindexed so that these pdata points are indexed by s, then the necessary
and sufficient subgradient conditions for the projection (τ ūproj)-quantile (provided by Theorem 2.1 of [9]) state that, for a
certainw0 ∈ {τ , τ − 1}m−1, we have

−τ1p ≤ X(s)−1TX
D + X(s)−1X(t)w0 ≤ (1 − τ)1p,

where X(s), X(t), and TX
D are the same as above. Hence, in view of (A.7), all inequalities in (A.4) hold with τ = τuw0 , which

proves that H = H(n)+
proj,τuproj = H(n)+

HPŠ,τuw0
. Therefore R(n)prac

HPŠ
(τ ) ⊂ R(n)crit

proj (τ ). �
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