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It is shown in detail how recent advances in multiple-output and projectional
quantile regression open the door to exact computation of many inferential statistics
based on projection pursuit. This is also illustrated on a few examples including new
regression generalizations of multivariate skewness, kurtosis, and projection depth.
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1. Introduction

Recently, a new theory of directional (regression) quantiles has been developed;
see Paindaveine and Šiman (2011b,c) for the algorithms and Hallin et al. (2010a),
Paindaveine and Šiman (2011a), and Kong and Mizera (2008) for the theory. It gives
rise to many promising directional statistics but their directional dependence makes
it difficult to exactly compute their suprema or infima over infinitely many unit
directions, which would be very useful for overall statistical inference. This article
addresses the problem and solves it in some important cases.

Besides, the projectional quantile regression of Paindaveine and Šiman (2011a,c)
appears very useful for the exact computation of many statistics based on projection
pursuit methodology where the same problem arises as well; see, e.g., Friedman
(1987) and Huber (1985). We illustrate this on a few important examples including
multiple-output regression generalizations of location projection depth, skewness,
and kurtosis. These concrete multivariate regression extensions are obtained quite
naturally by means of regression quantiles, introduced in Koenker and Basset (1978)
and masterly reviewed in Koenker (2005), but they seem, quite surprisingly, not to
have yet been explicitly considered in the literature.
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On Computing Some Projection Pursuit Statistics 949

The projection pursuit plays a crucial role in the definitions of various statistical
depths including halfspace depth, weighted halfspace depth, and projection depth;
see Rousseeuw and Ruts (1999), Hlubinka et al. (2010), and Zuo (2003) with
references therein, respectively. The projection depth leads the way and beats
many of its location depth competitors in numerous respects; see Zuo and Serfling
(2000a,b). It has already been generalized even to regression fits (i.e., hyperplanes)
in Zuo and Cui (2004). Finally, it is here extended to arbitrary points in a general
multiple-output regression context, which seems more intuitive, more useful and
more promising for future development; see also Liu et al. (2004), Paindaveine and
Šiman (2011a), and Rousseeuw and Hubert (1999) for other notions of depth in a
regression framework.

Exact computation of some special forms of location projection depth has
already been briefly outlined in Zuo (2004) for odd numbers of bivariate data
points. Besides, there is another article dealing with exact computation of bivariate
projection depth that is accompanied with software implementation in R; see Zuo
(2011) and Zuo and Ye (2009). Although that article had not yet been published
and made available when this one was written, its title indicates that it deals only
with the bivariate and location case. In other words, the present article almost surely
brings up some new ideas regarding this computational issue, at least in its treatment
of projection regression depth in spaces of general dimension. Needless to say that
the results presented here can lead to a real breakthrough in the dissemination of
projection depth and related methods.

Skewness and kurtosis of univariate (conditional) distributions can be described
by means of various statistics based on univariate (regression) quantiles; see
e.g. Kim and White (2004) and White et al. (2010). Two of these univariate
quantile-based shape characteristics are considered even here and extended by
means of projection pursuit to the multiple-output context in the same way as
their moment-based competitors in Malkovich and Afifi (1973). These extensions
are then shown exactly computable even when the output dimension exceeds two
or three, which may lead to many applications, including new tests for (conditional)
multivariate symmetry or normality.

This article proceeds as follows. Section 2 introduces one fundamental lemma
that is then heavily applied to the multiple-output quantile regression in Sec. 3
and projectional quantile regression in Sec. 4. Its subsections discuss the exact
computation of the multivariate shape statistics and projection depth in a general
regression context. Section 5 concludes with some final remarks.

This brief communication blends so many various theoretical concepts together
that their joint detail presentation in the Introduction would only confuse the
reader. This is why their definitions are left only for the sections where they are
employed. Sections 3 and 4 are independent, which explains why they sometimes
use the same notation for similar but different entities.

2. Theory

Hereafter, we adopt basic terminology of Boyd and Vandenberghe (2004).

Definition 2.1. Function F on �m is directional (or, scale invariant) if F�cu� = F�u�
∀c > 0 ∀u ∈ �m, and is sign-directional if sign�F�cu�� = sign�F�u�� ∀c > 0 ∀u ∈ �m.
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950 Šiman

Lemma 2.1. Let us assume that the whole space �m, m > 1, can be partitioned into
a finite number of non degenerate closed convex polyhedral cones Cq with disjunct
interiors, say �m = ⋃N

q=1 Cq, and let us write � �= �Cq � q = 1� � � � � N� for this conic
segmentation, determined by its finite vertex set � �= ⋃N

q=1 Vq where Vq �= �u ∈ �m �
�u� = 1� u lies in an edge ofCq�.

1. If F is directional and quasiconvex on each Cq ∈ � , then sup�u�=1 F�u� =
maxu∈� F�u�.

2. If F is directional and quasiconcave on each Cq ∈ � , then inf�u�=1 F�u� =
minu∈� F�u�.

3. If F is sign-directional and quasiconcave on each Cq ∈ � , then F�u� > 0 for all u ∈
�m−1 �= �u ∈ �m � �u� = 1� if and only if minu∈� F�u� > 0.

All these statements hold even when the assumptions are not met by F itself, but only by
a function u �→ F�u�g��u�� where g is an arbitrary positive function on �0��� such as
g�x� = x.

Proof. The surface D of the convex hull of � consists of q closed convex polyhedral
facets Dq �= �

∑
i 	ivi �

∑
i 	i = 1� 	i ≥ 0� vi ∈ Vq� determined by Cq, D = ⋃N

q=1 Dq. If
F is directional, then sup�u�=1 F�u� = supu∈D F�u� = maxq=1�����N supu∈Dq

F�u� and also
inf�u�=1 F�u� = infu∈D F�u� = minq=1�����N infu∈Dq

F�u�. If F is quasiconvex on each Cq,
then it is also quasiconvex on each Dq and supu∈Dq

F�u� = maxu∈Vq F�u�; see Boyd and
Vandenberghe (2004). This proves the first statement.

If F is quasiconcave on eachCq, then−F is quasiconvex there by definition, which
implies infu∈Dq

F�u� = minu∈Vq F�u� and so inf�u�=1 F�u� = minu∈� F�u�.
It also holds for any sign-directional function F that F�u� > 0 on �m−1

if and only if F�u� > 0 on D, which is therefore equivalent to infu∈D F�u� =
minq=1�����N minu∈Vq F�u� > 0 thanks to the quasiconcavity of F on each Cq.

Finally, F�u� and F�u�g��u�� differ on �m−1 only by a positive multiplicative
constant, which concludes the proof.

Lemma 2.1 will often be invoked below, but only with either g��u�� = 1 or
g��u�� = �u� (convex in u), which should always be kept in mind. The notation
introduced in Lemma 2.1 will also be used hereinafter, together with the following
definition.

Definition 2.2. Let us consider some indexed conic segmentations ��i�, i ∈ I , with
their vertex sets � �i�, i ∈ I . Then their common refinement ��I� is defined as the conic
segmentation determined by � �I� �= ⋃

i∈I � �i�.

All applications of Lemma 2.1 are likely to use the theory of quasiconvex
functions, especially the following composition rules from Boyd and Vandenberghe
(2004).

Note. It holds for arbitrary parameters �, b, c, and d of the right dimensions that

1. if g � �m → � is quasiconvex and h � � → � is non decreasing, then f = h � g is
quasiconvex;

2. if g is quasiconvex, then f�u� �= g��u + b� is quasiconvex;
3. if g is quasiconvex, then f�u� �= g���u + b�/�c′u + d�� is quasiconvex on the set

�u ∈ �m � c′u + d > 0�;
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On Computing Some Projection Pursuit Statistics 951

4. if g is a convex function, h is a concave function, and both g�u� > 0 and h�u� > 0
on a convex set C, then f�u� = g�u�/h�u� is quasiconvex on C,

where all the compositions are well defined by assumption.

For the sake of simplicity, only suprema of directional statistics will be discussed
hereinafter (without any significant loss of generality). This is why these composition
rules are formulated only for quasiconvex functions here. They can be used to check
or extend all the claims made below.

Let us consider m-dimensional responses Yi associated with �p+ 1�-dimensional
regressors Xi = �1�Z′

i�
′, i = 1� � � � � n > p+ 2, and assume that the random sample

�Yi�Zi� ∈ �m+p, i = 1� � � � � n, comes from a continuous distribution. Sections 3 and 4
discuss the consequences of Lemma 2.1 in the empirical regression context with a
suitable conic segmentation.

3. Multiple-Output Quantile Regression

Hallin et al. (2010a) introduced a new concept of directional multiple-output
regression quantiles. In the general empirical case, they can be defined for any
u∈�m\�0� by means of the optimization problem

�a′
u� b
′

u�

′ = argmin
�a′�b′�′

n∑

i=1

wi�
�b
′Yi − a′Xi� subject to u′b = 1� (1)

where wi > 0� i = 1� � � � � n� are some positive weights, 
 ∈ �0� 1� stands for any fixed
quantile level, �
�x� = x�
− I�x < 0�� is the well-known quantile check function and

�
u =
n∑

i=1

wi�
�b
′

uYi − a′
uXi� (2)

denotes the optimal value of the objective function. Typically, wi = 1, i = 1� � � � � n� as
in Hallin et al. (2010a).

It follows from Paindaveine and Šiman (2011b) that there exists a finite conic
segmentation ��
� = �Cq�
� � q = 1� � � � � N
� of �m almost surely for all but a finite
number of 
’s such that it meets the assumptions of Lemma 2.1 and �a′
u� b

′

u�

′ =
�a
q

′� b
q
′�′/t
q

′u,�
u = 

q/t



q
′u and t
q

′u > 0 for any u in anyCq�
�where a


q, b



q, t



q, and



q

are some constant vectors or scalars possibly different on each Cq�
�. Paindaveine and
Šiman (2011b) also provide an algorithm (and its Matlab implementation by means
of parametric programming) that can find such conic segmentation ��
�, its vertex set
� �
� and corresponding characteristics a
q, b



q, t



q, and 


q, q = 1� � � � � N
.
Clearly, �a′
u� b

′

u�

′ = −�a′�1−
��−u�� b
′
�1−
��−u��

′ and thus � �
� = −� �1− 
�. Note as
well that ��T� is easy to construct for any finite index set T of 
’s, at least for m = 2,
and that a
u, b
u, and �
u can be computed for any u ∈ �m\�0� by means of available
a
q, b



q, t



q, and 


q, which may be more effective then their straightforward computation
from scratch.
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952 Šiman

3.1. Simple Inference in Multiple-Output Quantile Regression

Hallin et al. (2010a) already showed that both a
u, b
u, and �
u can be very useful for
statistical inference and that they can be combined into directional statistics that are
constant on each Cq�
� and therefore easy to maximize or minimize over �m−1.

Lemma 2.1 can be applied in this context to extend these results considerably. For
example, it implies sup�u�=1 G�u� = maxu∈� �
� G�u�whereG�u� can stand e.g. for �a
u�,
�b
u� and�
u. Similarly, it guarantees for any suitable 
1� 
2 ∈ �0� 1� that�
1u

/�
2u
has

its supremum over �m−1, respectively, equal to its maximum over the vertex set � �T�
corresponding to ��T�, T = �
1� 
2�.

4. Projectional Quantile Regression

Alternatively, one can consider projectional regression quantiles from Kong and
Mizera (2008) and Paindaveine and Šiman (2011a). In the general empirical case, they
can be defined for any u ∈ �m\�0� by means of the optimization problem

a
u �= argmin
a∈�p+1

n∑

i=1

wi�
�u
′Yi − a′Xi�� (3)

where wi > 0� i = 1� � � � � n� are some positive weights, 
 ∈ �0� 1� denotes the quantile
level, �
�x� = x�
− I�x < 0�� is the well-known quantile check function and

�
u �=
n∑

i=1

wi�
�u
′Yi − a′
uXi� (4)

stands for the optimal value of the objective function. Often, wi = 1, i = 1� � � � � n� and
then a
u is nothing but the standard sample regression 
-quantile of projections u′Yi’s.

It was shown in Paindaveine and Šiman (2011a,c) that there exists a finite conic
segmentation ��
� = �Cq � q = 1� � � � � N
� of �m almost surely for all but a finite
number of 
’s such that each Cq is a non degenerate closed convex polyhedral cone
where a
u and �
u are linear in u, i.e., a
u = �


qu��


q ∈ ��p+1�×m, and �
u = �


q
′u,

�

q ∈ �m, for any u ∈ Cq�
�. Paindaveine and Šiman (2011c) also provide an algorithm

(and itsMatlab implementation by means of parametric programming) that can find
such a conic segmentation ��
�, its vertex set� �
� and corresponding matrices�


q and
vectors �


q, q = 1� � � � � N
.
Clearly, a
u = −a�1−
��−u� and thus � �
� = −� �1− 
�. Note as well that ��T� is

easy to construct for any index set T of 
’s, at least for m = 2, and that a
u and �
u

can be computed for any u ∈ �m\�0� by means of available�

q and �


q, which may be
more effective then their straightforward computation from scratch.

4.1. Simple Inference in Projectional Quantile Regression

Paindaveine and Šiman (2011a) already showed that both a
u and �
u can be very
useful for statistical inference. Now Lemma 2.1 makes such inference possible and
simple in many cases. For example, its direct application guarantees for any suitable

1� 
2 ∈ �0� 1� that sup�u�=1 G�u� = maxu∈� �
1�∪� �
2�

G�u� where G�u� can stand for
�
1u

/�
2u
, �a
1u�/�
2u

, or 1/�
1u
, among others.
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On Computing Some Projection Pursuit Statistics 953

4.2. Ratios and Inverses of Regression L-Statistics

Lemma 2.1 can also be applied to ratios Ru�x� of directional regression L-statistics:

Ru�x� =
∑


∈TN c
a
′

ux∑


∈TD d
a′
ux
�= Nu�x�

Du�x�
�

The denominator Du�x� is linear in u on each cone from ��TD� and therefore it is
positive for all u ∈ �m−1 if and only if its minimum over � �TD� is greater than zero,
which can be easily checked. If this is the case, then sup�u�=1 Ru�x� can be computed
as maxu∈� �TD∪TN � Ru�x� because Ru�x� is then even quasilinear in u on each cone from
��TD ∪ TN�.

Lemma 2.1 also implies supu∈� 1/Du�x� = maxu∈� �TD�
1/Du�x� if Du�x� > 0

∀u ∈ �m−1.
For example, given x ∈ 1×�p, we can consider two successful quantile-based

shape measures from Kim and White (2004) adjusted to the general directional
regression framework considered here, namely the skewness coefficient �u�x� and the
kurtosis measure �u�x�:

�u�x� =
(
a′�3/4�u − a′�2/4�u

)
x− (

a′�2/4�u − a′�1/4�u
)
x

(
a′�3/4�u − a′�1/4�u

)
x

�

�u�x� =
(
a′�7/8�u − a′�5/8�u

)
x+ (

a′�3/8�u − a′�1/8�u
)
x

(
a′�6/8�u − a′�2/8�u

)
x

�

Both these statistics can be rewritten in the form of Ru�x�. Indeed, the former
would lead to TD��� = �1/4� 3/4� and TN��� = �1/4� 2/4� 3/4� while the latter
would correspond to TD��� = �2/8� 6/8� and TN��� = �1/8� 3/8� 5/8� 7/8�. If their
denominators are always positive, which holds almost trivially in the location case
with p = 0, then we can meaningfully define overall skewness ��x� �= supu∈� �u�x�
and overall kurtosis ��x� �= supu∈� �u�x� bymeans of projection pursuit and compute
them as maxu∈� �TD���∪TN ���� �u�x� and maxu∈� �TD���∪TN ���� �u�x�, respectively.

4.3. Projection (Regression) Depth

Let us generalize location projection depth, thoroughly investigated in Zuo (2003),
to the points in the general regression setup. In the empirical case discussed here, the
projection regression depth PDn�y� x� of y ∈ �m given x = �1� z′�′ ∈ 1×�p may be
defined as

PDn�y� x� =
1

1+ sup�u�=1 gn�y� x� u�

with

gn�y� x� u� =
∣
∣u′y − �u�x�

∣
∣

�u�x�
�

where �u�x� and �u�x� > 0 are some sample suitable regression measures of location
and scatter of u′Y given X, respectively.
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954 Šiman

In this example, let us consider only �u�x� and �u�x� in the form of regression
L-statistics,

�u�x� �=
∑


∈T�
c
a

′

ux and �u�x� �=

∑


∈T�
d
a

′

ux�

where c
 ∈ �, 
 ∈ T� and d
 ∈ �, 
 ∈ T�. This restriction does not seem too severe
after considering the close asymptotic relationship between R-, M-, and L-statistics
thoroughly described in Jurečková and Sen (1996).

Generally speaking, the projection (regression) depth is difficult to compute
fast and exactly for m > 1 because the supremum in its definition then involves
infinitely many unit directions. Besides, its regression definition seems reasonable only
if �u�x� > 0 for any u ∈ �m−1, which need not be true for p > 0 due to the quantile
crossing phenomenon.

Nevertheless, Lemma 2.1 implies that �u�x� > 0 for any u ∈ �m−1 if and only
if minu∈� �T��

�u�x� > 0, which can be easily checked. And if this condition holds,
then gn�y� x� u� is directional and quasiconvex on each Cq ∈ ��T� ∪ T��, which further
results in

PDn�y� x� =
1

1+maxu∈� �T�∪T�� gn�y� x� u�
�

Note that this formula can be used for fast and exact computation of projection
depth even in the general regression context and for m > 2. The choice of T� and T�

allows for a compromise between robustness and speed as the computational time of
finding ��
� and related quantities grows with decreasing �
− 0�5�; see Paindaveine
and Šiman (2011c).

5. Final Remarks

The minimizers �a′
u� b
′

u�

′ in Sec. 3 and a
u in Sec. 4 need not be defined uniquely,
not even in the purely location setup for integer values of n
, but there is only a
finite number of such exceptional quantile levels with probability one. Besides, this
potential ambiguity is not too worrying because all such minimizers always form a
convex polyhedral set that shrinks towards their unique population limits under very
mild conditions; see Hallin et al. (2010a) and Ch. 4 in Koenker (2005) for a detailed
discussion of these asymptotic properties. Anyway, such an ambiguity can often be
fixed easily by a tiny perturbation of 
 or the data points, which can have hardly any
impact on practical applications. This is why these minimizers are considered uniquely
defined throughout this paper.

Clearly, the theory presented here is especially useful when the number of cones
in the conic segmentations is quite low. In Secs. 3 and 4, this often happens for small n
or extreme 
. Then even the search for approximate extremes on a sampled dense grid
of directions would be much more complicated, in particular for m > 2.

It should also be pointed out that the weights wi’s used in Secs. 3 and 4 can
be really useful, both for handling multiple observations and for computing local
constant counterparts to the regression quantiles of Secs. 3 and 4; see Hallin et al.
(2010b). They would also lead to interesting local versions of the shape measures and
projection regression depth considered in Sec. 4.
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