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Growth trajectories play a central role in life course epidemiology, often providing fundamental indicators of prenatal or childhood development,
as well as an array of potential determinants of adult health outcomes. Statistical methods for the analysis of growth trajectories have been
widely studied, but many challenging problems remain. Repeated measurements of length, weight and head circumference, for example, may
be available on most subjects in a study, but usually only sparse temporal sampling of such variables is feasible. It can thus be challenging to gain
a detailed understanding of growth patterns, and smoothing techniques are inevitably needed. Moreover, the problem is exacerbated by the
presence of large fluctuations in growth velocity during early infancy, and high variability between subjects. Existing approaches, however, can
be inflexible because of a reliance on parametric models, require computationally intensive methods that are unsuitable for exploratory analyses,
or are only capable of examining each variable separately. This article proposes some new nonparametric approaches to analyzing sparse data on
growth trajectories, with flexibility and ease of implementation being key features. The methods are illustrated using data on participants in the
Collaborative Perinatal Project.
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Introduction

There is a vast literature on the statistical analysis of human
growth curves. The earliest work in this area concentrated on
the formulation of parametric growth models, with Jenss,
Bayley, Preece, Baines, Count and Gompertz being prominent
contributors. These models are designed to capture known
features of growth and development (such as the mid-childhood
growth spurt) and have reached a high degree of sophistication
with broad applications.1,2 For example, such models have been
used in searches for quantitative trait loci that control the key
features of human growth trajectories.3

The purpose of this article is to propose various new
nonparametric modeling approaches that can bring greater
flexibility, as well as ease of implementation, to the analysis of
growth trajectories based on sparse data. Our emphasis is on
methods that are suited for the study of prenatal or early
childhood development, in which large fluctuations in growth
velocity and high variability between subjects are not easily
handled by parametric models. Despite a resurgent interest in
the analysis of human growth trajectories, current statistical
methods are limited by an overreliance on parametric modeling

and are only capable of examining each variable separately, or
require computationally intensive methods that are unsuitable
for exploratory analyses. Repeated measurements of length,
weight, body mass index and head circumference, for example,
may be available on most subjects in a study, but usually only
sparse temporal sampling of such variables is feasible. It can
thus be challenging to gain a detailed understanding of growth
patterns, and smoothing techniques are inevitably needed.
Moreover, the problem is exacerbated by the presence of large
fluctuations in growth velocity during early infancy, and high
variability between subjects.
We propose a nonparametric Bayesian method4 for recon-

structing growth velocity curves from sparse temporal data
(or repeated measures) on a single variable. Figure 1 illustrates
this method as applied to length measurements in a sample
of 532 girls who participated in the Collaborative Perinatal
Project (CPP; see ‘Application to CPP data’ section for further
details). The left panel shows the reconstructed growth velocity
curve (along with error bounds) of a specific individual, and
the right panel replicates this for the whole sample. A key
advantage of this method over existing approaches is that error
bounds are included in the reconstruction. A version of data
depth that is suitable for visualizing functional data5 is also
discussed; the right panel of Fig. 1 highlights the deepest
growth velocity curve in the sample and can be interpreted as a
functional equivalent of the sample median.
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In addition, we propose a method for visualizing patterns
in the growth trajectories of multiple variables. Commonly
used growth charts produce plots of univariate quantile
curves, but such plots clearly omit all information related to
dependencies between the various measurements under study.
This is potentially misleading, as growth charts are often used
as a diagnostic tool for detecting possible outliers, whereas
a multivariate outlier clearly need not be an outlier from a
marginal point of view, and vice versa. To address this pro-
blem, we introduce a method based on Tukey’s notion of
halfspace data depth,6 leading to the construction of flexible
multiple-output growth charts, see, for example, Fig. 5.

Growth velocities

Nonparametric frequentist approaches to the analysis of
growth trajectories have been extensively studied in the setting
of functional data analysis.7,8 In particular, functional principal
components analysis is used when it is of interest to estimate
the ‘dominant modes of variation’ of a sample of trajectories.
Typically, however, a crucial first step is needed before such
analyses are possible: the trajectories need to be reconstructed
on a fine grid of equally spaced time points. Methods for
reconstructing trajectories in this way have been studied using
kernel smoothing,7 smoothing splines,8 local linear smooth-
ing,9 mixed effects models10,11 and principal components
analysis through conditional expectations.12,13

In many settings involving functional data, the gradients
of the trajectories (i.e. growth velocities) are of central
interest, rather than the trajectories themselves, especially
when dynamical effects are concerned. Difference quotients
between observation times can be used to generate simple
approximate gradients, but these estimates are piecewise
constant and would not be suitable for use in functional data
analysis unless the observation times are dense. In the case
of regularly spaced observation times, spline smoothing to
approximate the gradient of the trajectory over a fine grid is
recommended.8 More generally, methods of numerical differ-
entiation, including spline smoothing, are an integral part of
the extensive literature on ill-posed inverse problems for linear
operator equations. In this literature, the observation times are

usually viewed as becoming dense (for the purpose of showing
convergence);14 in particular, the assumption of asymptotically
dense observation times plays a key role in the study of
penalized least squares estimation and cross-validation.15,16

Growth velocities can be reconstructed given sparse and
irregularly spaced observation times (one observation time per
trajectory is even enough) by borrowing strength between the
trajectories in the data set. For such sparse observations, it has
been shown that the best linear predictor of the gradient can be
estimated in terms of estimated principal component scores,
assuming Gaussian trajectories and that the pooled observation
times become dense.17 A disadvantage of this approach, how-
ever, is that data at the individual level play a relatively minor
role in the reconstruction, and its accuracy depends on how
well each individual gradient can be represented in terms of a
small number of estimated principal component functions (this
in turn would require an accurate estimate of the covariance
kernel of the trajectories, an unlikely scenario in the case of
sparse observation times).
López-Pintado and McKeague4,18 recently developed a

flexible Bayesian approach to reconstructing growth velocities
from sparse data, as outlined in the next section. Their
approach is designed to adapt to observation times that are
both sparse and irregularly spaced, and which can vary across
subjects. The observation times are allowed to be arbitrary, as
long as they include the endpoints of the time interval
(so interpolation is possible). The prior distribution for the
growth velocity is specified by a multivariate normal distribu-
tion at the observation times, and a tied-down Brownian
motion between the observation times. This leads to an explicit
representation of the posterior distribution in a way that exactly
reproduces the data at the observation times. The empirical
Bayes approach is then used to estimate the hyperparameters
in the prior, borrowing strength between subjects, but in a
simpler manner than estimating principal component scores.17

An important aspect of this approach is that reconstructed
gradients can be computed rapidly over a fine grid, and then
used directly as input into existing software, without the need
for sophisticated smoothing techniques. Furthermore, a com-
parison of the results from repeated draws from the posterior
distribution (multiple imputation) provides an easy way of

Fig. 1. The left panel shows the reconstruction of an individual growth velocity curve (solid line) with error bounds (dashed lines); the
right panel shows the reconstructed growth velocity curves for all individuals in the sample with the deepest curve highlighted.
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assessing uncertainty in the conclusions (of standard functional
data analyses) due to data sparsity.
The empirical Bayes approach is well developed for recon-

structing individual growth velocity curves from parametric
growth models.19 A nonparametric Bayesian growth curve
model has been developed for testing for differences in growth
patterns between groups of individuals.20 In addition, a
nonparametric hierarchical-Bayesian growth curve model for
reconstructing individual growth curves is available, but
requires the use of computationally intensive Markov chain
Monte Carlo methods.21

Bayesian reconstruction

We first consider how to reconstruct a growth velocity curve
for a single subject. The observation times will typically vary
slightly across the sample, but will be clustered around certain
nominal ages (e.g. birth, 4 months, 8 months, 1 year, etc.).
Let the observation times for the specific individual be
05 t1, t2,?, tp5T, and assume that the endpoints of
the time interval over which the reconstruction is needed are
included. Letting the subject’s growth velocity at age t be X(t),
the statistical problem is to estimate the growth velocity curve
X5 {X(t), 0< t<T} from data on its integral over the gaps
between the observation times. Reconstructing X based on
such data is an ill-posed inverse problem in the sense that no
unique solution exists, and thus some type of external
information or constraint (i.e. regularization) is needed to
produce a unique solution.14

The difference quotient estimate of X(t) in the interval
between the ith and (i1 1)th observation times is given by

yi ¼
1

Di

Z t iþ 1

t i

X ðsÞ ds;

where Di is the length of the interval. Higher-order difference
estimates are produced by taking into account the proximity
to neighboring observation times, say replacing yi by
the weighted estimate !yi ¼ wiyi%1 þ ð1%wiÞyi, where
wi5Di/(Di211Di) for i5 2,y, p21. Neither of these
estimates borrow strength from other trajectories in the
sample, but they provide the building blocks of empirical
Bayes estimators that take advantage of the whole sample, as
we now explain.
In the Bayesian approach to ill-posed inverse problems,

regularization takes the form of specifying a prior distribution
on X. It is desirable to make the prior flexible enough to
cover a broad range of growth velocity patterns, yet simple
enough that it is tractable to find the posterior distribution
without the need for computationally intensive methods.
López-Pintado and McKeague4 showed that this can be done
using the following hierarchical prior: (1) at the observation
times, X5 (X(t1),y,X(tp))0 has a p-dimensional normal
distribution with mean l0 and non-singular covariance
matrix S0 and (2) the conditional distribution of X given X
is a tied-down Brownian motion with given infinitesimal

variance s2. 0. Allowing an arbitrary (multivariate normal)
prior at the observation times provides flexibility that would
not be possible using a Brownian motion prior for the whole
of X. In addition, the availability of data at these time points
makes it possible to specify the hyperparameters in the
multivariate normal (as we discuss below), which is crucial for
practical implementation of our approach.
The posterior mean of X takes the computationally tract-

able form of a quadratic spline with knots at the observation
times:

m̂ðtÞ ¼ l̂i þ ½l̂iþ 1%l̂i'ðt%t iÞ=Di

þ 6ðt%t iÞðt iþ 1%tÞ yi%ðl̂i þ l̂iþ 1Þ=2
! "

=D2
i

for t belonging to the interval between the ith and (i1 1)th
observation times. Integration shows that m̂ðtÞ exactly repro-
duces the data. Here l̂i is the ith component of the posterior
mean of X, given by l̂ ¼ ðR%1

0 þ Q Þ%1ðR%1
0 l0 þ DYÞ

where Y ¼ ðy1; !y2; . . . ; !yp%1; yp%1Þ
0,
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The posterior distribution is Gaussian, with a covariance
kernel (not depending on Y) that takes a similarly tractable
form as the mean.
The posterior mean m̂ðtÞ can be used for reconstructing the

unobserved growth velocity X(t), provided various hyper-
parameters are specified in advance: the prior mean l0 and
prior precision matrix R%1

0 . This is done via a nonparametric
empirical Bayes approach applied to the full sample of tra-
jectories, initially treated as having identical sets of (nominal)
observation times. The sample mean of Y is used to specify
l0. A constrained ‘1 minimization method of sparse precision
matrix estimation (clime)22 is applied to the (singular) sample
covariance matrix of Y to specify R%1

0 . By restricting the
resulting posterior covariance kernel and mean to the actual
observation times for a given subject, we obtain suitable
hyperparameters across the whole sample that adjust for any
changes from the nominal observation times.4

The infinitesimal standard deviation s is a smoothing
parameter (playing the role of a time-scale), and can be
selected using a type of cross-validation based on the pre-
diction error from leaving out an interior observation time.4
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We have found that m̂ðtÞ is relatively insensitive to s. On the
other hand, the width of credible intervals around m̂ðtÞ is roughly
proportional to s. In practice, insight into an appropriate choice
of s can also be gained through inspecting plots of m̂ðtÞ, say for
values s in the range 1–3 for the height data (as suggested by
cross-validation), and it is worthwhile to include pointwise 95%
credible intervals around m̂ðtÞ as a way of assessing the uncer-
tainty in the reconstruction (see Fig. 3 for examples).
An R package ‘growthrate’ implementing this reconstruction

method has been developed by López-Pintado and McKeague.18

The package includes the data set and examples of the code used
to compute the reconstructed growth velocity curves displayed in
this article, and is available on the CRAN archive.23

Functional data depth

Given a sample of reconstructed growth velocity curves, it is
of interest to look for ‘outlying’ patterns of growth. One way
to do this is to use the notion of functional data depth
recently developed by López-Pintado and Romo,5 with the
aim of introducing robust methods into functional data
analysis. Robust methods are even more relevant in a func-
tional setting than in multivariate problems because outliers
can affect functional statistics in more ways and they can
be more difficult to detect. For instance, a curve could be
an ‘outlier’ without having any unusually large value. This
notion of depth is particularly convenient for identifying
outliers because shape is also relevant in addition to magni-
tude. Direct generalization of multivariate depth (discussed in
‘Growth charts and statistical depth’ section) to functional
data often leads to either depths that are computationally
intractable or depths that do not take into account some
natural properties of the functions, such as shape.
Let x1(t),y, xn(t) be a sample of real-valued functions

defined on the time interval [0, T]. The band delimited by
these curves is the set of points (t, y) such that xi(t)< y< xj(t)
for some i, j5 1,y, n. An example for the case of n5 3
curves is provided in Fig. 2. The band depth of a function x(t)
is then defined as Dn;J ðxÞ ¼ p1 þ ( ( ( þpJ , where J> 2 is
fixed, and pj is the proportion of bands that contain the graph
of x among the bands derived from j curves in the sample. In
the sequel, we use band depth with J5 3, which is recom-
mended5 for several reasons: (1) when J is larger than 3, the
index Dn,J can be computationally intensive; (2) bands cor-
responding to large values of J do not resemble the shape of
any of the curves from the sample; (3) the band depth-
induced order is very stable in J; and (4) the band depth with
J5 2 is the easiest to compute, but if two curves cross, the
band delimited by them is degenerate at a point and it is
unlikely that any other curve will be inside this band.

Growth charts and statistical depth

In this section, we discuss the use of statistical depth for
analyzing multiple growth variables (e.g. head circumference,

weight and height) at fixed ages (in contrast to single variables
at multiple ages, as studied in the ‘Functional data depth’
section). Statistical depth was first considered for multivariate
data to generalize order statistics, ranks and medians to higher
dimensions. Given a probability distribution P on k-dimensional
Euclidean space, the depth of a k-vector x represents the prob-
ability that a random draw from P is ‘more of an outlier’ than x.
Various definitions of multivariate depth have been proposed
and analyzed.24–29 The notion has been applied, for instance,
as an attempt to extend rank tests to a multivariate context,30

in control charts for multivariate processes,31 confidence
regions,32 regression33 and for visualizing sample dispersion.34

Our discussion of multiple-output growth charts involves
Tukey’s notion of halfspace depth,25 which is defined as
follows. Consider all hyperplanes P running through x: each
P divides Rk into two closed halfspaces, with probabilities Pþ

P
and P%

P , respectively. Putting PP ¼ minðP%
P ; P

þ
PÞ, select the

hyperplane P*, say, for which that probability PP reaches a
minimum: that minimum is called the halfspace depth
dPðxÞ ¼ PPn ¼ minP PP of x with respect to P.
The collection of all points x with given halfspace depth dP(x)

is called a depth contour. An empirical version of this definition
leads to the construction of empirical depth contours. Similar to
their population counterparts, empirical depth contours have the
attractive geometric property that they enclose nested, convex
sets. In addition, empirical depth contours are polytopes, each
face of which runs through exactly k sample points (when
generated from a continuous distribution P). For k5 1, depth
contours reduce to pairs of quantiles of complementary order,
t and 12t, where 0, t, 1.

Quantile contours

The collection of empirical depth contours provides an
interesting picture of the sample at hand, and a powerful
data-analytical tool. Unfortunately, however, effective com-
putation of depth contours was based, until recently, on
algorithms with prohibitive complexity as k grows, and hardly
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Fig. 2. A band determined by three curves (the shaded region), as
used in the definition of functional data depth.
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implementable beyond k5 2 or 3 (although approximate
methods are available35–37).
Hallin et al.38 recently established a strong connection

between halfspace depth and regression quantiles. That
connection has two important benefits: a quantile-based
interpretation of depth contours, and, perhaps even more
importantly, bringing the power of linear programming
techniques to the practical computation of empirical con-
tours. Moreover, that connection also opens the way to a
tractable definition of (multiple output) regression depth, and
depth-based multiple-output growth charts.
First recall that the classical quantile of order t, in a uni-

variate sample X1,y,Xn, can be defined as a minimizer ofPn
i¼ 1 rtðX i%aÞ over a 2 R, where rt(x)5 x(t2I[x, 0]) is

the check function, and I is the indicator function; in the case
t5 1/2, note that rt(x)5 |x|/2. This definition of quantiles
naturally extends to a k-dimensional sample X1,y,Xn, with
the empirical quantile hyperplane of order t defined as a
hyperplane Pt ¼ fx: xk ¼ b0tðx1; . . . ; xk%1Þ0 þ atg that
minimizes, over ða; b0Þ 2 Rk, the sum

Xn

i¼ 1

rtðX i;k%a%b0ðX i;1; . . . ; X i;k%1Þ0Þ

of vertical weighted deviations, with the kth component
representing the vertical direction. Now, choose an arbitrary
unit vector uASk21, the unit sphere in Rk, and consider it as
the ‘vertical’ direction: the ‘vertical’ component of a vector X
is then (u0X)u and, denoting by Gu a k3 (k21) matrix of
column unit vectors such that (u, Gu) constitutes an ortho-
normal basis of Rk, we have X ¼ uðu0XÞ þ CuðC

0

uXÞ.
Letting s5 tu, the directional empirical quantile hyperplane
of order t for direction u is obtained as in the above display,
but with u characterizing the vertical direction, yielding a
hyperplane Ps ¼ fx : u0x ¼ b0sC

0
ux þ asg minimizing, over

ða; b0Þ 2 Rk, the sum

Xn

i¼ 1

rtðu
0Xi%a%b0ðC0

uXiÞÞ

of weighted deviations along direction u, with weights (12t) or
t according as Xi lies above or below the hyperplane. Fixed-
t collections of Ptu hyperplanes define polyhedral empirical
quantile contours of order t by means of the intersections of
upper halfspaces corresponding to all the quantile hyperplanes
of the same quantile level t. Population versions are obtained in
the same way, with sums replaced by mathematical expectations.
Quantile contours can be easily computed by parametric

linear programming methods that can handle even samples
up to size 500 and dimension k5 5; see Paindaveine and
Šiman.39 The main finding in Hallin et al.38 is that halfspace
depth contours and quantile contours actually coincide. As a
consequence, quantile contours inherit the geometric features
of depth contours mentioned earlier, benefit from the inter-
pretation and the analytical features of quantiles and allow

linear programming numerical implementation. Another
benefit is the possibility of reconstructing conditional depth/
quantile contours via local methods – providing a convincing
definition of (multiple output) regression depth contours and
paving the way for the construction of multiple-output
growth charts, as explained in the ‘Multiple-output growth
charts’ section.

Multiple-output growth charts

Growth charts are expected to describe the distributions of
selected body measurements in children, as a function of age.
That description takes the form of a plot of quantiles against
age. Existing methods are usually limited to producingmarginal
growth charts, that is, plots of univariate quantile curves. Such
plots clearly omit all information related with dependencies
between the various measurements under study. This is
regrettable, as growth charts are often used as a diagnostic tool
for detecting possible outliers, whereas a multivariate outlier
clearly need not be an outlier from a marginal point of view,
and vice versa. A semiparametric approach to multiple-output
growth charts has been studied by Wei.40

The local methods described in a preprint of Hallin et al.6

allow for nonparametric multiple-output growth charts,
hence a joint inspection of several measurements as a function
of age. Let (ti, Xi), i5 1,y, n, be a random sample of
k-dimensional growth measurements Xi, along with the age ti
at which each observation was made. We are interested in using
these data to infer the depth/quantile contours of X at a given
age t0 (which may not be among the observation times). The
local constant method consists in computing the weighted
depth/quantile hyperplanes Pt0

s ¼ fxju0x ¼ bt00s C0
ux þ at0s g

minimizing, over ða; b0Þ 2 Rk, the sum

Xn

i¼ 1

wiðt0Þrtðu
0Xi%a%b0ðC0

uXiÞÞ

with u ranging over the unit sphere Sk21; the weights are of
the type considered in traditional kernel methods: wi(t0)5
K((ti2t0)/h)/h for some univariate density K and bandwidth
h. 0. For any given t0, this method yields a collection of
nested ‘horizontal’ cylinders (with respect to the t-axis), the
intersection of which with the hyperplane t5 t0 provides a
reconstruction of the depth/quantile contours of X at age t0;
such an intersection is called a t0-cut (see Fig. 5 for examples).
These cuts can be obtained exactly by means of the algorithm
and Matlab code presented in Paindaveine and Šiman.39

Application to CPP data

In this section, we present some examples to illustrate the
methods we have introduced. All the examples use data
collected from participants in the CPP from examinations at
the (nominal) ages of birth, 4, 8 and 12 months, and 3, 4 and
7 years. Here, by the ‘nominal’ age we mean the targeted age
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of the measurement; the actual age of the measurement varies
around the nominal age.

Example 1: growth velocity curves

In our first example, we use the following inclusion criteria:
female, birth weight 1800–4000 g, gestational age 37–42
weeks, non-breast-fed, maternal age 20–40 years, the mother
did not smoke during pregnancy, complete data on length
and actual examination age and increasing length measurements
with age of examination (about 1% of the subjects were exclu-
ded under this criterion). This results in a data set of p5 7
height measurements on each of n5532 subjects. As mentioned
in the ‘Growth velocities’ section, this data set is provided in the
R package growthrate,18 which also includes the code used to
produce the growth velocity curves displayed above.

Figure 3 gives the reconstructed growth velocity curves
(of length) for two subjects, and for three choices of s. The
choice s5 1 produces very tight bands, which may be
unrealistic because the growth rate is unlikely to have sharp
bends at the observation times; the more conservative choices
s5 2 and 3 allow enough flexibility in this regard and appear
to be more reasonable. Note that the s5 2 and s5 3 bands
bulge between observation times (and this is especially
noticeable in the last observation time interval), which is a
desirable feature as we would expect greater precision in the
estimates close to the observation times.
Figure 4 is based on the notion of band depth defined

at the end of the ‘Growth velocities’ section, which allows the
ordering of a sample of curves from the center outwards and
consequently to define the middle 50% of curves, general-
izing the notion of the classical boxplot to functional data.
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Fig. 3. Reconstructed growth velocity curves for two subjects in Example 1; posterior mean m̂ðtÞ (solid line), pointwise 95% credible
intervals (dashed lines) based on s5 1, 2, 3 in (a,d ), (b,e) and (c,f ), respectively; for one subject in (a,b,c), and a second subject in (d,e,f ).
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Fig. 4. Reconstructed growth velocity curves for the whole sample in Example 1 based on s5 1, 2, 3 in (a,d), (b,e) and (c,f ),
respectively; the dark line in (a,b,c) is the deepest curve, and the dark bands in (d,e,f ) are functional boxplots (representing the deepest
50% of the curves).
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An R package ‘fbplot’ for computing functional boxplots has
been developed by Sun and Genton.41 Such plots provide a
useful diagnostic tool for detecting unusual patterns in the
shape of individual growth velocity curves. In addition, the
information provided by data depth could be used to create a
variable describing the extent to which a subject has an
unusual growth pattern, and used for predicting adult health
outcomes. For example, regressing IQ at age 7 on the indi-
cator ‘not in the deepest 50%’ and adjusting for various
other covariates (birth weight, birth length and gestational
age) suggests that an unusual growth pattern is (negatively)
associated with IQ (data not shown).

Example 2: bivariate growth charts

This example is based on CPP data for 1775 girls from the
Boston site, restricted to subjects having complete data on
length, weight and head circumference. The monotonicity
of length and head circumference as functions of age was
violated (by more than 4 cm for length, and 3 cm for head
circumference) by 12 individuals; those 12 highly suspicious
observations were excluded, which still left n5 1268 complete
records for the analysis.
Figure 5 displays the multiple-output growth charts described

earlier. The two plots show the bivariate t0-cuts of the growth
trajectories of weight (kg) and head circumference (cm), and
length (cm) and head circumference (cm), at five equispaced
ages between birth and 7 years. Head circumference is on the
vertical axis in each plot. Clearly, there is a much higher cor-
relation between the pairs of variables at earlier ages than at later
ages, especially in the left panel. These plots provide a useful
diagnostic tool for detecting unusual patterns of growth in
combinations of variables, and this might not be noticed in
standard growth charts that examine each variable separately. For
example, these pictures illustrate age dependence of both the
correlation structure and the ratios of the plotted characteristics

that could not be detected from the marginal univariate growth
charts. The two plots also clearly show that marginal outliers
need not be multivariate outliers and vice versa. Consequently,
bivariate growth charts would rightly diagnose some children
with small head circumference and small length or weight as
normal even when the univariate growth charts indicated the
contrary. Needless to say, depth contours could be constructed
for any age, for example, for the reference ages or for the age of a
child under particular investigation.

Conclusion

We have proposed various new nonparametric methods for
the analysis of growth trajectories, bringing greater flexibility
and ease of implementation in existing approaches. For the
CPP data set, these methods can lead to interesting findings
about early childhood growth patterns. First, we reconstructed
growth velocity curves using an empirical Bayes technique that
adapts to data sparsity and gives a way of assessing uncertainty
in the reconstruction. Second, we discussed the use of func-
tional data depth and functional boxplots that provide useful
diagnostic tools for detecting unusual patterns in growth tra-
jectories. Finally, using regression quantiles and Tukey’s notion
of data depth, we proposed flexible and robust growth charts
for multiple variables.
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