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ABSTRACT

An adaptive filter is derived in a Bayesian framework from
the assumption that the difference in the parameter distri-
bution from one time to another is bounded in terms of the
Kullback-Leibler divergence. We show an explicit link to the
general concepts of exponential forgetting, and outline the de-
tails for a linear Gaussian model with unknown parameter and
covariance. We extend the problem to an unknown forget-
ting factor, where we provide a particular prior that allows for
abrupt changes in forgetting, which is useful in change detec-
tion problems. The Rao-Blackwellized particle filter is used
for the implementation, and its performance is assessed in a
simulation of system with abrupt changes of parameters.

Index Terms— Adaptive filtering, exponential forgetting,
maximum entropy, Rao-Blackwellized particle filtering

1. INTRODUCTION

Adaptive filtering concerns recursive estimation of parame-
ters in a parametric signal model, where the underlying goal
is to minimize the residuals, that is, the ability of the model
to predict the observations. The most common approaches
are based on optimization with algorithms such as least mean
square (LMS), normalized LMS and recursive least squares
(RLS) with exponential forgetting [1]. The classical tech-
nique of exponential forgetting [2] has many applications in
adaptive signal processing [3]. Its theoretical justification
ranges from hypothesis testing [2] to maximum entropy ar-
guments [4].

Another approach is based on optimal filtering, where a
random walk model for the parameter evolution is assumed,
leading to Kalman filter (KF) based algorithms. An interest-
ing link between these two approaches is presented in [5],
where it is shown that LMS, NLMS and RLS can be inter-
preted as KF for a particular random walk. However, the Eu-
clidian size of a move in the parameter space does not corre-
spond to how much the predictive distribution of the model
changes. For instance, the last parameter in an autoregressive

Work supported by: GACR GAP102/11/0437

Fredrik Gustafsson

Department of Electrical Engineering,
Linkoping University, Linkoping,
Sweden, fredrik@isy.liu.se

model affects the prediction much more than the first param-
eter.

In this contribution, we take a conceptually completely
different approach to adaptive filtering, where we assume a
bound (rather than a random walk) on the change in the pa-
rameter posterior density (rather than the parameter vector) at
each time step. The bound is given in terms of the Kullback-
Leibler divergence in a Bayesian framework. Surprisingly,
this leads to an algorithm with exponential forgetting, which
bears much in common with RLS. In contrast to RLS, we also
embed the noise covariance matrix and later the forgetting pa-
rameter itself into the Bayesian framework. The latter leads to
a self-adjusting adaptive algorithm that with a suitable choice
of prior of forgetting allows abrupt changes. The computa-
tional efficient marginalized particle filter [6] is used for the
joint estimation of the forgetting factor [7].

2. FORGETTING AS MAXIMUM ENTROPY
ESTIMATION

Consider observation model in the exponential family

Y ~ p(yel0r) = p(ye) exp(n(0s) - 7(ye) — ¢(64))), (1)

where y; is the vector of observations, 6, is the vector of un-
known parameters, 77(6;) and ¢(0;) are vector and scalar val-
ued functions of the parameters, respectively; p(y;) and 7(y;)
are scalar and vector valued functions of the realization y;;
the symbol - denotes scalar product of two vectors. Since
0; is time-varying, (1) may be complemented by an evolu-
tion model p(6;|0;_1) to form a complete state-space model.
However, since it is typically unknown, we follow the maxi-
mum entropy approach suggested in [4].

2.1. Measurement Update in Exponential Family

Since the likelihood function (1) for the unknown parameter
0;, is in the exponential family, we assume that the prior on 6,
is in the form conjugate to (1), i.e.

eXp(U(et)Vt|t4 - Vt|t71¢((9t))
'V(Vt|t—1a Vt|t—1)

P(Oyr:e—1) = , (@



where V;;_; is a vector of sufficient statistics and vy, is a
scalar counter of the effective number of samples in the statis-
tics. The normalization factor y(V;j;—1, V¢ ¢—1) is uniquely
determined by the statistics V;; 1 and v4;_1. Then, the pos-
terior density p(6;|y1.¢) is in the form (2) with statistics

Vije = Vije—1 + 7(ye)- 3
Vgg = Vgjt—1 + 1, (€]

Recursive nature of (3)—(4) is advantageous for on-line eval-
uation of sufficient statistics starting from a prior defined by
Vb, vo. The predictive distribution of y; is analytically avail-
able as:

pWelyre—1) = 7 Vipe—1, Vepe—1) Y Vi, i) p(ye) . (5)

2.2. Time Update in Exponential Family

Bayesian estimation of non-stationary parameters ; requires
formalization of the parameter evolution model p(6;41|6;).
The predictive density of the parameter 6, is obtained by
marginalization

p(9t+1|y1:t) = /p(9t+1\9t)p(9t|y1:t)d9t- (6)

Since the transition model p(6;41|6:) is unknown, we seek an
estimate of the marginal p(6;1]|y1.;) for many possible tran-
sition models. This has been achieved by the forgetting oper-
ator [2]. Recently, the same result has been derived using the
maximum entropy arguments in [4], which we follow. Specif-
ically, we consider p(6;41|6;) to be unknown, but implicitly
limited by the constraint that

KL(p(Ot41|y1:0)||ps (Or+1ly1:)) < K, @)

where KL is the Kullback-Leibler divergence defined as

p1(2) log (g;gg) dv.  (8)

o0

KL(nllp2) = [

— 00

0 < Kk < o0, is a known constant and

P6(9t+1|y1:t) = /5(9t+1 - et)p(9t|y1:t)p6t7 9

where 0() is the Dirac delta function. Equation (9) gives the
predictive density for the case of time-invariant parameters.
The interpretation of (7) is that we obtain an implicit defini-
tion of a class of transition models p(6;11|6;) giving predic-
tive densities p(6y11|y1.:) which are close to ps(0:+1|y1:t),
where the closeness is measured in the Kullback-Leibler
sense. A deeper discussion is provided in Section 2.3.
Following the principle of maximum entropy, we choose
to approximate (6) by a distribution p(6;+1|y1.¢) that has the
maximum entropy of all distributions satisfying (7).

Theorem 1 (Maximum entropy under KL divergence con-
straint) For a given ps(0:11|y1.¢), the probability distribution

P01 |y1:6s M) = Ps(Ors1|y1:0) pu(0r1) N, (10)

has maximum entropy of all densities p(0;+1) defined on the
same support as ps(0i11|y1.c) which satisfy (7) for a given
value of k. py(0:11) is an invariant measure of the entropy
[8] and A is a solution to the equation

KL(ﬁ(9t+1|y1:t7)\t)||p6(0t+1|y1:t)) = K. (11)

Proof: based on direct application of the Karush—Kuhn—
Tucker conditions [4].

Note that, for the special case of stationary parameters, x = 0,
yielding A = 1. For sudden changes of the parameter,
Kk — 00, A — 0 and the invariant measure p,,(6;1) has the
role of the prior density. In other cases p,,(6;+1) acts as regu-
larization.

The solution (10) is particularly advantageous in the expo-
nential family, since (10) preserves the exponential form with
statistics

Vipie = MWy + (1 — N, (12)
Vig1je = AWVipe + (1 = AV, (13)

where we assume that the invariant measure is also in the ex-
ponential form (2) with statistics v, V.

2.3. Interpretation of forgetting

Equation (12) is known as exponential forgetting, [9][2]. The
maximum entropy interpretation [4] allows a new interpre-
tation of the forgetting factor as a measure on the parameter
evolution model. Note from (7) that a single value of «; deter-
mines a class of parameter evolution models of various kinds,
including state-dependent models. The value of x may be
considered as a user specific parameter, or it may be adapted
on-line by an approximate solution of (7).

From practical point of view, forgetting has significant al-
gorithmic advantage in the closed form solution of the time
update equation (6), a property that is very rare for explicit
random walk models. However, the classical variant with
constant forgetting factor can be hard to tune and even then
inadequate for abrupt changes in the parameter values. In this
work, we interpret A as an unknown parameter of the transi-
tion model which would yield (10) under proper marginaliza-
tion (6).

3. BAYESIAN ESTIMATION OF THE FORGETTING
FACTOR

Under the assumption that the forgetting factor \; is a param-
eter of the transition model!, )\, can be estimated from data
using Bayesian techniques.

'This interpretation is exact in special cases of model (1), [10].
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Fig. 1. Example of numerically evaluated likelihood func-
tions for the example in Section 4.

3.1. Likelihood functions and prior distribution

Formally, joint estimation of #; and )\, is

p(an >\t|y1:f,) X p(yt|9t)p(0t|9t—17 At)p(ot—l |y1:t—1)p(>\t)~

however, since marginalization over 6, is analytically
tractable, the marginal posterior distribution of \; has the
form

p(At‘ylzt) 0<P(yt|)\t,y1:t71)}7()\t), (14)

where p(y:|A:) is given by (5) and p()\;) is the prior on A;.
We note that the likelihhod function p(y:|\:) is rather flat,
see illustrative example in Fig. 1. Hence, the inference of
time varying )\, is highly prior dominated. This calls for de-
tail analysis of the prior p(\;). One possibility is to assume
dependence of A; on A;—1 via p(A;|A¢—1), e.g. of the Dirich-
let form [7]. However, this prior is inappropriate when rapid
changes of the parameters are expected. In such situations,
we propose to use the following mixture model

p(Ae) = wlpl()‘t) +(1— wl)Po()\t)~ (15)

where w; denotes probability of stationary parameters (i.e.
p1(A¢) favors high values of \;), and (1 — wy) probability of
rapid change (po(A¢) favors low values of ;).

3.2. Particle filtering

Estimation of the unknown forgetting factor from the mixture
model (15) is then achieved by by the Rao-Blackwellized par-
ticle filter [11] (also known as marginalized particle filter [6]).
Specifically, we introduce indicator variable I, € {0,1} de-
noting sampling from po(-) or p1(-), with p(l; = 1) = wy.
The full posterior on 6, \;, [; is partitioned into

PO, e lelyre) = PO My yre) D w8 (e = Ao (1 —1(").

=1

where the distribution on parameters 6; is the result of forget-
ting (10), and the weights wt(l) are importance weights of the

particles:
P(yel A, yie—1)p(Nelle)p(le] 1)
I Ll =1, L1, y1ee)

where g(-) is the chosen proposal function, which is important
for computational efficiency of the filter.

; (16)

Wi

4. EXAMPLE: LINEAR GAUSSIAN MODEL

In this section, we derive forgetting for the practically impor-
tant case of normal distributed noises.

4.1. Likelihood and Conjugate Prior

Consider multivariate linear regression model

1
ye = 0ph + X7 e (17)

of d,-dimensional vector of observations %;, with unknown
matrix parameters 0; (dy X dy) and X; (dy X dy), dy-
dimensional regressor 1, containing past observations or ex-
ogeneous variables, and Gaussian disturbance e;. Likelihood
defined by (17) is conjugate with Normal-inverse-Wishart dis-
tribution prior, [0;, ¥¢] ~ NiW (v, V;). The Normal-inverse-
Wishart distribution defines a hierarchical Bayesian model:

yt|9t72t NN(eiwt)Et)v (18)
0e S0, y1 ~N (Bepe, Zoe © ) (19)
Zt‘yl:t NiW(Vt\mAﬂt) (20)

where iW(.) denotes the Inverse Wishart distribution with
mean value »; = A;;/(» — dy — 1). The quantities

éﬂt, Zy)t, Myje> vy can be recursively computed as follows
[12]:

Zoe = Zaty1 — ——— Tyt bt Zyrp 1, 21
tt i1~ T, Zue 10 21 (21
Gt = Vi Zyjs—19r (22)
N A 1

Op = Opjp1 + ———Zppe— — Ut1e—1), 23
t)t t|t—1 116 t)t 10 (ye Yt 1) (23)

Vit = Vge—1 + 1, (24)

r N
Ao = N1+ Gee—1 — Ye) (-1 — y)'. (25)

1+ G

Here, ;1 = ét|t_11/1t, and statistics of the predictive distri-
butions are:

Zyjpo1 = XN Zyqpa, ét|t—1 = ét—l\t—la (26)
Vijt—1 = Ay1ji—1+ (1 = N, Agjemr = AMy_1i-1,(27)

The predictive distribution of y; (5) becomes a multivariate
Student-t density with v;;_; — d, + 1 degrees of freedom

(28)
_%(Vt\t—l'i'l)
(ye — et\t—ﬂ/ft) )

P(ye|ve—1, Vio1)
—1
t_

Ageoq
L+ (ye — Ope—1vt) T+
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Fig. 2. Estimation of a system with rapid changes in param-
eters. Top: Simulated parameter 6, (dashed line) and its pos-
terior distribution via its mean value (thick full line) and 2std
bounds (shaded area). Mean value of estimates with constant
forgetting factor A = 0.95 is also displayed (thin dash-dotted
line). Middle: expected value of the parameter o;. Bottom:
expected value of the forgetting factor \;.

with mean value E(y;) = 9, and variance Var(y;) = (1+
Ct)At,t/(Vt\t —dy — 1)~

Note that with posterior factorized into Normal and Wishart
parts, we can choose different forgetting factors Ay and Ay,
for each equation (26) and (27), respectively.

4.2. Experimental Results

A simulated example of an autoregressive model:
Yo = O0i[ye—1,yi—2)' + oey,

with constant ¢ = 0.3 and initial parameter values 6, =
[0,—1] was used for tests. A simulation run with rapid
changes in the parameters was simulated, see Figure 2.

The estimation method was Algorithm 1, with N = 10
particles, partial forgetting with unknown A with prior dis-
tribution of An; in the form of (15) with w; = 0.95,
p1(At) = Be(100, 1) and po(A¢) = U(0,1). Forgetting fac-
tor for the variance Ay, is deterministically dependent on
ANy via Ay = H—(Ilj)\ﬁ with £ = 10, which corresponds
to k times longer exponential window. The proposal distribu-
tion for [; was multinomial with ¢(I; = 1) = 0.5.

All parameters of the invariant measure p,, (6;) were chosen
to be as uninformative as possible, i.e. Z, =0,L, = 0,v, =
1. The proposal function was chosen to make sure that in each

time at least one particle will have the )\gz) from the uniform
component. This would be unlikely if the proposal density is
equal to the prior. The same experiment with Ay y = An
exhibit much longer convergence times to the true parameters
after the rapid change. This was due to the fact that the jump
in the observations was explained by increase of variance o.

5. CONCLUSION

Maximum entropy interpretation of forgetting is an interest-
ing way of looking at the classical problem that allows vari-
ous extensions. Bayesian estimation of the forgetting factor
was proposed and its key components—the likelihood func-
tion and the prior—were examined. It was found that the like-
lihood is typically very flat and the inference is often prior-
dominated. Mixture-based prior on the forgetting factor was
therefore proposed. It was shown in simulation that a RB par-
ticle filter with as low as 10 particles is capable of estimation
of rapid changes in the parameters. However, sensitivity of
the performance to the prior distribution was also observed.
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