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Abstract (*Section*)

Contemporary economics requires using of modern methods
of analysis. Linear and nonlinear dynamic models are applied
in economics nearly one hundred years ago. Using non-linear
dynamic models is considered as a new qualitative approach,
which requires demanding apparatus of non-linear differential
equations.  As  the  parameters  of  the  economic  models  may
change we have many variants of solution mentioned non-lin-
ear models. So, not only solution of non-linear dynamic mod-
els,  but  also sensitivity  of  the solution on parameters is  the
focus of  our  interest.  Graphical  image of  the results  is  very
important and also very effective for the recognition. Mathemat-
ica seems to be convenient tool which fulfills the requirements
of researches with best results.   In this presentation we would
like to exhibit the macroeconomic analysis with help of Mathe-
matica using the example of Goodwin model.  A purpose of
this paper is to derive Goodwin’s model with a specific function
for the technological progress. This model contains two differ-
ential equations, one for share of labor dynamic and one for
rate of employment dynamics. Technological progress is a con-
stant in traditional analysis of Goodwin model but in our presen-
tation is considered as a variable dependent on time which is
worth  noticing.  We  present  four  versions  of  technological
progress and attempt to analyze them. The first version is a
traditional concept of stationary technological progress repre-
sented by  constant  rate  o  technological  growth,  the  second
approach is endogenously determined technological progress
given by  the differential  equation for  the dynamic of  growth
rate of technological progress. This way we get a system of
three differential  equations which exhibits interesting dynam-
ics.  Third  version is  deterministically  perturbed technological
growth represented by superposition of positive constant and
sinusoidal function.  Fourth version is the case of random tech-
nological progress given by a stochastic differential equation.
Our task is to show behavior of Goodwin model with four ver-
sions of technological progress and make graphical illustration
of the movement of its variables. 
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Derivation of Goodwin Model 

Types of technological progress

Equilibrium (steady state)

è Equations (4), (5), and (6) have in steady state the following

form:

                          0 = Γ@v - ΡD - g, 

                          0 =
1-u

Σ
- g - Β,

                          0=g - Α.

Barred symbols denote steady state values. A solution of the

above system of equations has the following form:

                             

                         v =
ΓΡ+Α

Γ
,  u = 1 - ΣHΑ + ΒL,     g=Α.

è
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Examples (*Section*)

Let  us  introduce  the  numerical  example  with  the  following

changes in the intervals of parameters:

Let ΑÎ[0.04, 0.06], ΒÎ[0.0, 0.02],  ΡÎ[0.85, 1], ΣÎ[11,13], Κ Î
[0,  0.1],  ΛÎ[0,08],  ΜÎ[0,0.5],  ΓÎ[2,  9]  .  The  values  of  these

parameters are chosen in accordance with economic nature

excluding  parameters  Κ,  Λ,  Μ  that  are  optional  on  important

task  how  to  disturb  the  rate  of  growth  of  technological

progress  described  by  equation  (6)  and  parameter  ΓÎ[2,  9]

which gives the speed of adaptation of the rate of employment

to  a  natural  rate  of  employment.  The initial  values are  also

given with respect to an economic empirical experience as fol-
lows:

u(0)= 0.5, v(0)=0.90, g(0)=0.05. 

In  the  following  example  the  variables  u,  v,  g  are  firstly

denoted by x1, x2, x3 and afterwards for the creation of interpo-
lating functions are labeled again by u, v, g. 
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denoted by x1, x2, x3 and afterwards for the creation of interpo-
lating functions are labeled again by u, v, g. 

è This  item  is  an  input  cell  computing  the  example  for  the
endogenously  deterministical  growth  rate  of  technological
progress
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beta = 0.01; Clear@x1, x2, x3, v1, u1, aD
Manipulate@
solution1 =

NDSolve@8x1 '@tD � Hgamma * Hx2@tD - rhoL - x3@tDL * x1@tD,
x2 '@tD == HHH1 - x1@tDL � sigmaL - x3@tD - betaL * x2@tD,
x3 '@tD � lambda * Hx3@tDL + mu Hx1@tD - 1 + sigma Halpha + betaLL,
x1@0D � 0.6, x2@0D � 0.9, x3@0D � alpha<,

8x1, x2, x3<, 8t, 0, 200<, MaxStepSize ® 0.5D;
ParametricPlot3D@Evaluate@8x1@tD, x2@tD, x3@tD< �. solution1@@1DDD,
8t, 0, 200<, PlotRange ® All,

PlotLabel ® "Model with an Endogenous Technological Progress",

AxesLabel -> 8"Labour share", "Employment rate", "The rate of tch progress"<F,

8sigma, 10, 11<, 8beta, 0.01, 0.03<, 8gamma, 2.75, 2.95<,
8lambda, -4.9, 0<, 8mu, 0., 0.1<,
8alpha, 0.04, 0.06<, 8rho, 0.85, 0.95<D

sigma

beta

gamma

lambda

mu

alpha

rho

Model with an Endogenous Technological Progress

0.5

1.0

1.5

Labour share

0.8
0.9

1.0

Employment rate

0.000.010.020.030.04
The rate of tch progress

Plot@Evaluate@x1@tD �. solution1@@1DDD, 8t, 0, 200<D
Plot@Evaluate@x2@tD �. solution1@@1DDD, 8t, 0, 200<D
Plot@Evaluate@x3@tD �. solution1@@1DDD, 8t, 0, 200<, PlotRange ® AllD

Clear@gD;

g@t_D = x3@tD �. solution1@@1DD

Clear@aD;
s1 = NDSolve@8a '@tD � g@tD, a@0D == 0<, a, 8t, 0, 200<D

Plot@Evaluate@a@tDD �. s1@@1DD, 8t, 0, 200<, PlotRange ® AllD
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88a ® InterpolatingFunction@880., 200.<<, <>D<<
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è This item is an input cell computing the example for the exoge-
nously deterministical growth rate of technological progress

Clear@x1, x2, x3D;
Manipulate@
solution2 = NDSolve@

8x1 '@tD � Hgamma * Hx2@tD - rhoL - alpha - kappa * Sin@tDL * x1@tD,
x2 '@tD == HHH1 - x1@tDL � sigmaL - alpha - kappa * Sin@tD - betaL *

x2@tD, x1@0D � 0.05, x2@0D � 0.90<, 8x1, x2<, 8t, 0, 200<D;
ParametricPlot@Evaluate@8x1@tD, x2@tD< �. solution2@@1DDD,
8t, 0, 200<, PlotRange ® All,
AxesLabel ® :"A share of labor", "An employment rate">,

PlotLabel ® "Model with an Exogenous Technological Progress"F,

8sigma, 10, 11<, 8beta, 0.01, 0.03<, 8gamma, 2.75, 2.95<,
8lambda, -0.6, 0<, 8mu, 0., 0.1<, 8alpha, 0.04, 0.06<,
8rho, 0.85, 0.95<, 8kappa, 0, 0.05<D
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Model with an Exogenous Technological Progress
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PlotBEvaluate@8x1@tD, x2@tD< �. solution2@@1DDD, 8t, 0, 200<F
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è This  item  is  an  input  cell  computing  the  example  for  the
endogenously  stochastical  growth  rate  of  technological
progress
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Clear@x1, x2, x3D

ManipulateA

solution3 = NDSolveA9x1 '@tD � Hgamma * Hx2@tD - rhoL +

Exp@Hlambda +mu H1 - x1@tDL +H1 � 2L´sigma
2

´ Halpha + betaL ^ 2L´ t +

sigma ´ Halpha + betaL ´ HRandomReal@8-1, 1<D - RandomReal@8-1, 1<DLFL*x1@tD, x2 '@tD ==

IHH1 - x1@tDL � sigmaL + ExpAIlambda + mu H1 - x1@tDL + H1 � 2L ´

sigma2
´ Halpha + betaL ^ 2M ´ t + sigma ´ Halpha + betaL ´

HRandomReal@8-1, 1<D - RandomReal@8-1, 1<DLEM * x2@tD,

x1@0D � 0.5, x2@0D � 0.5=, 8x1, x2<, 8t, 0, 200<,

MaxStepSize ® 0.5E;
ParametricPlot@Evaluate@

8x1@tD, x2@tD< �. solution3@@1DDD,
8t, 0, 200<, PlotRange ®

All, AxesLabel -> 8"

An Employment Rate", " A Share of Labor", "A Stochastic Technological Influence"<,

PlotLabel ® "A Model with an Stochastic Technological Progress"F, 8sigma, 6, 8<, 8beta, 0.01, 0.03<,
8gamma, 2.75, 2.95<, 8lambda, -1.1, 0<, 8mu, 0., 0.1<,

8alpha, 0.04, 0.06<, 8rho, 0.85, 0.95<, 8kappa, 0, 0.1<E
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PlotBEvaluate@8x1@tD, x2@tD< �. solution3@@1DDD, 8t, 0, 200<F
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Analysis of production and capital (*Section*)

In  the  above  text  the  movement  of  uHtL  and  v HtL  were  dis-
played. Now, let us see on the evolution of production and capi-
tal. 
Using (1) we obtain 

y HtL = eaHtL lHtL = eaHtL+ Βt v HtL,
where we use the following formulae 
  

v HtL =
lHtL
nHtL

, nHtL = eΒt, aHtL = gHtL .

From (1) we have   k HtL = Σy HtL.

è This  item  is  an  input  cell  computing  the  example  for  the
endogenously  deterministical  growth  rate  of  technological
progress on an generation of the production and capital

beta = 0.01
sigma = 10

0.01

10

Plot@Exp@Evaluate@a@tD �. s1@@1DDD + beta * tD * Evaluate@x2@tD �. solution1@@1DDD, 8t, 0, 200<,

PlotRange ® All, AxesLabel ® 8"Time", "Production"<, PlotLabel ® "The endogenously evolution of production"D
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Plot@sigma * Exp@Evaluate@a@tD �. s1@@1DDD + beta * tD * Evaluate@x2@tD �. solution1@@1DDD, 8t, 0, 200<,

PlotRange ® All, AxesLabel ® 8"Time", "Capital"<, PlotLabel ® "The endogenously evolution of capital"D
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è This is an input cell  computing the example for the exoge-
nously determined growth rate of technological progress on
an generation of the production and capital

alpha = 0.04;

kappa = 0.05;

beta = 0.03;
sigma = 10;

Plot@Exp@Halpha + betaL * t - kappa * Cos@tDD * Evaluate@x2@tD �. solution2@@1DDD, 8t, 0, 80<,

PlotRange ® All, AxesLabel ® 8"Time", "Production"<, PlotLabel ® "The exogenously evolution of production"D
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Plot@sigma * Exp@Halpha + betaL * t - kappa * Cos@tDD * Evaluate@x2@tD �. solution2@@1DDD, 8t, 0, 80<,

PlotRange ® All, AxesLabel ® 8"Time", "Capital"<, PlotLabel ® "The exogenously evolution of capital"D
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The exogenously evolution of capital

è This is an input cell computing the example for the endoge-
nously stochastical growth rate of technological progress on
an generation of the production and capital

calcSolution@gamma_, rho_, lambda_, sigma_, alpha_, beta_, mu_D :=

NDSolveA9x1 '@tD � Hgamma * Hx2@tD - rhoL +

Exp@Hlambda +mu H1 - x1@tDL +H1 � 2L´sigma
2

´ Halpha + betaL2L´ t +

sigma ´ Halpha + betaL ´ HRandomReal@8-10, 10<D - RandomReal@8-10, 10<DLDL*x1@tD, x2 '@tD ==

IHH1 - x1@tDL � sigmaL + ExpAIlambda +mu H1 - x1@tDL +H1 � 2L ´

sigma2
´ Halpha + betaL2M ´ t + sigma ´ Halpha + betaL ´

HRandomReal@8-1, 1<D - RandomReal@8-1, 1<DLEM * x2@tD,

x1@0D � 0.5, x2@0D � 0.5=, 8x1, x2<, 8t, 0, 200<,

MaxStepSize ® 0.5E

gamma = 2.75;

sigma = 6;

lambda = -0.6;
mu = 0;
alpha = 0.04;

beta = 0.01;
rho = 0.85;
kappa = 0.01;

solution = calcSolution@gamma, rho, lambda, sigma, alpha, beta, muD;

ggg = TableAExpAIlambda + mu H1 - Evaluate@x2@tD �. solution@@1DDDL + 1 � 2 sigma2 Halpha + betaL2M t + sigma Halpha + betaLE,

8t, 0, 200<E;

y = Table@Exp@ggg@@t + 1DD + betaD * Evaluate@x2@tD �. solution@@1DDD, 8t, 0, 200<D;

ListPlot@y, Joined ® True, PlotRange ® All, AxesLabel ® 8"Time", "Production"<, PlotLabel ® "The evolution of production"D
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ListPlot@ggg, Joined ® True, PlotRange ® All, AxesLabel ® 8"Time", "Rate of growth"<,

PlotLabel ® "The evolution of a growth rate of the technological progress"D
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