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ABSTRACT. We construct a zero-entropy weakly mixing finite-valued process
with the exponential limit law for return resp. hitting times. This limit law
is obtained in almost every point, taking the limit along the full sequence of
cylinders around the point. Till now, the exponential limit law for return
resp. hitting times, taking the limit along the full sequence of cylinders, have
been obtained only in positive-entropy processes satisfying some strong mixing
conditions of Rosenblatt type.

1. Introduction. In the last two decades, asymptotic laws for the return and
hitting time statistics in stationary processes were intensively studied. They have
been investigated mainly in the context of strong mixing properties of the process
and the results are of two kinds. First under some strong mixing conditions, the limit
distribution of return (resp. hitting) times to shrinking cylinders is exponential. See
for instance [1, 2, 13, 9, §].

In these cases, the authors are taking the limit in almost every point, along
the full sequence of cylinders around the point. The strong mixing conditions for
processes imply positive entropy.

On the other hand, there are several classes of zero-entropy processes, which do
not satisfy these strong mixing conditions and possess another limit distribution for
return (resp. hitting) times. These concern some low-complexity shifts as Sturmian
shifts, linearly recurrent shifts and substitutive shifts, where the limit distributions
for hitting times were proved to be piecewise linear. Chaumoitre and Kupsa [5]
proved that in the class of processes derived from rank-one systems, one can actually
obtain any possible limit law for return and hitting times satisfying some very weak
and natural condition described in [12] and [11]. In particular, the exponential law
can be obtained as the limit law for return and hitting times in a rank-one process.
Let us recall, that rank-one processes have entropy equal to zero.
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However, most of the results from the previous paragraph are much weaker than
results about the exponential limit law, since the limit laws are attained taking
the limit along particular subsequences of cylinders. Although the limit law is
again attained in almost every point (i.e. the limit law is still “global”), we pick
a particular sequence of cylinders around the point. This allows for coexistence
of different limit laws in one process. Indeed, an example of a rank-one system,
where all possible laws are realised as the limit laws for hitting times along suitably
chosen subsequences of cylinders, is provided in [5]. There are only a couple of
examples of zero-entropy processes, where the limit law is attained along the full
sequence of cylinders. These are the process derived from the Fibonacci shift and
processes derived from two-column rank-one constructions ([4]). In these cases the
limit law for the hitting time is piecewise linear. Taking the limit along suitably
chosen subsequences of cylinders also allows one to obtain a non-exponential limit
distribution for positive-entropy processes, see [6].

The question which we answer in this paper is whether there exists a zero-entropy
process where the exponential law is the limit law for return and hitting times
attained taking the limit along the full sequences of cylinders. Our answer is positive
and we therefore demonstrate that this behavior of return and hitting times implies
neither strong mixing conditions, nor positive entropy.

We would like to bring to the reader’s attention not only our main result, but
also the method we used to prove it. A standard way is to take the distribution for
return times (or the distribution for the hitting times) and show that it is close to
the exponential distribution E(t) = 1 —e~*. However, in our approach, we compare
the distribution for return times with the distribution for hitting times and show
that they are close to one another. We prove that, in a general situation, this
ensures that both distributions are close to the exponential one (see Proposition 1
and Section 3). We find this approach very useful, especially in the case where the
process exhibits some kind of mixing behavior. Then the hitting time should be
close to the return time, which is the conditional version of the hitting time. The
method was already used in [8]. However, it is not emphasized there.

Our paper is structured as follows. Section 2 contains our main theorem and
definitions and notations needed to state it. Section 3 is devoted to the proof and
short discussion of Proposition 1. In Section 4, we define the zero-entropy stationary
process. Sections 5, 6 and 7 are devoted to the careful analysis of the process and
its non-stationary measure, which is used in the construction of the process. These
sections provide all technical steps needed to prove the that the process possesses
the exponential limit distribution, see Corollary 4. Theorem 2.1 comes immediately
from this corollary. The appendix contains some basic analysis of the non-stationary
measure, concerning the notion of the dependency structure.

2. Preliminaries and the main theorem. Let (X, B,T, 1) be a dynamical sys-
tem, i.e. X is a set (state space), B is a o-field on X, p is an invariant probability
measure on B and T is a measurable mapping from the measurable space (X, B)
into itself which preserves the measure u. We assume that p is complete.

For a set B € B of positive measure and a point z € X, we define the hitting
time of x to B as follows,

rp(z) =min{k > 1: T*z € B},

where T* is the k-th iteration of the transformation 7. The function 75 can be
considered as a random variable on the probability space (X, B, i), or as a random
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variable on the conditional space (B, B|B,up), where B|B is the restriction of
the o-field B to the set B and up is the measure defined on B|B by the formula
up = p/p(B). The former variable is called the hitting time to B, whereas the
latter one is called the return time to B. Poincaré Theorem states the return time
to B is almost surely finite. Since the process is assumed to be ergodic, Kac Lemma
ensures the expectation of the return time to B is equal to the reciprocal of the
measure p(B). We will study the distribution functions of the suitably rescaled
return and hitting time p(B)7p:

Fp(t) =z € X+ p(B)rp(x) < t},
Fp(t)=pup{r € B: w(B)rp(z) <t}

Let A be a finite set, called an alphabet. Let AN be the space of all sequences
T = xox1 ..., T; € A, equipped with the o-field B generated by the following sets

[z(n)] ={y € A" : yo=20,51 = 21,...,Yn-1 = Tn_1}, ze A neN
On this measurable space we consider the classical shift mapping 7" : AN — AN
(Tx)i = Xi+1, X € AN,i e N.

A dynamical system (AN, B, T, i), where y is a T-invariant probability measure, is
called a finite-valued stationary process. This approach to define a process is char-
acteristic for ergodic theory. The standard notion of the process, being a sequence
of random variables, can be obtained if one considers the sequence of projections
from (AN, B, 1) onto A.

For any = € AN, one can consider the sequence of suitably rescaled return or
hitting times ([ (n)])Tzmy, 7 € N. The question is, whether these sequences
converge in distribution. It can be rephrased in terms of weak convergence of the
corresponding distribution functions Fi,(,y and F[xm)]. In order to simplify the

notation we denote these functions by F; ,, and F; ,, respectively.

We say that the distribution function F}, ,, (resp. Fz,n), n € N, weakly converges
to a right-continuous non-decreasing function F if Fy ,(t) (resp. E,,(t)), n € N,
converges to F(t) for every point ¢ of continuity of F. Since F, , vanishes on the
negative real numbers for every z € X, n € N, the pointwise limit of F ,, is 0 on
the negative reals. Hence, one can focus only on the non-negative reals. Our main
result is the following:

Theorem 2.1. There exists a finite-valued weakly mixing zero-entropy process
(AN B, T, i) such that for almost every point x € AN, the sequence of rescaled
hitting times p([(n)])Twmy, n € N, converges in distribution to the exponential
law with parameter 1, i.e.

lim F,,(t)=1-¢", t>0.

n—oo

Namely, the points x € AV, for which the theorem holds, are all the points from
the support of the measure pu, except the countable set of all preimages of the zero
sequence 0*°. For the proof see Corollary 4.

An immediate consequence of the integral equation introduced in [10] is that the
convergence in the theorem also holds for the distribution function of return times
Fm,n. In order to prove our main result, we introduce a new method based on the
following proposition.
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Proposition 1. Let (X, B,T,u) be an arbitrary ergodic dynamical system. Let
B, C B, n € N be a sequence of measurable sets which measures are positive and
converge to zero. Then the first of the following three conditions implies the other
two.

o For every t > 0, lim,_,o |Fp, (t) — Fp, (t)| =0,

e For everyt > 0, the sequence (Fp, (t))nen converges to 1 —e™t,

e For every t > 0, the sequence (Fp, (t))nen converges to 1 — e,

For the proof, see Section 3. Haydn et al. ([10]) proved that the second condition
is equivalent to the third one, and if these conditions hold then the first one holds
as well. Thus the complete picture of the situation is the following;:

e All three conditions in Proposition 1 are equivalent.

3. Equivalent condition for the exponential limit distribution. In this sec-
tion, (X, B, T, ) is an arbitrary ergodic dynamical system.

Lemma 3.1. Let BC X, u(B) > 0. Then for every t > 0,
|Fa(t) — (1— ) / \Fi(s) — Fi(s)|ds +2- u(B).

Proof. For t > 0, denote Gg(t fo (1 — Fg(s))ds and

m(t) = Fp(t) — Fp(t), 772(t) = Fp(t) — Gg(t), n(t) = ni(t) +na2(t).
We get

/0 (1-Gpg(s) —n(s))ds = Gg(t), t>0.

Since 17 and 72 are measurable (piecewise linear) and bounded, so is ). By standard
arguments from the linear ODE theory, the elementary equation above has the
unique solution G of the following form

¢
Gp(t)=1—e"~ / e*~n(s) ds, t>0.
0
In addition, n2(s) < u(B) for every s € R, see [10]. Thus,

Fu(t) — (1— e )] <Ina(t)] +[Gr(t) — (1 — )] < (B /| 5)|ds

SM(B)+/ et (s )|ds+/ o (s)| ds

/Im )l ds + (B >/ et ds

O

Proof of Proposition 1. Let B,, C B, n € N be a sequence of measurable sets which
measure is positive and converges to zero. Assume that for every s > 0, the differ-
ence |Fp, (s) — Fp,(s)| tends to zero. Fix t > 0. By Lemma 3.1,

|Fp, (1) — (1— )| < / \Fis, () — Fp, (s)] ds +2 - u(By).
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The integrands |Fp, — F B, |, n € N, are bounded by the constant function 1, which
is integrable on the interval [0,¢]. By Lebesgue’s dominated convergence theorem,
the integral on the right hand side of the inequality tends to zero, so the left hand
side also does. Since the second and the third condition in the Proposition are
equivalent, the proof is finished. O

4. Definition of the process. Let us introduce some necessary notations for
symbolic dynamics. For n € N, a word (or block) of length n over the alphabet
A is any finite sequence u = ug...u,_1 of elements from A. The set of all words
of length n is denoted by A™, the length of u is denoted by |u|. The length of an
infinite sequence v € AY is formally defined to be 4+o00. The set of all words of all
lengths is denoted by A*, i.e. A* = J,cyA"”. The concatenation of two words
u,v € A*, denoted simply by wuv, is a word from Al**!°l such that (uv); = w; if
i < |u|, and (uv); = v;_y| if |u| <7 < |u| + |v|. The concatenation of k copies of a
word u is denoted by u*. For u € A* U AN, m,n € N, m < n < |u|, we define the
word u(m,n) € A"~™ by

u{m,n); = Upm+i, 0<i<m-—n.

The language of u, denoted by L(u), is a subset of A* consisting of words u({m,n),
where m < n < |u|. These words are called subwords of u. The subword (0, n)
will be denoted in the shorter way u(n). For a set S C A* U AN, the language of S
is defined as the union of the sets L(u), u € S.

For n € N, u € A", we denote the cylinder given by u as follows,

[u] = {y € AN Yo = U, Y1 = Ul - -+ Yn—1 = Up—1}-

This definition is an analog to the definition of the cylinder [z(n)] in the previous
section. We will also deal with some measurable partitions of AN, For I C N, we
define the partition P(I) as follows: Two elements z,y € AN belong to the same
set from P(I) if and only if x; = y;, for every i € I. For m,n € N, we denote

P(m’n) = ,P([m’ n))7 P(?’l) = P([Ovn))a P = P(l)v

where [m,n) and [0,n) are left-closed right-open intervals of integers. For every
n € N, the partition P(n) consists of the cylinders [u], u € A™.
From now on, we reserve the symbol A for three-element alphabet {0, 1, 2}.

4.1. Non-stationary measure. We will define a stationary process by averaging
a non-stationary one. Both processes will have the alphabet A = {0,1,2}. First,
we define an auxiliary sequence (a,)22 ; of natural numbers

o, = max{k € N: 2% divides n}, n=123,...
This sequence looks as follows
a = 01020103010201040102010301020105.. . .

Proof of the following simple fact stating some properties of the sequence « is
left to the reader.
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Fact 1. Let n,m e N, m>1and 1 <i < 2" Then
Qp.m = Qi + Qg (1)

Qon i = (2)

-
d aj=2"—1. (3)
j=1

The sequence « possesses the non-overlapping property, i.e.
alk,k+n) =a(l,l+n) = |l — k| > n.

The non-overlapping property will ensure that return times of cylinders in a process
introduced below are not too small.

Let (b,)%; be a sequence of powers of 21, increasing fast enough to satisfy the
following condition

n
lim by /iHlbi = . (4)
This condition is not needed until Section 7, where one can find the last steps of
our main result’s proof, see Lemma 7.1.

We denote by ’ the permutation on A = {0, 1,2}, which permutes 1 and 2. This
permutation is called the negation. We extend the mapping to words over A and
to sequences from AN. This extension is defined letter by letter, i.e. it commutes
with the concatenation and 7'. We remark, that the symbol 0 has a special role in
this mapping, it is a fixpoint.

In addition, we inductively define a sequence of numbers (ax)° ; and a sequence
of families of words Ay C A* k> 0. Put a9 = 1 and A9 = {1,2}. For k& > 0,
k1 = 2bgyr1ak + 2bg1 — 1 and Ay consists of all words of the form

w(1)09w(2)0%2 . . (b1 )0%+1 (w(1))0%k+1+ (w(2)) 041+ . (u(bpyy)) 0% k41,

where u(i) € Ay.
We define a measure v on B by defining its values on the set of generators of B.
Let £k € N and u € A% then

v([u]) = 1/# A, ifue A,
B 0, otherwise.

Since every word from Ay has the same number of prolongations in Agy1, the
function v is additive on cylinders and the definition is correct. The support of the
measure (we consider the standard topology on AN generated by all cylinders [u],

u € A*) equals
supp v = ﬂ U [w].
keENue A

The language of the support is denoted by £, i.e. £ = L(supp v) = L (UkeN Ak).

Lemma 4.1. For k € N, the negation is a permutation on Ay.
For > 1, every word u € A4y can be written as follows

!
w=u(1)0u(2)0% ... u(p(k,1))0%tn p(k,l) = H 2by4, u(i) € Ay.
i=1

TWe will say that a number n is a power of 2 if n = 2% for some natural k.
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In particular, the support of v is invariant under the negation and for every
x € supp v, k€N,

x =u(1)0%u(2)0* ..., u(i) € Ag.
Proof. The negation is injective. By the inductive construction of families Ay,
k € N, they are invariant under the negation. Hence, the negation is a permutation
on Ajg. It implies that the second part of the lemma holds for [ =1, k € N.

Now, we assume the second part of the lemma holds for some [ > 1 and every
k € N. Take u € Ag4;+1. By the inductive assumption,
u=ov(1)0"v(2)0% ... v(p(k +1,1))0% ¢+t v(i) € Ak
Using the inductive assumption again, there exists sequence of words u(j) € Ay
such that for every i < p(k +1,1)
v(i) = u((t — D)p(k, 1) + D)0 u((@ — D)p(k,1) +2)0°% ... u(ip(k,1))0%*xD .,
Thus,
u=u(1)0"u(2)0%2 ... u(p(k + I, )p(k,1))0%rt+t0pk0
where for every 1 < i < p(k+1,1), 1 < j < p(k,1), the following equality holds
s aj7 lfj<p(k7l)a
i—1)p(k,l)+j = e
( )p( )+] ap(k:J) + ai7 lfj = p(k)l).

Since p(k, ) is a power of 2, (1), (2) and the above yields 5(;_1)p(k,1)+j = Qi—1)p(k,i)+j-
The equality p(k,l + 1) = p(k,)p(k + 1, 1) concludes the proof. O

The lemma tells us at which position we can expect the occurrence of words from
Ap. This could be reformulated in the notion of the coefficients

(0)=0,  z(i) =iax+ Y o5, i keN
j=1

By the definition of aj and by equations (1)—(3), we get the following arithmetic
properties of the coefficients

zk(2" - m+i) = 2,(2" - m) + 25 (3), k,m,n,i € Nji < 2™, (5)
ak = 2zk(1),  zpa(m) = zx(m-p(k,1)),  mkleNEk <L (6)
These properties will be often used throughout the text.

The following fact can be easily proved by looking at the construction of the
process.

Fact 2. For every k,i € N, x € supp v,

x(zk(2), 2k (1) + ax) € A, x(zp (1) + ag, 25 (i + 1)) = 0¥+t
4.2. Extension of a rank-one system. To understand better the measure defined
in the preceding section, we consider the continuous projection 7 : AN — {0, 1}

that works letter by letter and is defined on symbols as follows: 7(0) = 0 and
m(1) = 7(2) = 1. By Lemma 4.1, given k > 1, for every word u € Ay,

w=u(1)0%u(2)0% ... u(p(0, k))0*»©r) u(i) € Ag ={1,2}.

Thus, all words from A; have the same m-image w(k) = 109110%2...10%©.»).
Denote w(0) = 1. By the inductive definition of Ay, k € N, we get

w(k +1) = w(k)0* w(k)0** ... w(k)0*?s+1, ke N.
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Since w(k + 1) is a prolongation of w(k), the limit w = limy_,. w(k) exists. The
point w is generic for a rank-one (non-atomic) measure on {0, 1} (see the symbolic
definition of a rank-one system in [7]). This measure is positive on every cylinder
[u], v € L(w). By standard Chacon’s arguments, see [3], one can show that the
rank-one system is weakly mixing and 1/2-rigid. Since v(r~{w}) = 1, we can
reformulate the facts about the rank-one measure in the following way.

Fact 3. Let B € B be m-measurable. Then for every n € N, T"v(B) € {0, 1}.

Moreover, Cesaro averages 1/n 2?701 T'v weakly converge to a probability measure

on the o-field of all m-measurable sets. The limit measure is invariant and weakly
mixing with respect to T
For every u € L, the limit measure of the set 7~ !7[v] is positive.

We will show that the Cesaro averages weakly converge on the whole o-field
B. The following lemma plays an important role. Its proof is introduced in the
technical Section 5.

Lemma 4.2. Foru € L, there exists 0(u) > 0, such that
T"v([u]) = 0(u) - T"v (' x[u]), neN.
Lemma 4.3. Measures %Z;:Ol T'v weakly converge.

Proof. Let uw € L, then for every n € N,
1 n—1 1 n—1
- Tz' =0 - " —1
- go v([u]) = 6(w) ; v(r ™ wlul),

where 0(u) is the number from Lemma 4.2. Since 7~ !(x[u]) is an open-closed -
measurable set, the Cesaro averages on the right hand side converge. Thus, the left
hand side also converges. If u ¢ £, then T%v([u]) = 0 for every i € N. Thus, the
Cesaro averages converge. O

The limit measure from Lemma 4.3 will be denoted by . Fact 3 and Lemma 4.2
imply that
SUpp {1 = supp v, L( supp p) = L
and
0(u) = pr—rn(up(lu]),  we L (7)
Proposition 2. The system (AN, B, u, T) is weakly mizing.
Proof of this Proposition is presented at the end of Appendix.
Lemma 4.4. The entropy of the system (AN, B, T, u) equals zero.

Proof. 1t suffices to estimate from above the number of words from the language £
of length n, for an infinite sequence of natural numbers. Fix k € N, v € L, |v]| = ay.
Since every x € supp v is of the form u(1)0* % (2)0%2 ..., where u(i) € N, the word
v has to be a subword of u0'% for some u, @& € Aj;, and i < aj. Hence, the number of
words from £ of length ay, is bounded by 2a3 - (# Ak)2. The entropy of the system
log(2a3 - (# A)?) 2log(# Ax) lim 2 Hf:l bi

< li = lim =2
M) < Jin, a AT e AT o
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5. Language analysis. For this section, let u be a word from £, such that u is
not a block of zeros. There exist natural numbers g, mg,m1, ..., mq and symbols
u(i) € {1,2}, 1 < i < g, such that
u=0"u(1)0"u(2)0™2 ... u(q)0™.
The numbers and the symbols are unique and ¢ > 1. For the rest of the section, we
define agp to be 0.
Denote

Qu) ={t e N: a;4; =mj for every 1 < j < g and a; > myg, i q > Mg},

E(u) ={z0() —mo: i € Qu)}.
Since 7(u) = 0™010™110™2...10™s and w = 0%010*110%2 ..., we get the following
lemma.

Lemma 5.1. The image 7(u) appears in the sequence w only at positions from the
set Z(u).

Lemma 5.2. If mg = 0, then there exist go,g € N, such that g is a power of 2,
g > go and
Q(u) = {go + ng, n € N}.

More precisely, g is the mazimum of the union {2™1 j=0,1,...,¢—1}U{2ma}.
Proof. By the definition of the sequence «, for every j =1,2,...,q— 1,

Qi ={ieN: ay; =m;} ={(2k+1)2"™ —j, ke N}.
In addition,

Qg ={ieN: aj1q>my} ={(k+1)2™1 —¢q, k € N}
Since mo = 0, the condition a; > mg holds for every i € N and Q(u) is equal
to the intersection of the sets ©;, 1 < j < ¢. Each of these sets has constant
gaps between consecutive elements, which are bigger than the value of the smallest
element. Their intersection is either empty (which does not happen for u € L) or
has the same property. Gaps in the intersection are also constant and are equal to
the least common multiple of the gaps in the sets themselves. Since gaps in every
set ©;, 1 < j < g, are powers of 2, the gap ¢ in the intersection is equal to the
maximum of the gaps 2™ and 2™ 1, j =1,...,¢ — 1. Hence, there exists gy < g,
such that Q(u) = {go + ng, n € N}. O

The number g from the previous lemma will be called the order of u.

Corollary 1. Let mg = 0 and g, go be the numbers from the previous lemma. For
n € N, denote {(n) = 20(ng + go). Then {(n) = 20(ng) + z0(go),
E(u) = {&(n) : n € N}. In addition, the following inequalities hold
z0(ng) < €(n) < z0(ng) + 20(g) — ay,
§(n+1) = &(n) = 20(9),
£(n) + [ul < 20(ng) + 20(9)-

Proof. First part of the corollary follows from (5) and from the fact that g is a
power of 2. We prove the inequalities. Let n € N. Since 0 < gg < g — 1, we get

z0(ng) < €&(n) < z0(ng) +20(9 — 1) = 20(ng) + 20(9) — 1 — g
< z0(ng) + 20(g) — .
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By the definition of zx(¢) and (1)
-1

9 g
En+1) —&(n) = 20((n+1)g) = 20(ng) = g+ D Angti = 9+ Uiy + )
i=1 i=1

g-1 9
=g+an+1+ag+2ai 294—20@- = 20(9).
i=1 i=1

Finally, we assume that &(n) + |u] > z9(ng) + z0(g). The right hand side of the
inequality is equal to zo((n+1)g) —an+1 (use (1)). By the definition of the sequence
w

0% 19 = w(zo((n+1)g)—(n+1)g, 20((n+1)g)) = wlzo(ng)+20(g)—ay, 20((n+1)g)).

In particular, w(zo(ng) + 20(g9) — o, 20(ng) + 20(g)) = 0%¢. By the assumption and
the first inequality of the Lemma, the interval [zo(ng) + 20(9) — o, 20(ng) + 20(g)]
is a subset of the interval [£(n),&(n) + |u|). Moreover, w(¢(n),&(n) + |u|) = 7(u)
and m(u) = 10™210™2 ... 10™q. It implies, that the word 0% a is a subword of 7(u),
for some a € {0,1}. If a = 0, then m(u) contains 0%+, Thus, m; > «,, for some
j < q. By the definition of g, g > 2™ and g = 2%, it is a contradiction. If a = 1,
then 0%¢1 occurs in m(u) and m; > «y, for some 1 < j < g. For such j, g > 2™
and this is a contradiction with a fact g = 2%. O

Now, we can prove Lemma 4.2.

Proof of Lemma /.2. Let u € L. Since [u] is a subset of 7~ ([u]), then by Lemma
5.1 for every n & Z(u), T"v(r *n([u])) = T"v([u]) = 0. On the other hand,
T v(n~ 7([u])) equals 1, for every n € Z(u). We need to prove, there is a constant
0(u) > 0, such that for every n € E(u), T"v([u]) = 0(u).

There are three cases: u is a block of zeros, u begins with a non-zero letter and
u contains a non-zero letter, but not at the very beginning.

Suppose that u is a block of zeros, than [u] is mT-measurable and the lemma holds
with 6(u) = 1.

Let u begin with a non-zero letter. Let g, go be the numbers from Lemma 5.2
and n € N. By Corollary 1, the interval [{(n),{(n) + |u|) belongs to the interval
[20(ng), z0(ng) + 20(g)). By Lemma 7.12, T*("9)y equals v on P(z0(g)). Thus,

Ty ([u]) = T2 20000 [u]) = T[]

The last term does not depend on n. We put 8(u) = T%090)y([u]).

Let u begin with 0, but it is not a block of zeros. Then u = 0™°u(1)0™* ... u(q)0™q,
for some natural numbers ¢, mg, mq,...my, where ¢ > 1 and u(i) € {1,2}, for
i < q. Denote v = u(1)0™*...u(q)0™s. The set [0™°] is m-measurable and has
T"v-measure 0 or 1 for every n € N, thus

Tv([u]) = T ([0 ] N T ]) = T v (0" )T (T~ [v]).

We have proved in the paragraph above that T7v(T~"°[v]) € {0,6(v)}, hence
T"v(u) € {0,0(v)}. We put 0(u) = 0(v).

Finally, we prove that the constant 6(u) is positive. Since u € L, there exist
n € N and z € supp v, such that z(n,n + |u|) = u. It implies that T"v([u]) > 0,
adding the fact that 6(u) equals T"v([u]) finishes the proof. O
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6. Closeness of return and hitting times. Fix v € £, which does not begin
with zero. Let g be the order of u. For ¢t € N we define

t

V(L) = JT " [ul.

=1

The aim of this section is to prove that the measures pp,) (V' (1,%)) and pu(V(1,1))
are close and thus the distribution function of return times of [u] is close to the
distribution function of hitting times of [u]. The latter is a sufficient condition for
a distribution function to be exponential, see Proposition 1.

The following lemma is a corollary of the fact, that for every measurable set
A C X, the total variation distance between p and px\ 4 is equal to p(A).

Lemma 6.1. For everyt € N,
[V (L,1)) = px\joea) (V (1, 8)] < p([0%]).
Lemma 6.2. For everyt € N,
|x\fora] (V(L,8)) = i) (VL 1)) | < 2 prtmpa([u])-

Proof. By the definition of w, the block 0% appears in w exactly at positions from
the following set

NN U [20(ng) — ang, 20(ng) — o).

n=1

For n > 1, let I,, denote the following interval of integers
I, = (20(ng) —ayg, 20((n+1)g) —(ni1)) NN = (20(ng) — g, 20(ng)+20(g) —g) NN.
Let I = U, ey In- We get
I={neN: Try(X\[0%]) =1}
N\I ={neN: T"v(X\[0%]) =0}.

Fix n € N. Recall that numbers £(n) are elements of the set Z(u) and they
all depend on the block u. By Corollary 1, £(n) belongs to I,,. Suppose j € I,,.
Symmetric difference of the intervals

U+ 17+t and [£(n) +1,6(n) +1]
consists of two intervals J; and Jy (possibly empty), which lengths satisfy
|1l = [Jao| = |j = E(n)] < [Ln].

Since |I,,| < zp(g) and the gaps in Z(u) are at least zo(g) (Corollary 1), we get that
each set, E(u) N Jy and E(u) N Ja, consists of at most one element. Hence

TV (1,1)) — TEWu(V(L,1))| = ’u(T*jV(l,t)> - V(T’E(”)V(l,t)ﬂ
=(V(i+1j+1) —v(V(En)+1,&n) +1))]
<v(V(1))+v(V(]))
< ety (1)) - (#(31 NE(w) + #(2 1 2(w) )
<2 fir-1 () ([u])-
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We have
1 )
wx\joeo](V(1,1)) = lim —————— Tv(V(1,t
1 )
= lim T'v(V(1,t))
n— 0o #(Iﬂ [0 Zo( ) Oég)) ieInlo, Z(J;Lg)—ag)
= lim ——M— T'v
i s 2
and
. 1 i
prtnuy (VL) = lim ———————— Y T'w(V(L1))

n—oe #(E(u) N[0, n))

1€2(u)N[0,n)

1
— lim - £(m) (v
= nlglgo - g T y(V(1,t)).

m=1

For every m > 1, #I,,, = zo(g) — 1. Hence,
px\foes] (V (1, 2)) — erw(u)(v(l t))’

<limsup s Z 3 ‘Tl — TV (1,1))

n—oo N ZO

m=1i€l,,
< limsu 2 (| < 21y ([1]).
P lz(g) — 1) nzlez; f =t (u]) ([U]) < 2bm—1 ) ([u])

O

Lemma 6.3. Let k be the biggest integer, such that p(0,k) < g. Lett € N, such
that t < (bgto — 1)agy1. Then

tm e () (V (1, 8)) = g (V (L 0) | < gy ([]) -

Proof. Let k be the integer, such that p(0,k) < g < p(0,k + 1), t < (bgga —
1)ak+1. The numbers p(0, k), g, p(0,k + 1) and b1 are powers of 2, p(0,k + 1) =
2bi11p(0, k). Hence, there exist ¢’, ¢” € N, which are also powers of 2, such that

9=9'p0,k), pO0,k+1)=g"g.  g'g"=2bps1, ¢ <brt1.
Fix m € N. Since ¢’ divides 2bg1, then
[z(mg’), ze((m + 1)¢')) C [zr+1(M), 2k+1(m + 1)), where m/ is the integer part

of mg’'/2bgy1. The former interval will be denoted by K7, the latter one by Kj.
Denote the following intervals

J =[&(m) +1,§(m) +1) N E(uw),
K5 = [zk(mg’ + big1), zr((m + 1)g" + biy1)),
Ko = [zgp1(m' + 1), zipg1 (m' + brs2)).
We will prove the following conditions:

T8 [y] is P(K})-measurable with respect to v,

V(J\K) is P(K3)-measurable with respect to v,

V(JN K \K}) is P(K;\(K}] U K}))-measurable with respect to v,
v(V(JN KN KS)) <0(u), v(T-¢"™ ] NV (JN Ky NKS))=0.
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By Corollary 1, £(m) + |u| < zo((m + 1)g) = zx((m + 1)g’). Hence, the first
condition holds. In addition, zx((m + 1)¢’) < zg+1(m' + 1) and

E(m) + |u| +t <zpg1(m' + 1) + (bpr2 — 1)ars1
m’+1

=(m' + 1)ag41 + Z a; + (bpt2 — 1)ag41
i1
m'+byio
<(m' + bgto)ak+1 + Z a; = zpy1(m' + bypo).
i1

Therefore, J\K; C [zi+1(m' + 1), zk41(m’ + bgy2) — |u|) and the second condition
holds.
Since ¢’ divides 2by. 1, there is [ € N, such that

zi((m+1)g') = ze((m' + 1)2bg11) = 251 (m +1).
The set J N K1\ K} can be written as follows,
JNKN\Ky={&m+i): 1<i<l—1,ig # bry1}-

For every 0 < i <1 —1, &(m +14) + |u| < zu((m + i+ 1)¢') and T+ [y is
P(zi((m +14)g"), ze((m + i + 1)g’))-measurable w.r.t. v. Thus, V(J N K1\K}) is
P(M)-measurable w.r.t. v, where

-1
M = Jlz((m+1)g"), zi((m + i + 1)g)\[z1(mg’ + b)), z((m + 1)g' + brir))
i=1
=[ze((m +1)g'), 2p41(m’ + 1))\ K5.
Since M is contained in K7\ (K] U K%), the third condition holds.
It remains to prove the forth condition. Let ¢ € N be such that ig’ = bgy1. If
i > 1, then J N K7 N K and the forth condition holds. Assume ¢ <! — 1. Then
J N K; N K} contains only the number £(m + i). Hence, V(J N K1 N K}) equals
T—¢m+)[y]. Therefore, the first part of the forth condition is true. Now, assume
that the second part does not hold, i.e.
(T~ [u] 0 T D y]) > 0.
In particular, v(T~¢0™[a] N T=("+)[a]) > 0, where a = up € {1,2}. Obviously,
zi(mg') > zpr1(m') = 2z (Mm'2bk11). In addition,
zi(mg’ + b)) = zi((m +14)g") < zi((m +1)g) = 2e((m + 1)2bg41).
Thus, there is 7 < bg11 such that mg’ = m/2bi11+r. We get the following equation,

£(m +1i) — £(m) =20((m +i)g) — 20(mg) = zk((m +14)g’) — 2x(mg’)
=2 (m/2bgs1 + 7+ bry1) — 21 (M 2b 1 + 1)

bk+1 T
=2(r 4 bpp1) — 26(r) = berae + Y @i+ >,y
j=r+1 j=1
b1 r b 41
:bk+1ak + E a; + Qj = bk+1ak + E Q;
j=r+1 j=1 j=1

=bpt1ax + bry1 — 1 = (a1 —1)/2.
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Let x € supp vNT =™ [a])NT 6™+ [q). By Fact 2, 2(z511(m’), zps1(m') +ags1) €
Aj1. Thus, the first part z(zg41(m'), zkp1(m') + (ar+1 — 1)/2) is the negation of
the second part z(zk+1(m') + (ar+1 — 1)/2, zg+1(m’) + (ar+1 — 1)). In particular,
T¢(m) is the negation of ¢ (y,4.4). This contradicts the fact that x¢(m) = Temii) = @
(compare with Lemma 7.5). Hence, the second part of the forth condition holds
too.

When all the four conditions are proved, we continue with the proof of the lemma
as follows. By Lemma 7.12, the partitions P(K;) and P(K3z) are v-independent.
Moreover, partitions P (K7 \(KjUK})) and P(K}) are v-independent and both are
coarser than P(K7). It implies, that the partitions P(K;\ (K] U K})), P(K7) and
P(K>) are mutually v-independent. Hence, the sets V(J N K1\K5), T~ ([u)])
and V(J\K;) are mutually v-independent. We calculate

(T[] NV ()
=y(T~4 [u] N (V(J N Ky N K} UV (JNEKN\K)) UV(I\KY)))
=v(T~"[u] N (V(J N E\K3) UV (J\K1)))
=(T~ " [u])u(V(J\(K1 N K3)))
and
v(V(J)) =v(V(JN K NKy)UV(J\(K;NKY})))
=v(V(J\(K1N K))) +e,
where

0<e=v(V(JNK NKH)\V(J\(K1NK}))) <v(V(JNKNKY))) <0(u).

Since V(£(m) 4+ 1,&(m) + t) = V(J) modulo v, the following inequality holds,
V(T[] NV (E(m) +1,€(m) +1))

0(u)
The inequality above holds for every m € N. By equation (7),

fa=1rqu (W] N V(L T)

AV (E(m) + 1, £(m) + t))] < O(u).

) (V(1,8)) = prn—1m(up (V (1, 1)) =

I t>>\

Mom— 171'([u])([ ])
= lim imz Ty ([u] NV (1,1)) fimz )|
m—oo | m =0 Mr—17 u)([ m i—0
m— 30 m m
< limsup% Z Ui Ol Vf((u)) +1,E60m)+t)) —V(V(ﬁ(m)—i-l,f(m)-l-t))’
m— o0 i—0
< limsup - 3 8(u) = 0(u) = -1 (0],
m—o0 i—0

Combining Lemmas 6.1, 6.2 and 6.3 gives the following result:

Lemma 6.4. Let k be the biggest integer, such that p(0,k) < g. Lett € N be such
that t < (bg+2 — 1)agy1. Then

[V (L8)) = g (V (L8| < Bt () + 2(0°7]).
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7. Exponential limit distributions for return and hitting times. Denote
X" = (supp p)\(Ui2y T70>), X” = X’\[0]. Let z € X”. The words z(n), n > 1,
belong to £ and begin with a non-zero letter. We denote the order of the word
x{n) by g(x,n) (for the definition, see Lemma 5.2). The maximal integer k such
that p(0, k) < g(x,n) is denoted by k(z,n). Since |z(n)| < zo(g(z,n)), we get that
g(z,n) and k(z,n) tend to infinity with n increasing to infinity.

Lemma 7.1. For every x € X"
i p(2(n) - Ok(am)+2 - A(an)+1 = 00
Proof. Let k € N. By the construction of the sequence w,
W{aktm) = w(k)0* w(k)0* ... w(k)0Yrtm)

for every m € N. The number of occurrences of w(k) in the word above is p(k, m).
Thus, by ergodicity

k k
e ) = tim i 22 i g p (m)
m—00  Qk4m m—o0 p(kam)ak + Zi):fm @
= lim inf plk,m) > 1

m—oo p(k,m)ay + p(k,m) -1~ ap +1

Let x € X", n € N. We denote k = k(x,n), u = z(n) and £(7) relates to the
block u. By Corollary 1 and equations (6)
€(0) + |ul < 20(g(x,n)) < 20(p(0,k + 1)) = ar1.
Thus, 7¢O ([u]) is P(agi1)-measurable. It implies that there exists v € Agiq
such that u is a subword of v. We get,
1

pllul) 2 a0o]) = s () - e Tk 1) 2 gy

Thus,
br(z,n)+2 * Ck(z,n)+1
# Ar(zn)+1 - (Ap(zny+1 +1)
bk(z,n)+2 k()41
[1Fem+y, ar@msr +1

By equation (4), the right hand side tends to infinity, when n goes to infinity. So
does the left hand side. O

LL(iC<’I’L>) : bk(m,n)—l—? * Ok (z,n)+1 >

Lemma 7.2. Let x € X'. For every k € N, there exists u € Ay, which is a subword
of x.

Proof. Let x € X', k € N. Since x is not eventually equal to 0, there exist a subword
of z of the form u(1)0%1w(2)0% ... u(p(k,1))0%¢0  where u(i) € {1,2}. This word
also belongs to £, thus by Lemma 4.1 there exists j € N, such that s; = a4, for
every ¢ < p(0,k). Surely, there is ¢ < p(0, k), such that ¢ + j is a multiple of p(0, k).
For this 4, s; > aypo,r)- Thus 0970 is a subword of x. Since x is not eventually
equal to zero, there exists m € N such that x(m,m + a,(r) + 1) equals 0%r©» 1
or 0%r©:»2. Denote u = x(m, m + apk) + ax). Then, there exist y € supp v and
m' € N, such that y(m',m’' + apor) + ar) = u. But this could happen only for
m’ € E(u). Since

u=0"u(1)0™ u(2)0™ ... u(q)0™, u(i) € {1,2}, mo = apok),
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we get
Qu) C{n € N: an > am, = apor)} = {20(np(0,k)) : n € N}
Hence, there exists n € N such that m’ = zo(np(0,k)) — ap(o,x) = 2k(1n) — p(o,r)
(use (6)). Then
z(m + ap(o,k), M + Qp(o,k) + Ak) =U(Qp(0,k), Xp(0,k) T+ k)
:y(m' -+ Qp(0,k) m' + Qp(0,k) + ak)
=y(zr(n), zr(n) + ax)
By Fact 2 the last term belongs to Aj. O
Lemma 7.3. For alln € N, for each u € Apn, pr—1x(u)([u]) = ﬁ
For all blocks u,v € L(suppp) such that v is a subword of u holds
=1 () ([W]) < pr=1r o) ([V])-

Proof. Fix n € N and u € A,,. By Lemma 4.2 and by the fact u € A,,, we get
O(u) =v([u]) = ﬁ. Now, let u be an arbitrary block from the language L£(supp u)
and let v be its non-empty subword. Take the cylinders defined by the words u and
v. There exists an integer i € N such that [u] C T~¢[v]. There exist j € N such that

p=r((u) ([u]) = TPv((ul) < TIw(T~"o]) = T w([v]) < 0(v) = pr- o)) ([0)-
O

Corollary 2. Forx € X',

n— oo

Proof. Fix ¢ > 0. Take k € N so large that # A; > é By Lemma 7.2, there exists
N such that the word xz(n) contains some u € Ay as a subword. By Lemma 7.3,
for every n > N, the following inequalities hold

fr—tn (o)) ([F()]) < prtnaiy) ([EN)]) < prtngup (W) = 74 <e

Proposition 3. For every x € X", t > 0, |F, ,,(t) — Fy o (t)| tends to 0.

Proof. Fix x € X"”,t >0 and € > 0. Let N € N be such that for every n > N, the
following conditions hold:

o t < p([z(n)]) - (brzn)+2 — 1)  Gk(zn)+1, (Lemma 7.1),

° Mﬂ_lw([w(n>])([x<n>]) < % (Corollary 2))

e u([09®™]) < £ (u is non-atomic).

We simplify the notation and denote z(n) = u, t' = e = ey and Vo=
Ul“:/{ T~[u]. We have
Fon(t) = Fon ()] = [F (¢ - w([u]) = Fg (¢ - p([u])

= iy € [ul : () <t} —ply € X 7y (y) <t} = | (V) — w(V)]-
But [#'| < (bk(z,n)+2 — 1) * @g(z,n)+1- Hence, by Lemma 6.4,

ﬁx,n(t) - Fw,n(t)‘ < N([Oag(z’n)]) + 3Nw—1w([u])([u]) <e
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Corollary 3. Forx e X", t > 0, Frn(t) and Fy ,,(t) tend to 1 — e, whenever n
tends to infinity.

Lemma 7.4. Let x € X'. There exist N,ng € N such that xn # 0 and for every
n > ng, the sets [x(n + N)| and [2(N,n + N)] are equal modulo p.

Proof. Let x € X'. If 29 # 0, then the lemma is trivial. Otherwise,
= 0Nu(1)0™u(2)0™2 ..., where u(i) € {1,2}, N,m; € Nand N > 1. Put g = 2%,
no =g+ 9 mi, u=a(N+ng), v=a(N,N+ng). We will prove that

Tu([u)) = T Nw([]),  jeN. (8)

If j+ N & Z(v), the inequality is trivial. Let j+ N € E(v). Since w = 10*110%2 . . .,
where o; > N only when ¢ is a multiple of g, we get that the word

7 r(u) = 0N 10™10™2 ... 10™9

can appear in w only at positions zo(gn) — N, n € N. It implies that for every i < ¢,
by (2) holds m; = agnts = o < N. On the other hand m, > N. Hence,

7 tr(v) = 10%1102 ... 10%.

The word v appears in w exactly at the positions from the set Z(v) = {z9(gn),n €
N}. We get that j + N = ng, for some n > 1. But o,y > n and

V(T ION]) = p(T~ 20 EN[N]) > (T~ 20t ans [pens]) = 1.
Hence,
V(T u]) = (T[N N T3 N) = (TN o)),

The inequality 8 is proved. Now, let n > ng. Similarly, one can prove that the
following equalities hold modulo T7v, for j € N

T Nx(N,N+n)] =T No]nT N [x(N +ng, N + n)]
=[] NT V=" [x(N +ng, N + n)] = [z(N + n)].

Finally
p([2(N, N +n)]) = w(T~N[z(N, N +n)))
N = S
:ﬂgaﬂTwTNMMN+mn
1 k—1 )
= Jim TN + ) = k(N ),

Corollary 4. Forz € X', t >0, F, ,(t) and F, ,(t) tend to 1 — e~*, whenever n
tends to infinity.

Proof. Let x € X' and N,ng € N be numbers, for which the previous lemma is
satisfied. Denote y = T™Vz. Then y € X" and for every n > ng, [z(N + n)] equals
[y(n)] modulo p. Thus, for every n > ng, the functions F, yi, and Fy , are the
same. By Corollary 3, for every t > 0, F}, ,,(¢) tends to 1 — e, and so does the
sequence Fy (). O
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Appendix. Dependency structure on coordinates. The mutual dependence
among partitions 777 P, j € N, with respect to the measure v, can be described
through a non-reflexive, symmetric and transitive relation on the set of coordinates
N, which is an equivalence relation on @ = {j e N: w; =1} = {20(¢) : i € N}.

First, we define the direct dependency symmetric relation D. We say, that co-
ordinates i,7 € N are directly dependent ((i,5) € D), if 4,j € @ and there exist
k,m € N such that

i,j € [zk(m), zg(m) 4+ ar) and |i—j| = %(ak —1).

The dependency relation D on N is the transitive envelope of D. We remark that
this relation is a subset of Q% and it is an equivalence on Q. For I C N, we denote

D(I)=|J{ieN: (i,j)e D}, D) =|J{jeN: (i,j) €D}
iel icl
Since D is an equivalence on @, the family D = {D(i) : i € N} is a partition of Q.

The number of sets from D crossing I is denoted by d(I). Again, for an interval of
integers I = [m,n) we omit brackets and write D(m,n) = D(I) and d(m,n) = d(I).

Lemma 7.5. For j € N\Q, Tv([0]) = 1. In particular, the partition T—I P is
trivial with respect to v. For j € Q)

Tiv([1]) = T9v([2]) = 1/2.

Ifi,j €N, (i,j) € D, a € {1,2}, then v(T " [a] N T [a]) = v(T~%[a]) = 1/2. In

particular,
TP =T"7P=P(D®)) mod v.

Proof. The first part of the lemma follows from definitions. Since the measure v is
invariant under the negation, v(T[1]) = v(T~*[2]) = 1/2 for every i € Q.

Let (i,j) € D. In order to prove, that v(T~[a] N T~7[a']) equals v(T~*[a)),
a = 1,2, we prove that for every = € supp v, 2} = x;. Let k,m € N be such that
i,j € [zr(m), zx(m)+ax) and |i —j| = §(ar —1). By Fact 2, z(zx(m), zx(m) +ay) =
u € Ay. Denote i =i — z;(m) and j' = j — z,(m). Since u($(ar —1),a), — 1) is
the negation of u(%(ay — 1)), we get o} = u}, = uj = x;.

It also implies that T~ P equals T~/ P modulo v. We consider the relation on
N defined as follows: (i, ) € N? is in the relation if 77 P equals 77/ P modulo v.
Since this relation is transitive and contains D, it contains D too. Thus, for every
(i,7) € D, T~*P equals T—7 P modulo v. It implies, that P(D(i)) equals T~¢P
(mod v). O

We denote the following sets, k € N,
D(k)={y e NV (Vi < k)5 < 2b41, (Vi > k) =0},
I'(k) ={y €T(k): (VieN)y <biy1},
r=Jrw, 1©=UTr®.

keN keN

We define the mapping ¢ : ' — Q by

() = Z zi(7i)-

=0
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The mapping is well defined what follows by two facts. The first is z;(0) = 0, for
every i € N and the second is the equality which can be deduced from equations
(5) and (6)

Zzz(%) =20 (Z Yi 'P(O,i)> ) yel.
i=0 i=0

By the same arguments, the mapping ¢ is a bijection. Moreover, for every k € N, ¢
maps bijectively I'(k) onto @ N[0, ax). The following lemma is an easy observation.
Lemma 7.6. Let k € N, v,v € I". The following conditions are equivalent

o v, =7, for everyi >k,

o there exists m € N such that ¢(y) and ¢(vy') belong to [z (m), z(m + 1)).
Lemma 7.7. Let k € N, v,7" € T. Assume that v, = ~}, for every i # k,
Vi — V6 = brt1. Then ((v), 9(v')) € D.

Proof. Let the number k € N and the sequences 7,7 € I'(k) satisfy the as-
sumptions of the lemma. Denote by m the integer which satisfies the condition

zpr1(m) = 3272, 11 zi(7i). Then the differences ¢(7) — zx41(m) and ¢(y') — zx41(m)
are bounded from above by the term
k
Zi(2bi+1 — 1) < Ak41-
=0
Thus, ¢(7), ¢(v') € [zk+1(m), zg+1(m + 1)). In addition, by (5) (use the fact that

= 2 (bk+1) = bpr1ak + g1 — 1 = (ar+1 — 1)/2.
Thus, (6(7),¢(7)) € D. B
Using the fact, that D is a transitive envelope of D, one gets the following lemma.

Lemma 7.8. Let 7,7 € I' and v; — v € {0,bi11}, for every i € N. Then
(0(7), ¢(7)) € D.

This lemma has the following corollary.
Corollary 5. For every v € T’
D(¢(7)) = {Z zi(vi +wibigr) : wi €{0,1}, Y w;i < oo} .
i=0 i€N
The sets D(¢(7)), v € IV, are pairwise disjoint and cover all Q.
Combining this corollary with Lemma 7.6 gives the following technical lemmas.

Lemma 7.9. Let k,m,m’, j,j' € N be such that (j,j') € D, j € [21.(m), zx(m + 1))

and j' € [z(m'), z(m' +1)). Then b1 divides |m —m'|. Moreover
bk+171
Ak (), sn(m b)) = S d(op(m+ i), slm o+ + 1),
i=0

d(zp(m~+1), z(m + 2bg41))
:d([zk(m + 1), ze(m + bry1)) U [z (m + bpgr + 1), 26(m + 2bk+1)))
+ d([z(m + bt1), 26 (m + bey1 + 1))).
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Lemma 7.10. For k,m € N, v € T'(k),

k—1
D(zk(m)+ (7)) N [zk(m), zx(m+1)) = {Zk(m) + Zzi(%‘ +wibi+1),wi € {0, 1}} :
=0
The sets D(zip(m) + ¢(7)), v € T'(k), are pairwise disjoint and cover all Q N
[zk(m), z(m + 1)).
In particular, d(zx(m), zi(m + 1)) = p(0, k) /2*.

Lemma 7.11. Partitions P(E), where E runs over all equivalence classes of D,
are mutually v-independent.

Proof. Let k € N. Elements of the partition P(ay) consists of the cylinders given
by the words from Ag. By the definition of v all elements of partition P(ay) have
the same measure. Thus, we can easily calculate the entropy of the partition

k
H(P(ax),v) = logy(# Ar) = logy (21=1%) = T] by
=1

On the other hand, the sets D(j), j € ¢(I"(k)), cover @N|0, ar). Hence, the joining
of the partitions P(D(j)), j € ¢(I'(k)), is finer than P(ay). In addition, by Lemma
7.5, H(P(D(3)),v) = 1, for every j € ¢(I''(k)). Hence,

H(P(ax),v) <H [ \/  PDG).v|< Y. H(PDG)),v)
JEH(TV(K)) JEH(IV(K))

k
= #o(I"(k)) = ku.

Since the first term of the inequality above equals the last one, all the terms above
are equal. In particular, the partitions P(D(j)), j € ¢(I'(k)), are mutually v-
independent and this is true for every k € N. Since D(j), j € Upen IV (k), are all

classes of the equivalence D, the lemma holds. O
Corollary 6. For every I CN, H(P(I),v) =d(I).

Lemma 7.12. For everyn,m € N, the measure T*("2")y is equal to v on P(2(2")).
In particular, for every k,m € N, T*(™y s equal to v on Plag).
Moreover, the partitions P(zr(m), zx(m + 1)) and
P([ze(m + 1), ze(m + brg1)) U [z (m + begr + 1), 2 (m + 2bj11)))
are v-independent.
Proof. Let m,n € N. Let k denote the biggest integer such that p(0, k) < 2™. Then

2™ = Ip(0, k) for some | € N, such that ! divides bgy1. Of course, [ is a power of 2.
Let = € supp v. Using (1) we get

x{zo(m2™), zo((m 4+ 1)27)) =z, (ml), zi.((m + 1)1))
:u(]_)()amz+1u(2)0aml+2 o u(l)0a<m+1>l
=u(1)0* u(2)0%% ... u(l)0* 0 tm+D

for some u(1),u(2),...,u(l) € Ag.

Denote
U = {u(1)0*u(2)0% ... u(l)0* : u(i) € Ag}.
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For every v € U, |v| = z,(I) = zo(2™). Thus,
P(20(m2"), zo(m2") + 20(2")) = {T~™2" [v],v € U} modulo v.

This partition is equal to P(zk(ml), zi((m + 1)I)) modulo v, because the partition
P(zr(ml) + zi(1), z((m + 1)1)) is trivial. By Lemma 6, Lemma 7.9 and Lemma
7.10,

log,(#U) = log2<<# A)h) = logy (211 04)1) = 1p(0, k) /2"
_ZH (ze(ml + 1), zp((ml + i+ 1)1)), v)

= H(P(Zk(ml% ze((m +1)1)), v).

This is possible only when v is constant on the partition {7-™2"[v],v € U}. Hence,
foru € U, v(T~™2"[v]) = 1/#U. The value 1/#U does not depend on m, therefore,
the first part of lemma holds.

Now, let k,m € N. By Corollary 6 and Lemma 7.9, the partitions P(zp(m), zx(m+
1)) and

P(lzi(m + 1), zx(m + bg1)) U [z6(m + b1 + 1), 2k (m + 2bg41)))

are v-independent. O

Proof of Proposition 2. To avoid lengthy expressions, we denote

w(n, B, C)

S\H

Z (BNT™C) — w(B)u(C)|, neN, B,Ce B.

Let u,v € L(supp p), € > 0. We will prove that there exists n; € N such that for
every n > ny, w(n, [ul], [v]) < be.

Let B = 717 ([u]) and C = 7~ n([v]). By a standard Chacon’s argument one
can show that the rank-one factor is weakly mixing. Thus, there exists ng such that
w(n, B,C) < ¢ for every n > ng.

Let

E={(i,j) € N>+ D([i,i+[ul)) N[i+j,i+j+v]) # 0O}

A pair (4,7) belongs to E if and only if P[i,i+ |u|) and Pli;, i+ j + |v]) are v-
dependent. In particular, for (i,7) ¢ E holds

V(T ] T []) = v(T " [u]) - (T~ [0]).
In addition, we denote
Bin={j<n: (i,j)€E}, Ej,={i<m: (i,j)€FE}.

By Lemma 7.10, the upper Banach density of D(i) is bounded by 2¥/ay, for
every k € N. Hence D(i) has Banach density equal to zero. Hence, the sequence
#E, ,/n converges to 0 uniformly in ¢, when n goes to infinity. Therefore, there
is n1 > ng such that for every n > n; and every ¢ € N, densities #E; ,,/n are less
than 2.

Let n > ny. For every m € N

U (i} x Ein) = EN([1,m] x [1,n]).

i=1
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Hence, the density of E in the rectangle [1,m] x [1,7n] is less than 2. Thus, there
are less than € - n rows among [1,m] x {j}, 1 < 7 < n, such that the density of
EN([1,m] x {j}) is bigger or equal to e. In other words, the set

My, ={j<n: #Ej,/m>¢e}

satisfies #M,,/n < e.
From now on, we will use the notation a = b+ o(e) instead of |a — b| < e. Take
m € N such that for every j < n holds

1 f:Tiu(B NTC) = u(BNT™IC) + o(e),

i=1
—ZTZ u NT 7 [v]) = p([u] N T [v]) + ofe).

If j € [1,n]\Mp,, i € [1,m]\E},,, then

v(T~ ] N T~ o)) = w(T~" [u)) (T~ [v])
pp([)v(T ' B)pc(v)r(T~77C)

= ug([u))uc(W)r(T'BNT~7IC)
ps([u)nc ()T v(BNTC).

T ([u] N T~ [v])

= of¢) +uB<[u1>uc<[v1>% > TWBNTO)

1

+E Z (TZ ([u] N T [v]) — #B([u})uc([v})TiV(BOT*J'C))
i€B’
=0(2¢) + ps([u)uc(lv ZTﬁ (BNT~9C)

= 0(3¢) + pp([u)) pc(WH(BNTTC).

Finally, for every n > nq,

w( Z|u JNT[w]) = pp([ul)po(P)u(BNTIC)

+un (D> 3 (0B OTC) — u(B(C)

] 1
<MB([ Duc([v))w(n, B, C) + 3¢
+f > |l n T ) = ps([u)) pe(W)u(BNTIC)|

]EM
<de + #M,,/n < be.
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