
Chapter 1

Restoration in the presence of unknown

spatially varying blur

MICHAL ŠOREL

Department of Image Processing
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Prague, Czech republic
sorel@utia.cas.cz

FILIP ŠROUBEK
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1.1 Introduction

The last two decades brought significant progress in the development of efficient methods for classical

deconvolution and super-resolution problems in both the single and multi-image scenarios. Most of these

methods work with blurs modelled by convolution, which assumes that the properties of blur are the same
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in the whole image (space-invariant blur). Unfortunately, in practice, the blur is typically spatially variant.

The most common types of space-variant blur are defocus, optical aberrations and motion blur caused by

either camera motion or motion of objects.

Extension of deconvolution methods to spatially varying blur is not straightforward. What makes such

restoration problems more challenging than in the case of the space-invariant blur, is a much higher number

of unknowns that must be estimated. Consequently, the solution is ill-posed and requires additional con-

strains that must be chosen depending on the type of blur we wish to suppress. The requirement to remove

only certain types of blur while keeping others is surprisingly common. A typical example is the removal

of motion blur from portrait pictures taken in low-light conditions while keeping a small depth of focus.

Similarly, it is usually desirable to remove optical aberrations but we may wish to preserve motion blur

conveying the sensation of speed.

In the last few years, despite the complexity of space-variant deblurring, we can observe an increasing

effort in this direction of research, including difficult problems such as the blur dependent on the depth of

scene or several independently moving objects. In this chapter, we give an overview of the current state of

the art in the space-variant restoration, addressing the latest results in both deblurring and super-resolution.

The chapter is divided into two main parts. In Sec. 1.2, we describe mathematical models used for

spatially varying blur and basic restoration approaches connected with these models. Our purpose is not

to give a complete survey of all known algorithms, instead we just briefly outline the models and point out

interesting papers that appeared in the last several years to indicate the current trends in the research of

space-variant restoration. Among others, we introduce models describing the blur caused by camera motion

by three-dimensional kernels analogous to those used in standard deconvolution algorithms and models used

for complex scenes consisting of several independently moving objects.

The second part of this chapter (Sec. 1.3) details a new approach to space-variant super-resolution for

images blurred by camera motion or any other blur changing slowly enough so that it can be locally modelled

by convolution. It is one of the first attempts to apply true super-resolution to data with space-variant blur.

1.2 Blur models

The previous chapter addressed general problems of image restoration, including deconvolution that assumes

space-invariant blurring, working with model

g = u ∗ h+ n (1.1)

where g and u are the blurred and sharp (original) images, respectively, h is a convolution kernel and n a

white Gaussian noise N(0, σ2).
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Figure 1.1: Spatially varying PSF for motion blur caused by camera shake. The image was acquired in a

dark room by taking a picture of an LCD displaying regularly spaced white dots.

Spatially varying blur can be described by a general linear operator

g = Hu+ n (1.2)

The operator H can be written in a form naturally generalizing standard convolution as

[Hu](x, y) =
∫
u(x− s, y − t)h(s, t, x− s, y − t)dsdt (1.3)

with the point-spread function (PSF) h now dependent on the position (third and fourth variable) in the

image. Vice-versa, convolution with a kernel h̃(s, t) is a special case of (1.3) with h(s, t, x, y) = h̃(s, t) for

an arbitrary position (x, y). Note that the convolution kernel h in (1.1) is sometimes also called a PSF. In this

chapter, we reserve the expression PSF for h in (1.3), which is a function of four variables. It is consistent,

however, to use the term kernel for the function h(s, t, x0, y0) taken as a function of two variables with

fixed x0 and y0, when the operator H can be locally approximated by convolution with h(s, t, x0, y0) in a

neighborhood of the point (x0, y0).

In practice, we work with a discrete representation, where the same notation can be used with the

following differences: PSF h is defined on a discrete set of coordinates, the integral sign in (1.3) becomes a

sum, operatorH corresponds to a sparse matrix and u to a vector obtained by stacking columns of the image

into one long vector. For convolution, H is a block-Toeplitz matrix with Toeplitz blocks and each column

of H corresponds to the same kernel. In the space-variant case, as each column corresponds to a different

position (x, y), it may contain a different kernel h(s, t, x, y).

Figures 1.1 and 1.2 show two examples of space-variant PSFs. Both images were acquired by taking
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Figure 1.2: Defocus PSF acquired by deliberately defocusing an LCD covered by regularly spaced white

dots. Vignetting clips the polygonal shape of the PSF, especially on the periphery of the field of view.

a picture of an LCD displaying regularly spaced white dots. Fig. 1.1 was taken from hand with a long

shutter time. The smears we can see correspond directly to locally valid convolution kernels, i.e. the PSF

h on fixed positions. Three close-ups show the PSF in the top left, top right and bottom left corners of the

LCD for fixed coordinates (x1, y1), (x2, y2) and (x3, y3), respectively. Fig. 1.2 is an out-of-focus image of

the same LCD, which gives again the corresponding PSF. Notice the irregular shape of the PSF, caused by

vignetting. While the darkening of corners due to vignetting is a well known problem of wide-angle lenses

at wide apertures, it is less known that vignetting affects also the PSF, cutting off part of its circular (for full

aperture) or polygonal shape giving significantly asymmetrical PSFs.

If we know the PSF, we are able to restore the image. As described in the previous chapter, the most

common Bayesian approach achieves this by picking the most probable image u, which is equivalent to

minimization

arg min
u

1
2σ2
‖g −Hu‖2 − log p(u) (1.4)

where p(u) is an estimate of the prior probability of u. For super-resolution, which requires multiple input

images gi, the solution is of the form

arg min
x

1
2σ2

∑
i

‖gi −DHiu‖2 − log p(x) (1.5)

where D is an operator modeling resolution loss and Hi the operator of blurring corresponding to input gi.

Note that all efficient numerical algorithms minimizing (1.4) and (1.5) require the knowledge of the operator
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Figure 1.3: If the PSF varies slowly, we can estimate convolution kernels on a grid of positions and approx-

imate the PSF in the rest of the image by interpolation of four adjacent kernels.

Figure 1.4: Original sharp image (left) and the same image blurred by simulation of camera rotation (right).

adjoint to H

[H∗u](x, y) =
∫
u(x− s, y − t)h(−s,−t, x, y)dsdt (1.6)

For details, see [1] describing a more general form of (1.4) and (1.5) that includes the process of image

registration, image distortion, etc.

In practice, we usually do not know the PSF and it must be estimated. For the space-invariant blur,

we can use one of many elaborated blind deconvolution methods [2, 3, 4]. Estimation of the space-variant

PSF in its general form (1.3) is too complex and ambiguous. As a rule, it cannot be expressed by an

explicit formula but in many cases it has a special structure that can be exploited. For example, the blur

caused by camera rotation is limited by three degrees of freedom of rigid body rotation. If we have an

estimate of the camera rotation from inertial sensors, we are able to reconstruct the PSF and deblur the

image using equation (1.4) as described by Joshi et al. in [5]. Nevertheless, the authors also report that
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Figure 1.5: PSF h(s, t, xi, yi) rendered at 25 positions (xi, yi).
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Figure 1.6: Graph of the MSE as a function of the number of kernels used for PSF approximation.



Restoration in the presence of spatially varying blur 7

Figure 1.7: Deblurring of the right image from Fig. 1.4 using (from left to right) 1, 2 and 3 kernels per image

width. Obviously the occurrence of artifacts decreases with the number of kernels.

motion tracking using inertial sensors is prone to significant errors accumulating over the time of capture

and resulting PSF is not precise enough to get artifact-free images. It is not clear if these problems are due

to principal limitations, camera hardware or the algorithm used for integration, though. Another possibility

is to attach an auxiliary high-speed camera of lower resolution to estimate the PSF using for example optical

flow techniques [6, 7, 8].

Unfortunately, in practice, we mostly do not have external sensors or devices providing information

about the PSF and the PSF must be estimated directly from the input images. In the rest of this section,

we describe the properties of the PSF for the most frequent types of blur and corresponding strategies to

estimate the PSF.

There are several types of blur that can be assumed to change slowly with position, which allows to

approximate the blurring locally by convolution. Under this assumption we can estimate locally valid con-

volution kernels that give us a local estimate of the PSF. This usually holds for motion blurs caused by

camera shake and optical aberrations. For defocus it holds for approximately planar scenes.

The kernels are usually estimated at a set of regularly spaced positions (see Fig. 1.12), using one of

already mentioned blind deconvolution methods, working either with a single image [2, 3], or more precise

methods working with multiple images [4]. If it is possible to change camera settings, we can also fuse

information from one blurred and one noisy/underexposed image [9, 10, 11].

Once the local convolution kernels are computed, they can be used to estimate the PSF for an arbitrary

position (x, y). The simplest possibility is to divide the image to a set of regularly spaced patches, each with

an assigned convolution kernel. The main problem of this approach are blocking artifacts appearing at patch

boundaries.

One way to deal with these artifacts is to assign the estimated kernels just to patch centers (instead of

the whole patch) and approximate the PSF h in intermediate positions by bilinear interpolation as indicated
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in Fig. 1.3. Accuracy can be improved by first bringing the estimated kernels into normalized positions

(which can be advantageously accomplished by means of regular or complex moments of the PSF’s, see

[12]), performing bilinear interpolation, and then returning back the kernels to their original position.

An advantage of this solution is that the PSF changes smoothly, thus avoiding the blocking artifacts.

Moreover, the corresponding operator H can be computed in time comparable with the time of standard

convolution using the fast Fourier transform (FFT) [13, 14]. The main reason are simple formulas for blur

operators created as a linear combination of a finite set of convolution kernels. Indeed, if the PSF h is

defined as a combination of kernels
∑

iwihi, then

Hu =
∑
i

(wiu) ∗ hi (1.7)

H∗u =
∑
i

wi(u ∗ hci ) (1.8)

where the symbol hci denotes the convolution kernel hi rotated by 180 degrees. For linear interpolation, the

weight functionswi satisfy the constraint
∑

iwi(x, y) = 1 for an arbirtrary position (x, y), andwi(x, y) = 1

in the center (x, y) of the window where the kernel hi was estimated. In our paper [11], we show how to use

this model to deblur an image, if another underexposed image taken with sufficiently short shutter time is

available. The same model in a more versatile setup working with only one input image and using a recent

blind deconvolution method [15] is shown in [16].

Hirsch et al. in [17] show that this model also allows to compute the operator adjoint to an operator U ,

acting on a vector h consisting of all vectorized kernels hi and satisfying Uh = Hu. In theory, this could be

useful in blind algorithms estimating simultaneously all kernels hi. The practical value of this relation was

not shown, though.

Here, we demonstrate a simple deblurring experiment that indicates the feasibility of the interpolation of

kernels. The left image in Fig. 1.4 was blurred by simulating an irregular camera rotation about x and y axes,

giving the right blurred image. Fig. 1.5 depicts the PSF h(s, t, x, y) by rendering the function h(s, t, xi, yi)

as a function of the first two parameters at 25 positions (xi, yi).

Next, we deblurred the image in the standard Bayesian manner (1.4) with total variation regularization

[18]. The PSF was approximated by linear interpolation of k convolution kernels, where the number k was

varied from 1 to 10, using relations (1.7) and (1.8). For k = 1, it corresponds to standard deconvolution

using the kernel valid in the image center. For k = 5, the algorithm works with the kernels shown in

Fig. 1.5. Fig. 1.6 shows the mean square error of the result decreasing as k increases. Fig. 1.7 shows the

resulting images for k = 1 . . . 3. In Sec. 1.3 we will demonstrate that the same approach can be used for

super-resolution as well.
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This approach is relatively fast and can be used for most types of blur. Certain limitation is that the local

estimation of the convolution kernels can fail because of weak texture, sensor saturation or for example

misregistration. In the following section, we show the special properties of the blur caused by camera

motion that can be used to estimate the PSF in a more robust way. However, this is achieved at the expense

of higher time complexity.

1.2.1 Camera motion blur

The blur caused by camera motion is limited by six degrees of freedom of a rigid body motion, most

commonly decomposed to three rotations and three translations. The main obstacle when dealing with

this type of blur is that for translations, the blur depends on scene distance (depth). As a consequence,

under general camera motion, we need to estimated the depth map, which makes the algorithm complicated

and very time consuming. Nevertheless, there are algorithms that work satisfactorily, assuming certain

additional constraints on the camera motion. For example [1] shows results of deblurring for the blur caused

by camera translatation along an arbirtrary curve in one plane and for the out-of-focus blur. We refer the

interested readers to [19, 1, 20] and references therein.

In the following paragraphs, we describe more practical approaches that use the fact that certain types

of camera motion can be neglected in practice. Most common assumption is that all camera translations

can be neglected, making the blur independent of scene depth. For example, for pictures taken from hand,

Joshi et al. [5] tested exposures up to half a second and found that the typical translation in the direction of

view (z-axis) was just a few millimeters in depth and had only very small effect for lenses of common focal

length.

The assumption of negligible translations was used to compute the PSF for example in the above men-

tioned paper [6], getting the information about camera motion from an auxiliary high-speed camera and in

[5] using inertial sensors for the same purpose. The same holds for papers [11] and [16] mentioned in the

previous section.

Assuming only rotations, the simplest way is to transform the image so that the blur becomes a con-

volution and apply common deconvolution techniques. An immediate example is rotation about the optical

axis (z-axis) that, expressed in polar coordinates, corresponds to one-dimensional translation. Therefore any

blur caused by such a rotation can be described by one-dimensional convolution. Similar transforms can be

written for rotations about an arbitrary fixed axis. In practice, however, camera motion is rarely limited

to one axis. Moreover, the interpolation necessary to transform the image is an additional source of error

introduced into the process.

A more versatile approach applied only recently is to express the operator of blurring in a specially
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chosen set of basis images ui

Hu =
∑
i

uiki (1.9)

which allows to work with spatially varying blur in a manner similar to common convolution. The images

ui correspond to all possible transforms (rotations in our case) within a specified range of motions. Note

however that unlike common convolution such operators do not commute. The functions ki are referred to

as kernels or motion density functions.

Whyte et al. [21] consider rotations about three axes up to several degrees and describe blurring by

the corresponding three-dimensional kernel. For blind deconvolution, the algorithm uses a straightforward

analogy of the well know blind deconvolution algorithm [2] based on marginalization over the latent sharp

image. The only difference is the use of (1.9) instead of convolution. For deblurring, following the kernel

estimation phase, it uses the corresponding modification of the Richardson-Lucy algorithm.

Gupta et al. [22] adopted a similar approach but instead of rotations about x and y axes consider trans-

lations in these directions. Because of the dependence of translation on depth, they require that the scene

is approximately planar and perpendicular to the optical axis. Interestingly, in this case it is not necessary

to know the real distance because the corresponding kernel works in pixel units. They first estimate locally

valid convolution kernels by the original blind deconvolution algorithm [2] and compute the corresponding

sharp image patches. In the second step, they estimate the kernels ki from (1.9) using the knowledge of

both the observed image and an estimate of the sharp image made up of the uniformly distributed patches

from the previous step. They do not use all patches but choose iteratively a subset of patches and check

consistence with the rest by a RANSAC-like algorithm. The image is regularized by standard smoothness

priors applied separately on derivatives in x and y directions. The kernel is regularized to be sparse by a

‖.‖p norm applied on kernel values and to be continuous using a quadratic penalty on kernel gradient.

An obvious advantage of the kernel model (1.9) is that it is very robust with respect to local non-

existence of texture as well as local inaccuracies of the used model – sensor saturation for example. On the

other hand, it may be considerably more time consuming than algorithms based on local approximations by

convolutions described in the previous section and used also in the super-resolution algorithm we propose

in Sec. 1.3. The bottleneck is the computation of all possible image transforms that must be repeated many

times – basically in each step of the algorithm. Another disadvantage is that the actual motion may be more

complicated and it is difficult to combine (1.9) with other models.

1.2.2 Scene motion blur

An especially difficult situation is that of the blur caused by object motion, as objects usually move indepen-

dently of each other, often in different directions. In order to achieve good quality of deblurring, the object
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must be precisely segmented, taking into account partial occlusion close to object outline. Moreover, ob-

ject blur may appear simultaneously with the blur due to camera motion causing another, possibly spatially

varying, blurring in the background.

Similarly to other types of blur, the algorithms differ according to the available input. Single-image

approaches are attractive because of its ability to work for example with pictures already taken. The quality

of restoration is limited, however, because of insufficient information and principle ambiguity. True super-

resolution is impossible. Multi-image approaches, working usually with a video stream, can achieve a higher

quality of restoration. On the other hand, the involved registration is an additional source of possible errors.

A frequent simplifying assumption is that the background is sharp, which holds when the camera is fixed

(surveillance cameras) or mounted on a tripod stand. In addition, the blur of each object is often modeled

by a standard convolution. An attempt in this direction was [23], using level-sets to segment the objects and

ignoring the occlusion. Super-resolution was considered in [24], limited to known and negligible PSF.

The blur caused by one moving object on a sharp background, includding occlusion, can be described

by a relatively simple formula [25, 26]

g = f ∗ h+ (1− w ∗ h)b (1.10)

where f and b are the foreground and background images, h the convolution kernel of the foreground and

w is the support of f corresponding to the area of the foreground object. The values of w are 0 for the

background and 1 for the foreground.

Deblurring using even such a simple model is not easy. Raskar et al. [25] give a detailed analysis of

possible cases, including the most ambiguous when the extent of blur is larger than the size of the moving

object. Of course, for several moving objects or a blurred background, the situation becomes even more

complicated.

In recent years, several papers appeared describing deblurring methods that work with only one image.

Of course, the model is even more simplified by ignoring the oclussion effect. The objects are segmented

based on various intensity, color or blur cues.

Most of the methods follow the pioneering paper of Levin [27]. She assumed that objects move with

a constant velocity and are therefore blurred by a one-dimensional rectangular kernel. The distribution of

derivatives then changes as a function of the width of the blur kernel. The algorithm first estimates the

direction of motion as the direction with minimal variation of derivatives [28]. The image is then segmented

based on the statistics of derivatives expected in an average natural image.

Chakrabarti et al. [29] extend the ideas from [27]. Again, all objects are assumed to be blurred by

the same motion kernel being chosen from a discrete set of possible candidates corresponding to horizontal
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or vertical box filters of certain length. To describe the likelihood of a given window to be blurred by a

candidate kernel, they propose a more elaborate likelihood measure based on Gaussian scale mixtures. This

likelihood is combined with statistical distributions for object and background colors described by a mixture

of Gaussians into a MRF model with smoothness constraints.

Dai and Wu [30] came with an interesting constraint, analogous to optical flow constraint equation,

that links the gradient of the blurred image with a difference of the sharp image in the direction of blur.

The formula again holds for motion blurs that can be locally described as a convolution with a rectangular

impulse. Derivation is straightforward, based on the fact that the derivative of a rectangular impulse is zero

everywhere except the beginning and end of the impulse, where it is equal to plus and minus Dirac delta

functions. The relation can be written as

(∇g) · b = u(x+ b/2)− u(x− b/2) (1.11)

where b is the locally valid vector of motion blur – it has the same direction as the motion kernel and its

size is equal to the length of the kernel. The dot in (1.11) denotes the dot product of vectors. The authors

show that almost any optical flow algorithm that uses the optical flow constraint can be modified to work

with (1.11) as well. They detail variants considering global motion models (affine and rotational) as well as

a nonparametric model.

Liu et al. [31] locally detect and classify motion blur using a set of cues, including the local slope

of power spectrum, gradient histogram, maximum saturation and variance of autocorrelation function in

different directions. The image is classified to blurred and non-blurred regions based on the decision of

a Bayes classifier, previously trained using a set of training images. Authors combine the results with a

segmentation method based on graph cuts [32] and show examples of results superior to [27].

1.2.3 Defocus and aberrations

The last important type of blur is defocus and related optical aberrations. Readers are probably familiar with

the basic properties of out-of-focus blur, in particular that the ideal PSF has a circular shape (often called

pillbox in literature) and the inverse of its radius grows linearly with the distance from the plane of focus.

In practice, the PSF is given by convolution of diaphragm shape with a diffraction pattern. Basic equations

related to these PSFs are summarized in [1]. Note that here we do not consider more complicated optical

systems such as confocal microscopes, where the PSF is three-dimensional [33].

Compared to the motion blur, there are much fewer papers addressing the restoration tasks for out-of-

focus blur. There are several probable reasons. The first one is that the PSF depends on object distance.

Consequently, to deblur the image, we need to estimate also the depth map, which makes the problem

complex and time-consuming. The respective algorithms are described in [19, 1, 20] and references therein.
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Figure 1.8: Three types of PSF symmetry for defocus and optical aberrations for a symmetrical optical

system.

Second, the single-image blind deconvolution algorithms needed to estimate the PSF are less reliable than

for the motion blur and using more than one image is less practical. Finally, the results of deblurring are not

so impressive, because defocus destroys most information contained in high frequences.

Interestingly, there are special cases, where the problem of defocus is formally the same as the problem

with moving objects mentioned in the previous section. Gu et al. [34] remove the blur caused by dirty lenses

or thin occluders such as window shutters or grilles. Both cases can be modeled by the image formation

model (1.10), originally formulated for an object moving on a sharp background. In this case, the dirt or

an occluder corresponds to the foreground object f , this time blurred by a defocus PSF. For thin occluders

in a known distance, they need two images with different apertures. For the dirty lenses, they estimate

the occluder f by calibration using projected patters or by autocalibration from a long sequence of video

images.

The PSF of optical aberrations is much more complicated than that of pure defocus and it is mostly im-

possible to describe it by an explicit formula. Quite often, all we can say about the PSF are three symmetries

caused by the rotational symmetry of common optical systems – see Fig. 1.8. First, the PSF in the image

center is radially symmetric. Second, the PSF is axially symmetrical about the axis connecting the image

center and the position, where the PSF is measured. Finally, the PSF in the same distance from the image

center differ only by orientation. In practice, the PSF is usually measured experimentally.

In spite of the complexity of optical aberrations, paradoxically, removing the optical aberrations is an

easier problem than pure defocus, because their PSF can be measured for a particular lens in advance and

does not depend so much on depth. Moreover, we usually need to remove aberrations only where the image

is in focus and this distance is provided by many modern camera in the EXIF data. Indeed, there are several
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commercial applications for this task.

In theory, the PSF can be measured by observing very small light sources placed regularly across the

field of view. Oddly enough, our experience is that such measurement is relatively difficult to do in practice

and it is simpler and more precise to compute the PSF from a picture of a known calibration pattern. The

same observation is mentioned in [35]. There are several papers using a set of slanted edges to get a line-

spread function that corresponds to a 1D projection of the 2D PSF. However, for the purpose of deblurring

or super-resolution, it is usually preferable to directly compute the two-dimensional PSF [36, 37, 35], which

is possible even with sub-pixel resolution. The basic principle is to look locally for a convolution kernel h

minimizing

‖g −D(u ∗ h)‖2 (1.12)

where g is a patch of the observed image, u the known sharp calibration pattern and D a down-sampling

operator. Minimization of (1.12) is a solution of a system of linear equations in the least square sense.

Further references can be found in [35].

From the recent literature, we would like to point out the paper of Kee et al. [38], showing that aberra-

tions of high quality lenses (Canon 24 − 105mm f/4, Canon 17 − 40mm f/4) can be locally described

as a convolution with an oriented Gaussian specified by a covariance matrix. An unpleasant property of

aberrations is that they change with spatial location and both the focal length and aperture. Fortunately, [38]

also shows that the covariance matrix changes smoothly and can be described by a low-order polynomial of

four variables (x, y, focal length and aperture).

1.3 Space-variant super-resolution

In Sec. 1.2, we went through basic types of space-variant blur and models used to describe it, and indicated

approaches how these models could be used for deblurring. To the best of our knowledge, there are basically

no true super-resolution algorithms working with spatially-varying blur.

In the rest of this chapter, we propose such a space-variant super-resolution algorithm, based on the

local detection of convolution kernels and approximating the PSF by linear interpolation (1.7) between the

positions where the kernels were detected. The use of this approach for deblurring was demonstrated in

Figs. 1.4-1.7.

The proposed algorithm works for an arbitrary blur that changes slowly enough that it can be locally

approximated by convolution. It requires the input images (it needs at least five input images for the SR

factor of 2) to be at least approximately registered.
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1.3.1 Algorithm

We have K input frames gk (k = 1, . . . ,K), which are noisy, blurred, and downsampled representations

of some “ideal” image u. Let us divide each image gk into overlapping patches denoted as gpk, where p is

the patch index, p = 1, . . . , P . Blurring Hk is space-variant, but we assume that the convolution (space-

invariant) model holds in each patch. The formation model thus writes locally as

gpk = DHp
ku

p + nk . (1.13)

Both the degradation D and noise nk are space-invariant and therefore the index p is omitted. The

blurring operator acting on the original patch up is space-invariant and thus Hp
k denotes convolution with

some PSF hpk. Smaller patches achieve better approximation of the true space-variant case. However the

patch size is limited from below by the PSF size.

Solving the above equation for each patch becomes a multichannel blind deconvolution and super-

resolution problem. A flowchart of the proposed algorithm is summarized in Fig. 1.9. The algorithm consists

of four steps:

1. Splitting. We split the input frames into patches. Restrictions on the patch size implied by the PSF

size are discussed in Sec. 1.3.2.

2. PSF estimation. We estimate the convolution kernels (hpk) in each patch p and frame k. For this

purpose we apply patch-wise the blind super-resolution algorithm [39] and use the estimated kernels.

The reconstructed patches are ignored. This is described in Sec. 1.3.3.

3. PSF refinement. We refine the estimated kernels by replacing those with erroneous masks with

interpolated ones. Estimating PSFs in each patch, especially if the overlapping scheme is considered,

would be very time consuming. Therefore, we divide the frames in a non-overlapping fashion and use

the interpolation method to generate PSFs in every location; see Fig. 1.3. The interpolation scheme is

covered in Sec. 1.3.4.

4. Space-variant deblurring and super-resolution. The final step takes the estimated PSFs and com-

putes the high-resolution sharp image using the Bayesian approach (1.5) as described in Sec. 1.3.5.

Estimating PSFs locally has several advantages. We can apply robust PSF estimation algorithm, such as

[39], which works also in the presence of the decimation operator and which compensates for misregistration

in the form of translation by shifting PSFs. If we assume that locally any misregistration manifests itself

as translation, then by estimating shifted PSFs locally we can compensate for a more complex geometrical

transformation than just translation.
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Figure 1.9: Flowchart of the algorithm.

The decimation operator simulates the behavior of digital sensors by performing convolution with a

sensor PSF followed by downsampling with some step ε. We will also refer to the sampling step ε as a

SR factor. It is important to underline that ε is a user-defined parameter. The sensor PSF is modeled as a

Gaussian function, which is experimentally justified in [40]. A physical interpretation of the sensor blur is

that the sensor is of finite size and it integrates impinging light over its surface. The sensitivity of the sensor

is highest in the middle and decreases towards its borders with a Gaussian-like decay. We can insert the

sensor PSF inside the blurring Hk and regard D solely as a downsampling operator.

1.3.2 Splitting

From the theoretical point of view, small patches better approximate local space-invariant nature of degrada-

tionHk. However, small patches may lack information necessary to estimate PSFs (we have more unknowns

than equations). It is therefore important to derive limitations on the patch size. Intuitively we see that the

minimum patch size must depend on the PSF size and the number of input frames K. However, to derive

exact constraints we need to analyze the subspace method proposed in blind super-resolution [39] for PSF

estimation in the presence of decimation D.

First we rewrite the local observation model (1.13) in terms of convolution operators and use a vector-

matrix notation. To simplify the notation, we will assume all image and PSF supports square, and the

downsampling factor ε integer (ε = 2, 3, . . .) and same in both directions. An extension to rectangular

supports is straightforward. Rational SR factors ε can be considered as well, if polyphase decomposition

is used; see [41]. We will omit the patch index p and the reader should keep in mind that in the following

discussion we refer to patches and not to whole images. The size of all patches in all frames gk are assumed

to be equal and denoted as G. The size of the corresponding original patch u is U . The maximum PSF size

of hk is denoted as H . Next, we define a convolution matrix. Let u be an arbitrary discrete image of size U ,

then u denotes an image column vector of size U2 and CA{u} denotes a matrix that performs convolution

of u with an image of size A. The convolution matrix can have a different output size. Adopting the Matlab

naming convention, we distinguish two cases: “full” convolution CA{u} of size (U + A − 1)2 × A2 and

“valid” convolution Cv
A{u} of size (U − A+ 1)2 × A2. In both cases the convolution matrix is a Toeplitz-

block-Toeplitz matrix. Let G := [G1, . . . ,GK ], where Gk = Cv
A{gk} is the “valid” convolution matrix of
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gk acting on an A×A support. Assuming no noise, we can express G using the observation model (1.13) as

G = DUH , (1.14)

where D is the downsampling matrix with the sampling factor ε and the appropriate size to match the

term on the right, U := Cv
εA+H−1{u} and

H := [CεA{h1}DT , . . . ,CεA{hK}DT ] , (1.15)

Note that the transposed matrix DT behaves as an upsampling operator that interlaces the original samples

with (ε − 1) zeros. Estimating the PSFs hk from the observed patches gk as proposed in blind super-

resolution relies on the following observation. If DU is of full column rank then the null space of G is equal

to the null space of H and since we can calculate the null space of G we get information about PSFs hk. If

the original patch is not degenerated, e.g. constant image, and contains some details then DU is in general of

full column rank if it has at least as many rows as columns. The difference between the number of columns

and rows ofH, which is KA2− (εA+H−1)2, bounds from below the null-space dimension ofH and thus

the null-space size of G. From the bound follows that A ≥ H−1√
K−ε , where A is the windows size, for which

we construct the convolution matrices Gk. The necessary condition for keeping the null space of G equal to

the null space of H is to have at least as many rows as columns in G. Thus from the size of G follows that

(G−A+ 1)2 ≥ A2K and after substituting for A we obtain

G ≥

⌈√
K(H − 2) +H + ε− 1√

K − ε

⌉
(1.16)

As one would expect, the necessary minimum patch sizeG decreases with the decreasing PSF sizeH and/or

increasing number of input frames K. For a better interpretation of the size constraint, Fig. 1.10 shows G as

a function of H and K. For example in the case of ε = 2 and blurs of maximum size 10× 10, the minimum

patch size is over 100 × 100 if only 5 input frames are used but much smaller patch sizes roughly 30 × 30

are sufficient if 10 input frames are used.

1.3.3 PSF estimation

As in the previous section, the following discussion applies to individual patches and the index p is omitted.

Since we can estimated the null space of H from the null space of G in (1.14), we have means to determine

the original PSFs directly from the observed input patches. In the blind super-resolution algorithm [39] it

was shown that the PSFs must satisfy

Nh = 0 , (1.17)

where the matrixN contains convolution matrices with images lying in the null space of G and h are K PSFs

stacked in one vector. PSFs are not uniquely determined by the above equation, since N is rank deficient
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Figure 1.10: The minimum patch size as a function of number of input frames and PSF size. The SR factor

is 2. Note that the patch size axis is in the logarithmic scale.

by at least ε2 due to the presence of the downsampling matrix D in (1.14). In addition, the matrix rank

further decreases, if the PSF support is larger than the maximum support of the true PSFs. In practice we

rarely know the correct support size exactly and therefore we work with overestimated sizes. Last but not

least, the null space approach neglects noise in its derivation. These facts prevent to use (1.17) for PSF

estimation directly. Instead we use the MAP approach to estimate both the latent patch u and the PSFs

hk, and combine two observation models. First observation model is in a standard form M1(u, {hk}) ≡
µ1

2

∑K
k=1 ‖D(u∗hk)−gk‖2, where µ1 is inversely proportional to the variance of noise nk and ‖ · ‖ denotes

the `2 norm. For simplicity, we assume the same noise variance in all frames and patches and therefore single

parameter µ1 suffices. The second observation model is defined by (1.17) as M2(h1, . . . , hK) ≡ µ2

2 ‖Nh‖2,

where µ2 is inversely proportional to the variance of noise. Then the MAP approach is equivalent to solving

the optimization problem:

min
u,{hk}

M1(u, {hk}) +M2({hk}) +Ru(u) +Rh({hk}) , (1.18)

where Ru, Rh are image and PSF regularizers.

A popular recent approach to image regularization is to assume that the unknown image u is represented

as a linear combination of few elements of some frame (usually an overcomplete dictionary) and force this

sparse representation by using the `1 norm (or `0). Arguably, the best known and most commonly used

image regularizer, which belongs to the category of sparse priors, is the total variation (TV) norm [18]. The
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isotropic TV model is the `1 norm of image gradient magnitudes and takes the form

Ru(u) = φ(∇u) =
∑
i

√
(∇xu(i))2 + (∇yu(i))2 , (1.19)

where φ(x) = ‖x‖. The TV regularizer thus forces the solution to have sparse image gradient. Depending

on the type of data, one can have sparsity in different domains. This modification is however easy to achieve.

All we have to do is to replace derivatives with a transformation (e.g. wavelet-like multi-scale transform),

which gives sparse representation of our data.

For the PSF regularization Rh, we found sufficient to enforce in this term only positivity. One can add

TV regularization as in the case of images (or sparsity of intensity values) if the expected blurs are for

example motion blurs.

The standard approach to solve the optimization problem (1.18) is called alternating minimization (AM)

and will be adopted here as well. We split the problem into two subproblems:

“u-step”: min
u
M1(u, {hk}) +Ru(u) (1.20)

and

“h-step”: min
{hk}

M1(u, {hk}) +M2({hk}) +Rh({hk}) , (1.21)

and alternate between them. Convergence to the global minimum is theoretically not guaranteed since the

unknown variables are coupled in the data term M1. However, in our formulation all the terms are convex

and thus each subproblem separately converges to its global minimum and it can be solved efficiently, e.g.,

by the augmented Lagrangian method [42].

We have to underline that the primary output of this step are estimated PSFs in each patch and frame.

We are not interested in the reconstructed patches u, which are in this stage merely byproducts of AM. We

observe that AM can be greatly accelerated (reducing the number of alternations necessary for convergence)

if the weight µ1 is set smaller than appropriate for the current noise level. This means that we give more

weight to the TV regularization term and small details in the estimated patch u are wiped out. Only main

features (strong edges) inside the estimated patch u are reconstructed. The advantage is that the h-step

becomes more stable with such u and PSFs can be estimated with the same accuracy. This idea is similar to

recent improvements proposed in the single-channel blind deconvolution [3]. In order for the single-channel

case to work, we must perform few tricks. One trick is to slightly enhance edges of the estimated image

after each iteration, which avoids the trivial solution, i.e., the estimated image being equal to the input blurry

image and PSF being a delta function. Another trick is to remove edges that correspond to small objects,

which would otherwise favor smaller PSFs than the true ones. Using TV regularization with larger weight

than necessary simulates in a way the above tricks and boosts the PSF estimation step.
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(a) 1st input image (b) 2nd input image is slighty rotated

(c) PSF of the 1st image (d) PSF of the 2nd image

(e) result of deconvolution (f) result of space-variant deblurring

Figure 1.11: Experiment illustrating an important property of the proposed approach – ability to compensate

for registration inaccuracies. Notice how the estimated PSF of the 2nd image compensates for rotation.
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Figure 1.12: First of six input images (1700 × 1130 pixels) used for super-resolution (left) and 8 × 8 local

convolution kernels computed by the SR algorithm [39] (right). Spatial variance of the PSF is obvious.

Squares in the image depict patches, in which the kernels were estimated.

1.3.4 PSF refinement

Ideally, we want to have estimated PSFs in every position (pixel) of input frames. This is computationally

very demanding as the number of patches is equal to the number of pixels and patches heavily overlap.

However, we assume that PSFs vary slowly so that locally (inside each patch) they can be considered as

constant. Calculating thus PSFs in every position is an unnecessary labor. We estimate PSFs on a coarser

mesh and find the remaining ones by the interpolation method described in 1.2. Another reason for PSF

interpolation is if the PSF estimation fails in some patches. Then we must use adjacent PSFs to interpolate

and replace the erroneous one. There are basically two reasons why kernel estimation fails [11]. The first

reason are patches with no details, which corresponds to the situation that DU in (1.14) is column rank

deficient. To identify such cases, we compute the entropy of the estimated kernels and take those with the

entropy above some threshold. The other case of failure is pixel saturation caused by light levels above the

sensor range. This situation can be identified by computing the kernel energy, i.e. the sum of kernel values.

For valid kernels the energy should be one. Therefore, we simply remove kernels whose sum is too different

from unity, again above some threshold. These two thresholds are user parameters.

1.3.5 Deconvolution and super-resolution

Once we have the convolution kernel estimated (or interpolated from neighboring patches) in each patch

of every input frame, we can use the kernels to approximate the PSF in an arbitrary position using linear

interpolation. The respective blurring operators can be easily implemented using relations (1.7) and (1.8).

As mentioned in Sec. 1.2, this approach was used for deconvolution in papers [11] and [16].
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Figure 1.13: Two details of the blurred low-resolution image from Fig. 1.12 (left column) and the resulting

high-resolution image of 3400× 2260 pixels (right column).

We propose to extend this approach to super-resolution. The idea is that we can perform space-variant

deblurring and super-resolution in one step and directly obtain the high-resolution image using (1.5). Indeed,

the experiments show that the PSF approximated in this manner give satisfactory results, locally comparable

with the result of the space-invariant super-resolution methods. Moreover, since the PSF changes smoothly

between the patches, there are almost no visible artifacts.

This final step is analogous to the u-step in (1.20) of the kernel estimation stage except that this time we

work with the whole frames and not just patches. We solve

min
u

µ1

2

K∑
k=1

‖DHku− gk‖2 + φ(∇u) , (1.22)

where Hk is the space-variant convolution operator, which is created from estimated PSFs hpk, p = 1, . . . P .

In theory, each column ofHk contains a PSF corresponding to that position and estimated in the second step

or interpolated in the third step. In our implementation, we used regularization by total variation (1.19) as

in the PSF estimation step.
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1.3.6 Experiments

This section describes two experiments. The first one in Fig. 1.11 illustrates an important ability of the pro-

posed method to work with input images that are slightly misregistered. The second experiment (Figs. 1.12-

1.13) is an example of real results.

Our super-resolution method requires multiple input images, which are properly registered. Super-

resolution by itself is very sensitive to registration and sub-pixel accuracy is generally needed. However,

registration methods rarely achieve such accuracy. It was shown in [39] that blind deconvolution and super-

resolution can automatically register shifted images (misregistration in the form of translation) by shifting

centers of estimated convolution kernels.

In practice, we often have more serious misregistration, such as rotation or projective distortion. It turns

out that our local approach can handle such more complex geometric transforms. The reason is that with

rotations up to several degrees, any similarity transform can be locally approximated by translation. The

same is true even with more complicated transforms we can meet in practice.

This important feature can be demonstrated by the following experiment. An image was degraded by two

different space-variant blurs simulating camera rotation around the x and y axes, respectively. The second

image was first rotated by 1 degree. The resulting degraded and misregistered images are in Fig. 1.11(a) and

(b). We divided the images into 5 × 5 patches and applied the blind super-resolution algorithm [39]. The

estimated convolution kernels in the first and second images are in Fig. 1.11(c) and Fig. 1.11(d), respectively.

Notice that the estimated blurs in Fig. 1.11(d) are shifted to compensate for rotation of the second image.

Fig. 1.11(f) shows the estimated sharp image. For comparison, Fig. 1.11(e) shows also the result of the

space-invariant method applied to the whole image, which is equivalent to the case of one large patch.

Artifacts are noticeable compared to the space-variant case. However, even for the space-variant deblurring,

since the rotation violates the convolution model, some artifacts appear in areas farther away from the center

of rotation.

In the second experiment, we took a sequence of six images. One of them is shown in Fig. 1.12,

together with 8 × 8 = 64 kernels estimated in the first phase of the algorithm. We can see that the PSF

is significantly space-variant and the image becomes aberrated along boundaries. The result of the space-

variant super-resolution is shown in two close-ups in Fig. 1.13. We do not show the whole image, because

its size (3400× 2260) would be to large to tell the difference compared to the original low-resolution image

in Fig. 1.12. The improvement of resolution is clearly visible and the image contains almost no artifacts.
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1.4 Summary

In this chapter, we outlined current approaches to deblurring in the presence of spatially varying blur. Untill

now, these algorithm have not been extended to super-resolution.

About a half of this chapter is devoted to a new super-resolution algorithm working for slowly varying

blurs. Its main advantage is the possibility to combine several types of blur, such as the camera motion blur,

defocus and aberrations and even compensate for small registration errors. In addition, it is much faster that

approaches working with more restrictive models and it is not much slower than standard deconvolution

methods. On the other hand, it does not cope well with the blur caused by object motion.

The most interesting direction of future research is probably the extension of deblurring methods de-

signed to work with moving objects to super-resolution, including the rigorous treatment of occlusion effects

along object boundaries.
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