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List of physical variables

Notation Meaning

iα, iβ Currents in α− β reference frame.
uα, uβ Input voltages in α− β reference frame.
ωme Electrical angular rotor speed.
ϑe Electrical angular rotor position.
Ls, Ld Stator inductances in d− q reference frame.
t,∆t Discrete time instant, time period.
Rs Stator resistance.
pp Number of pole-pairs.
Ψpm Flux linkage (permeability).
B Friction.
J Moment of inertia.
kp Park constant.
TL Torque load.
Ff Friction force (static or kinetic)
Fn Force in the normal direction
ν Friction coefficient (static or kinetic)

List of abbreviations

Abbreviation Meaning

EKF Extended Kalman filter
VB Variational Bayes
VMP Variational message passing
PMSM Permanent magnet synchronous motor
DTC Direct torque control
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1 Introduction

The sensing and control of railway traction devices like the permanent magnet synchronous
motors (PMSM) represent very complex tasks, solved by numerous more or less elaborated
methods. Traditionally, each wheel is controlled independently, using separate electric mo-
torization with balanced transmitted torques. An identical torque on each motor is usually
imposed by using a direct torque control (DTC). The difficulty of controlling such a system is
its highly nonlinear character of the traction forces expressions. The loss of traction of one or
more wheels, that is the loss of adhesion in the wheel–rail system, is likely to destabilize the
vehicle Soylu [2011]. Furthermore, it can lead to threshold values of relevant electric variables
in motors.

In this report, we focus on centralized estimation of wheel adhesion loss. The proposed
methods, based on variational (mean-field) inference, exploit variables resulting from central-
ized sensor-less recursive estimation of PMSM drive state.

The report first discusses relevant modelling issues, connected with the traction/adhesion
forces. Then, the extended Kalman filter (EKF), providing sensor-less estimation of drive
state is presented. Its full treatment can be found, e.g., in Šmı́dl [2013]. The ensuing de-
scription of centralization of EKFs for several drives is followed by estimation of adhesion
loss using two methods, allied in the variational framework: the variational Bayes and the
variational message passing. The resulting algorithms are demonstrated on examples.

2 Characterization of adhesion loss

In a railway context, adhesion is the friction available to transmit tangential force between
railway wheel and rail. It is always lower or (theoretically equal) to the maximum tangential
force produced by a driving wheel before slipping,

Ff = νFn

where Ff is the (static or kinetic) friction force, ν is the (static or kinetic) friction coefficient
and FN is the force in the normal direction (i.e. the weight) on a non-slipping wheel. Usually
the static friction is greater than the kinetic friction, implying that the force needed to start
sliding dominates the force needed to maintain it. While high adhesion is the essential factor
for breaking, it may generate problems, e.g., in sharp curves, and in extreme cases lead even
to derailment [Baek et al., 2008].

The adhesion coefficient is very sensitive to the environmental conditions, such as speeds,
axle-loads, wheel and rail profiles, contamination of contact surfaces, weather etc. [Zhang
et al., 2002]. Extensive research effort has been given the problem of adhesion loss caused by
water, including one contaminated by various, mostly wear debris (even non-Newtonian), rust,
oil and its mixtures containing chemically active compounds [Beagley and Pritchard, 1975,
Beagley et al., 1975a,b]. If water firm exists in the wheel-rail contact surfaces, the adhesion
coefficients decrease with an increase in speed and the traction forces decrease with an increase
in exciting frequency. Furthermore, the adhesion coefficients decrease, independently of speed
and contamination, with an increase in axle load [Zhang et al., 2002]. This might prove a
significant factor in multiple unit trains, metro and tram units, where the axle load can be
highly varying in time and space. Another frequent cause of traction problems are leaves on
the rail lines, forming a low-adhesion layer when crushed by passing wheels. Also the toppling
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conditions in turns, when the centrifugal acceleration is sufficient to begin to lift the inner
wheel, have significant impact on adhesion.

Tracking of a traction drive torque can be used for detection of a wheel slip. As described
above, adhesion is influenced by a large number of phenomena at the rail lines. This imposes
a limiting factor to distributed estimation of adhesion loss: the train/tram/metro wheels
may face more or less different conditions at the same time and even if the torque control is
employed, the true torque values are unlikely the same at individual wheels (disregarding the
slipping wheels). One way around this problem would be exploiting a suitable probabilistic
distribution of torque, e.g. the normal one, and view the torque value of a slipping wheel as
an outlier. Similarly, we can base the distributed slip detection on classification on base of
torque value. The latter approach is adopted in this report.

3 State-space estimation of PMSM drive

Let us now deal with estimation of PMSM drive state variables using the extended Kalman
filter. We begin with a concise description of EKF, followed by its application to PMSM and
transition to centralized estimation of several PMSM drives.

3.1 Basic of extended Kalman filter

Suppose the existence of a nonlinear dynamic system with a real single- or multivariate inner
state variable xt influencing the real single- or multivariate system output (measurement,
observation) yt, observed at discrete time instants t = 1, 2, . . . Furthermore suppose, that
there exist differentiable functions f, h such that

xt ∼ N (f(xt−1), Q)

yt ∼ N (h(xt), R) (1)

where N (µ,Σ) denotes normal distribution with mean value µ and covariance Σ, both of them
having appropriate dimensions according to the argument. If f, h are linear functions, then
the celebrated Kalman filter dominates solutions of the system (1). Under nonlinearity, the
requirement of differentiability of f and h still provides ways to its analytic treatment via local
linearization. Then, the extended Kalman filter (EKF) is a popular choice. We focus on the
EKF. Its first-order linearization variant exploiting Taylor series with appropriate Jacobians
is easily derived. We skip the derivation; it can be found, e.g., in Simon [2006].
The EKF works as follows: First, it is initialized with

x̂+
0 = E[x0]

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )′]. (2)

That is, the initial estimates of state and estimate covariances are set. Then, the following
relations provide prediction of prior (’-’) estimates of Pt and x̂t, followed by update yielding

3



their posterior (’+’) estimates:

P−t = At−1P
+
t−1A

′
t−1 +Qt (3)

x̂−t = f(x̂+
t−1) (4)

Kt = P−t C
′
t(CtP

−
t C

′
t +Rt)

−1 (5)

x̂+
t = x̂−t +Kt

[
yt − h(x̂−t )

]
(6)

P+
t = (I −KtCt)P

−
t (7)

where

At−1 =
d

dxt
f(xt)

∣∣∣∣
x̂+t−1

(8)

Ct =
d

dxt
h(xt)

∣∣∣∣
x̂−t

(9)

are derivatives of the nonlinear model (1) and Kt denotes the Kalman gain. The matrix inver-
sion in (5) usually calls for numerically stable evaluation, e.g. in the Cholesky factorization.
The predictive distribution for yt given previous observations y1:t−1 is univariate normal,

yt|y1:t−1 ∼ N (h(x̂t−1), R) . (10)

3.2 Application of EKF model to PMSM drive

For the purpose of state estimation, the discretized model of PMSM is transformed into a
stationary α − β reference frame [Šmı́dl, 2013]. Further reduction of model complexity is
reached by a common simplification, imposing the equality Ls = Ld. Since usually |Ld/Lq| ≤
0.1, the induced error is negligible in most applications.

Let us denote the measured values of currents īα,t and īβ,t and assume, that the associated
measurements errors are εα,t ∼ N (0, rα) and εβ,t ∼ N (0, rβ), respectively. Furthermore, let
uα,t and uβ,t be the reconstructed values of the input voltage. The resulting PMSM state-
space model then evaluates the column state vector xt+1 = [iα,t+1, iβ,t+1, ωme,t+1, ϑe,t+1]′ and
the column vector of measurements yt = [̄iα,t, īβ,t]

′ as follows:

State equations of f(xt)

iα,t+1 = θaiα,t + θbωme,t sinϑe,t +
∆t

Ls
uα,t + ξα

iβ,t+1 = θaiβ,t − θbωme,t cosϑe,t +
∆t

Ls
uβ,t + ξβ (11)

ωme,t+1 = θdωme,t + θe (iβ,t cosϑe,t − iα,t sinϑe,t)−
pp
J
TL∆t+ ξω

ϑe,t+1 = ϑe,t + ωme,t∆t+ ξϑ

where

θa = 1− Rs
Ls

∆t, θb =
Ψpm

Ls
∆t (12)

θd = 1− B

J
∆t, θe =

kpp
2
pΨpm

J
∆t (13)
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Measurement equations of h(xt)

īα,t = iα,t + εα,t

īβ,t = iβ,t + εβ,t (14)

In order to use the extended Kalman filter (Section 3.1), one has to determine the deriva-
tives (9) of state equations (11). The resulting matrices At−1 and Ct are as follows:

At−1 =
d

dxt
f(xt)

∣∣∣∣
x̂+t−1

=


θa 0 θb sinϑe,t θbωme,t cosϑe,t
0 θa −θb cosϑe,t θbωme,t sinϑe,t

θe sinϑe,t θe cosϑe,t θd −θe(iβ,t sinϑe,t + iα,t cosϑe,t)
0 0 ∆t 1



=


θa 0 θb sinϑe,t θbωme,t cosϑe,t
0 θa −θb cosϑe,t θbωme,t sinϑe,t
0 0 1 0
0 0 ∆t 1


and

Ct =
d

dxt
h(xt)

∣∣∣∣
x̂−t

=

(
1 0 0 0
0 1 0 0

)
. (15)

The terms θa, θb, θd and θe are identical with those in the state equations (11).

3.2.1 Initialization

The use of state-space models expects the setting of the initial covariance matrices. The state
covariance matrix suitable for the concrete PMSM application is a symmetric square matrix
with diagonal

diagQ0 = [0.05, 0.05, 0.001, 0.0001, 0.1]′

and zeros elsewhere. The increased dimension of covariance matrices is due to incorporated
estimation of torque, made simply by addition of a random walk on related variable, cf. (11).

The white noise covariance is set with 0.01 in places of diagonal elements and zeros
elsewhere, as it is assumed low and uncorrelated. The initial estimates covariance is a diagonal
matrix with low integers on diagonal.

3.3 Centralized estimation of several PMSM drives

The previously described approach to state estimation of a single PMSM drive can be easily
extended to centralized independent estimation of several drives at once. If we consider these
drives independent, that is, they have independent states and measurements, we can proceed
with a basic algebraic modifications. For N drives, the state and measurement variables are
augmented as follows

xt =

x1,t
...

xN,t

 yt =

y1,t
...

yN,t

 (16)
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where xi,t and yi,t are state and measurement vectors related to the ith drive. The indepen-
dence of evaluations is achieved by block-diagonal matrices with non-overlapping rows/columns,

At = diag(A1,t, . . . , AN,t) and Ct = diag(C1,t, . . . , CN,t) (17)

for matrices A and C. Identical treatment is made for all other terms involved, i.e. P,K,R,Q.
Remind that this approach neglects the simple fact that part of the state variables (namely
the speed ωi,t and the torque load TL,i,t) are common for all drives i = 1, · · · , N under ideal
conditions. However, the reasons discussed in Section 2 advocate sticking with independent
state evaluation, accompanied by subsequent adhesion loss estimation. We will focus on it in
the ensuing sections of this report.

4 Estimation of adhesion loss

This section is devoted to estimation of adhesion loss of a wheel attached to a PMSM drive.
We propose two methods based on variational (mean-field) inference – the variational Bayesian
inference [Jaakkola and Jordan, 2000] and the variational message passing [Winn and Bishop,
2005]. Both of them exploit the results of the centralized EKF.

The following subsections briefly introduce the principle of each method, followed by its
application to the issue considered.

4.1 Variational Bayes

The variational Bayesian (VB) inference, rooted in the field of calculus of variations, serves
for analytic approximation of the posterior pdf of parameters and potentially other latent
variables [Jaakkola and Jordan, 2000]. Let us denote Z = (Z1, . . . , Zn) as the set comprising
both parameters and latent variables. The goal is to find analytically tractable approximation
q(Z) of f(Z|X). It is possible to write

log f(X) = L(q) +D(q||f), (18)

where

D(q||f) = −
∫
q(Z) log

f(Z|X)

q(Z)
dZ

L(q) =

∫
q(Z) log

f(Z|X)

q(Z)
dZ

are the Kullback-Leibler divergence [Kullback and Leibler, 1951] of q and f and the variational
lower bound, respectively. Note, that this order of arguments makes the Kullback-Leibler
divergence the case of zero-forcing case of α-divergence family. As a result, the (suboptimal)
resulting distribution has most of its mass concentrated at a mode of the unknown true
distribution, while other modes are neglected.

Unlike in the celebrated EM algorithm [Dempster et al., 1977], the elements of Z are
factorized into M independent factors Zi, i = 1, . . . ,M , such that

q(Z) =

M∏
i=1

qi(Zi). (19)
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This, put back into (18) yields

L(q) =

∫ ∏
i

qi(Zi)

[
log f(X,Z)−

∑
i

log qi(Zi)

]
dZ

=

∫
qj(Zj)Ei 6=j [log f(X,Z)]dZ

− Ej [log qj(Zj)] + const.

where

Ei 6=j [log f(X,Z)] =

∫
log f(X,Z)

∏
i 6=j

qi(Zi)dZi.

This directly yields the VB-optimal factors

log q∗j (Zj) = Ei 6=j [log f(X,Z)] + const.

The additive constant changes to multiplicative in exponentiation, providing the solution

q∗j (Zj) ∝ exp {Ei 6=j [log f(X,Z)]} . (20)

The resulting algorithm is very similar to the expectation-maximization, but unlike it, VB
computes the posterior distributions of all parameters. The expectations are taken with
respect to variables not in the current factor, which, in turn, are recomputed in the same
way. The algorithm is guaranteed to converge and, under convexity of the lower bound, to
the global maximum [Boyd and Vandenberghe, 2004].

It is necessary to stress that the variational Bayesian method provides analytic approxi-
mations of the posterior distribution of parameters and latent variables. The sacrifice is their
factorized treatment (18), neglecting the dependency properties carried by the true joint pos-
terior pdfs. An alternative expectation propagation algorithm [Minka, 2001] overcomes this
issue by exploiting reversed order of pdfs in the Kullback-Leibler divergence in (18). The
price is elevated level of computational difficulties.

4.2 Application of VB to estimation of adhesion loss

The variational estimation of adhesion loss is based on an external observer model, in which
a central unit has access to angular speeds ωi,t ≡ ωme,i,t, torque loads Ti,t ≡ TL,i,t or both, for
several PMSM drive indexed by integers i = 1, . . . , N . Obviously it does not matter whether
these variables are directly measured or estimated by a number of extended Kalman filters
presented in Section 3.2).
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xi,t

Ii,tπt

Λt

µt

x
(G)
t

N

Figure 1: Graphical representation of the situation: The observation of the angular speed
ωi,t or torque Ti,t or both, at time t, are represented by a variable xi,t. The particular
observations come either from a PMSM device operating under normal conditions with latent
dichotomous variable Ii,t = 0, or under the loss of adhesions with Ii,t = 1. The probability of
Ii,t = 1 is driven by a coefficient πt. The Bayesian setting of the problem exploits the normal
distribution for observations xi,t and assigns a prior distribution for its parameters, namely

mean value µt and precision Λt. Finally, a global value x
(G)
t can be produced.

To distinguish between normal operating conditions and adhesion loss, we introduce a
dichotomous latent indicator Ii,t ∈ {0, 1}, where 0 means no adhesion loss and 1 stands for
loss. In addition, we define I = (I1, . . . , IN ) the vector of indicators for PMSM drive 1, . . . , N .
Also, we drop time index t for easier reading.

To summarize, if π is a probability of adhesion loss, then

Ii =

{
0 if no loss of adhesion,

1 if adhesion is lost .
(21)

p(I|π) =

N∏
i=1

πIi(1− π)(1−Ii) (22)

p(X|I, µ,Λ) =
N∏
i=1

p(xi|µ0,Λ0)1−Iip(xi|µ1,Λ1)Ii (23)

where µj and Λj , j ∈ {0, 1} are mean and precision of corresponding normal distributions
under regular conditions (0) and adhesion loss (1), respectively.

In concordance with the Bayesian realm, we introduce prior distributions over the param-
eters π and µ,Λ. A particularly plausible is the following choice:

• The weight π follows the ordinary beta distribution with nonnegative real parameters
α0, α1,

π ∼ B(α0, α1), (24)

with a pdf

p(π) =
1

B(α0, α1)
πα1−1(1− π)α0−1 (25)

∝ πα1−1(1− π)α0−1, (26)

where B(α0, α1) is a beta function.
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• The vector of means µ = (µ0, µ1) and precisions Λ = (Λ0,Λ1) follow, under inde-
pendences among 0th and 1st elements, the form of a product of normal-Wishart (or
normal-gamma) distributions, such that

µ|Λ ∼ N (µ|m−, (β−Λ)−1)

Λ ∼ W(Λ|W−, ν−),

yielding a compound pdf

p(µ,Λ) = p(µ0|m−, (β−Λ0)−1)p(Λ0|W−, ν−) (27)

× p(µ1|m−, (β−Λ1)−1)p(Λ1|W−, ν−) (28)

The variational distribution exploits the joint distribution of all of the variables,

p(X, I, π, µ,Λ) = p(X|I, µ,Λ)p(I|π)p(π)p(µ|Λ)p(Λ) (29)

The joint variational distribution of parameters and latent variables with pdf q(I, π, µ,Λ)
factorizes between the latent indicator part and parameters as

q(I, π, µ,Λ) = q(I)q(π, µ,Λ). (30)

log q∗(I) ∝ Eπ,µ,Λ [log p(X, I, π, µ,Λ)]

∝ Eπ [log p(I|π)] + Eµ,Λ [log p(X|I, µ,Λ)]

∝
N∑
i=1

(1− Ii) log ρ0,i + Ii log ρ1,i, (31)

where

log ρ0,i = E [log(1− π)] +
1

2
E [log det Λ0]− D

2
log τ

− 1

2
Eµ0,Λ0

[
(xi − µ0)TΛ0(xi − µ0)

]
(32)

and where D = dimxi for all i and τ = 2π = 6.283 . . .
Analogously, we define log ρ1,i,

log ρ1,i = E [log π] +
1

2
E [log det Λ1]− D

2
log τ

− 1

2
Eµ1,Λ1

[
(xi − µ1)TΛ1(xi − µ1)

]
. (33)

Taking the exponential of (31) we obtain

q∗(I) ∝
n∏
i=1

[ρ0,i]
1−Ii [ρ1]Ii (34)
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which takes the same functional form as the prior p(I|π) in (22). The posterior expected
value of the adhesion loss indicator Ii given the data X simply takes the form

E [Ii] =
ρ1,i

ρ0,i + ρ1,i
(35)

which corresponds to the posterior probability that the adhesion is lost at the ith PMSM
drive.

Now, let us consider the second factor q(π, µ,Λ) in the variational posterior distribution.
According to the principle of variational inference, we obtain

log q∗(π, µ,Λ) ∝ log p(π) + log p(µ0,Λ0) + log p(µ1,Λ1) + EI [log p(I|π)]

+
n∑
i=1

E [Ii] [log p(xi|µ0,Λ0) + log p(xi|µ1,Λ1)] , (36)

where the last two term in brackets are pdfs of corresponding normal distributions. Careful
examination of (36) revels two groups of terms, one involving only π and the other only µ
and Λ. Thus it is possible to further factorize q(π, µ,Λ) into separate factors,

q(π, µ,Λ) = q(π)q(µ0,Λ0)q(µ1,Λ1).

The terms involving π in (36) produce

log q∗(π) ∝ (α0 − 1) log(1− π) + (α1 − 1) log π

+
N∑
i=1

{(1− E[Ii]) log(1− π) + E[Ii] log π} . (37)

Taking the exponential reveals in q∗(π) the pdf of a beta distribution with parameters

α+
0 = α0 +N0

α+
1 = α1 +N1

where

N0 =

N∑
i=1

(1− E[Ii])

N1 =
N∑
i=1

E[Ii] = N −N0.

represent the effective numbers of drives without (0) or with (1) adhesion loss. Similarly,
reading off the terms involving (µ0,Λ0) and (µ1,Λ1), respectively, reveals two normal-Wishart
distributions given by

q∗(µk,Λk) = p(µk|m+
k , (β

+
k Λk)

−1)p(Λk|W+
k , ν

+
k ), k = 0, 1, (38)

where

β+
k = βk +Nk (39)

m+
k =

βkmk +Nkx̄k

β+
k

(40)

(W−1
k )+ = W−1

k +NkSk +
βkNk(x̄k −mk)(x̄k −mk)

T

βk +Nk
(41)

ν+
k = νk +Nk (42)
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with weighted first order raw and second order central moments being, for k = {0, 1}

x̄k =
1

Nk

N∑
i=1

E[Ii]xi (43)

Sk =
1

Nk

N∑
i=1

E[Ii](xi − x̄k)(xi − x̄k)T . (44)

Returning to (32) and (33) with parameters obtained so far yields

E [log π] = ψ(α+
1 )− ψ(α+

0 + α+
1 ) (45)

E[log det Λk] =
D∑
d=1

ψ

(
ν+
k + 1− d

2

)
+D log 2 + log detW+

k (46)

Eµk,Λk

[
(xi − µk)TΛk(xi − µk)

]
=

D

β+
k

+ ν+
k (xi −m+

k )TW+
k (xi −m+

k ) (47)

where ψ denotes the digamma function.

4.3 Variational Message Passing

The Variational Message Passing (VMP) algorithm, rooted in the field of variational inference
methods, was originally proposed in a paper Winn and Bishop [2005]. In many aspects it re-
sembles the variational Bayes discussed above. Unlike it, VMP allows to infer parameters and
latent variables of a large class of Bayesian networks without the need to derive application-
specific update equations. Indeed, VMP alleviates the cumbersome derivations typical for the
ordinary Variational Bayes, only at low price. It is the restriction of the method, imposing
the conditional distributions at graph nodes to be exponential family distributions, summa-
rized either by their natural parameter vector or by a vector of moments. This rule does not
apply to the marginal distributions of observations, which can come from a broader class of
distributions. These properties allow application of the framework on a number of popular
algorithms, comprising hidden Markov models, principal component analysis, factor analysis,
Kalman filters, probabilistic mixtures and hierarchical models.

A conditional distribution is a member of the exponential family if its pdf has the form

f(X|Y ) = exp
[
φ(Y )′u(X) + f(X) + g(Y )

]
, (48)

where φ(Y ) is the natural parameter, u(X) is the natural sufficient statistics, f(Y ) is an
arbitrary function and g(Y ) is the logarithm of the normalization constant (called log-partition
function) ensuring unity of the area under f(X|Y ). One of numerous advantages of the
exponential family distributions is the simplicity of evaluation of expectations. Under the
knowledge of φ(Y ), the pdf (48) can be rewritten as

f(X|φ) = exp
[
φ′u(X) + f(Y + g̃(φ))

]
.

Since ∫
X

d

dφ
f(X|φ)dX =

∫
X
f(X|φ)

[
u(X) +

dg̃(φ)

dφ

]
dX = 0,
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the expectation of the natural sufficient statistics is simply the differential of the log-partition

EX|φ [u(X)] = −dg̃(φ)

dφ
. (49)

Suppose that we have a Bayesian network, represented by an ordered graph of a classical
type (N,E,≺) where N denotes the set of nodes, E the set of edges and ≺ represents ordering.
Then we distinguish among the following node types:

Parent nodes pai of a node Xi ∈ N is the set of adjacent nodes that are joined to it and
precede it in the ordering. That is, pai are parent nodes of Xi if ∀Xj ∈ pai : (Xj , Xi) ∈ E
and Xj ≺ Xi.

Child nodes chi of a node Xi ∈ N is the set of adjacent nodes that are joined to it and
follow it in the ordering. That is, chi are child nodes of Xi if ∀Xk ∈ chi : (Xi, Xk) ∈ E
and Xi ≺ Xk.

Co-parent nodes cp
(i)
k of a node Xi with respect to the node Xk ∈ chi is the set of non-

adjacent nodes of Xi, that are parents of chi. That is, cp
(i)
k are co-parent nodes of Xi if

∀X ∈ cp(i)
k : X ∈ pak, Xi ∈ pak, X 6= Xi.

The structure of parents, child nodes and co-parents for a chosen node Z is schematically
depicted in Figure 2.

cp

ch

paz

z

z

Z

Figure 2: Structure of nodes around a node Z.

We assume that the joint distribution f(X ) ≡ f(X,Z) can be factorized in the Bayesian
network as

f(X ) =
∏
i

f(Xi|pai). (50)

Identically (in respect to the notation and principle) to the variational Bayes, we have

log f(X) = L(q) +D(q||f), (51)

where

D(q||f) = −
∫
q(Z) log

f(Z|X)

q(Z)
dZ

L(q) =

∫
q(Z) log

f(Z|X)

q(Z)
dZ.
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The computational simplicity is again provided by the factorization principle (19),

q(Z) =
∏
i

qi(Zi).

After identical steps, this yields the same result as the Variational Bayes,

q∗j (Zj) ∝ exp{Ei 6=j [log f(X,Z)]}. (52)

Until here, the derivations of the VMP are identical to VB. This is due to the adopted vari-
ational framework, dictating the same exclusive (zero-forcing) Kullback-Leibler divergence,
accompanied by simplification in the form of factorized posterior distributions (19) and (50).
From this point, the VB framework would derive the analytical relations among particular dis-
tributions in accordance with (20). The VMP framework, treated from now on, bypasses this
by formulating a message passing procedure, avoiding these rather cumbersome derivations
in favor of exchange of moments and parameters among the distributions.

Let us substitute (50) into (52)

q∗j (Zj) ∝ exp

{
Ei 6=j

∑
i

f(Xi, Zi|pai)

}
. (53)

Any terms independent of Zj will be constant under the expectation and can be subsumed
into the constant term. This leaves only f(Zj |paj) together with children chj , as they have
Zj ∈ paj . Hence

q∗j (Zj) ∝ expEi 6=j [f(Zj |paj)] +
∑
k∈chj

Ei 6=j [f(Xk, Zk|pak)]. (54)

Verbally, the expectations required to evaluate q∗j (Zj) involve only the variables lying in the
Markov blanket of Zj , i.e. its parents, children and co-parents.

cp

ch

paz

z

z

Z

X

Figure 3: Structure of nodes around a node Z with an explicitly depicted child X.

Let us now describe in detail the VMP principle on Fig. 3. A node Z, representing for
instance a parameter of a model f(X|Z, . . . ), is assigned an exponential family pdf

log f(Z|paZ) = φZ(paZ)′uZ(Z) + fZ(Z) + gZ(paZ). (55)

Similarly, a node X, obeys

log f(X|Z, cpZ) = φX(Z, cpZ)′ux(X) + fX(X) + gX(Z, cpZ)

= φXZ(X, cpZ)′uZ(Z) + λ(X, cpZ). (56)
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The second representation of log f(X|Z, cpZ) in (56) is obtained by a simple change of vari-
ables in the exponent, made in order to provide conjugacy. The principle dictates that for
any random variable, say A, the term log f(A|paA) must be a multilinear in each of function
of uA(A) and its parents. That is, it is linear in each of paA and uA(A), yet it may be affine
in their combination.

The variational update for a node Z then reads

log q∗Z(Z) ∝ E\Z
[
φZ(paZ)′uZ(Z) + fZ(Z) + gZ(paZ)

]
+
∑
k∈chZ

E\Z
[
φXZ(Xk, cpk)

′uZ(Z) + λ(Xk, cpk)
]
.

By principle, it yields a function of the same type as the prior f(Z|paZ), now with an updated
natural parameter

φ+
Z = E [φZ(paZ)] +

∑
k∈chZ

E [φXZ(Xk, cpk] .

Since the expectations are evaluated on base of the expectations of the related sufficient
statistics, we exploit (49). In other words, we can define

φ̃Z({E [ui]}i∈paZ ) = E[φZ(paZ)]

φ̃XZ(E [uk] , {E [uj ]}j∈cpk) = E[φXZ(Xk, cpk)].

The VMP update is therefore made by exchanging and incorporating messages among adja-
cent nodes. These messages are of two types:

i) Z → X: mZ→X = E[uZ ],

ii) X → Z: mX→Z = φ̃XZ(E[ux], {mi→X}i∈cpZ ).

In terms of messages, the update (57) reads

φ+
Z = φ̃Z({mi→Z}i∈paZ ) +

∑
j∈chZ

mj→Z .

4.4 Application of VMP to estimation of adhesion loss

The application of the variational message passing algorithm to the adhesion loss estimation is
entirely straightforward. Let us proceed with the same notation as in the variational Bayesian
version. The situation is depicted in Fig. 4.4. Further on, the time indices are dropped. The
variable Ii stands again for adhesion loss indicator as in (21) with a pdf (22) driven by a
beta-distributed π, and the data obey a normal distribution with a pdf

p(X|I, µ,Λ) =
N∏
i=1

p(xi|µ0,Λ0)1−Iip(xi|µ1,Λ1)Ii . (57)

Unlike in the VB, we consider µi,t and Λi,t for i ∈ {0, 1} independent, which leads to a higher
degree of computational simplification for only a low price of inaccuracy. Their distributions
are normal (for means µi,t) and gamma (for precisions Λi,t) with pdfs f(µ|m,β) and f(Λ|a, b),
respectively.
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xi,t

Ii,tπt

µ0,t Λ0,t
µ1,t Λ1,t

x
(G)
t

N

(I = 0) (I = 1)

Figure 4: Variational message passing for estimation of adhesion loss. If we focus on the plate
(I = 0), then µ0,t has child xi,t, co-parents Λ0,t, members of plate (I = 1) and the indicator

variable Ii,t. The system gives rise to the global variable x
(G)
t .

The logarithms of pdfs, corresponding to the model (56) and priors (55) are

log f(xi|µ,Λ−1, I) = (1− E[Ii])

{[
Λ0xi
−Λ0/2

]′ [
µ0

µ2
0

]
+

1

2
(log Λ0 − Λ0x

2
i − log 2π)

}

+ E[Ii]

{[
Λ1xi
−Λ1/2

]′ [
µ1

µ2
1

]
+

1

2
(log Λ1 − Λ1x

2
i − log 2π)

}

= (1− E[Ii])

{[
1/2

−(xi − µ0)2/2

]′ [
log Λ0

Λ0

]
− log 2π

}

+ E[Ii]

{[
1/2

−(xi − µ1)2/2

]′ [
log Λ1

Λ1

]
− log 2π

}

log f(µ|mj , βj) =

[
βjmj

−βj/2

]′ [
µj
µ2
j

]
+

1

2
(log βj − βjm2

j − log 2π)

log f(λ|aj , bj) =

[
aj − 1
−bj

]′ [
log λj
λj

]
+ a log b− log Γ(a), j ∈ {0, 1}.

The message passing algorithm is achieved by recursive run of the following steps, evalu-
ated in arbitrary order:

(i) For j ∈ {0, 1}, messages mΛj→xi are sent from nodes Λj (co-parents of the respective
µj) to observed nodes xi. These messages are

mΛj→xi = E[uΛj (Λj)] =

[
E[log Λj ]
E[Λj ]

]
.
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(ii) The nodes xi use obtained messages mΛj→xj to form messages

mxi→µj =

[
E[Λj ]xi
−E[Λj ]/2

]
.

These messages are scaled by (1 − E[Ii]) and E[Ii] for I = 0 and I = 1, respectively.
These values are obtained from the relevant plates (I = 0) and (I = 1).

(iii) The nodes µj , j ∈ {0, 1} update their natural parameters

φ+
µj =

[
βjmj

−βj/2

]
+

N∑
n=1

mxi→µj .

(iv) The nodes µj , j ∈ {0, 1} evaluate relevant expectations in order to form messages

mµj→xi =

[
E[µj ]
E[µ2

j ]

]
.

(v) The nodes xi form messages for Λj such that

mxi→Λj =

[
1/2

−(xi − E[µj ])
2

]
,

and scale it as the messages for µj .

(vi) The nodes Λj , j ∈ {0, 1} update their natural parameters according to

φ+
Λj

=

[
aj − 1
−bj

]
+

N∑
n=1

mxi→Λj .
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5 Experiments

The adhesion loss estimation in three-PMSM drives setting is demonstrated using four dif-
ferent methods, in each case on base of the torque load. The torque load (here Mz) itself
is estimated together with other state variables – currents isα, isβ, electric angle ϑe, angular
speed ωe with EKF (see Section 3.2). The 20 000 data points are artificial, generated by a
PMSM simulator written in Matlab.

The torque load is preset as follows:

• t < 8000 – Mz = 10;

• t ∈ [8000, 16000) – Mz = 20;

• t ≥ 16000 – Mz = 30;

The transitions are not sharp, but are smoothed by a twice-differentiable function. The
centered normal cumulative distribution function with scale 30 is used for this purpose.

The first PMSMS drive’s torque load is corrupted as follows:

• t ∈ [500, 1500]: the torque load drops to zero.

• t ∈ [10000, 12000]: the torque load drops to zero.

• t ∈ [17000, 18000]: a negative part of the sinusoid with amplitude 10 is added to the
torque load.

The estimation of state and adhesion loss run in Python, both evaluated at each t =
1, · · · , 20000.

The four methods chosen for demonstration are:

Variational Bayes – five iterations of VB are run after the state is obtained with EKF.
The initial means are preset at 0 and max(Mz,i,t) where i ∈ {1, 2, 3} is an index of
PMSMS drive and t = 1, · · · , 20000. The initial ν = 3 and W = 100 for both cases
(regular/adhesion loss), π = 0.5 and α = β = 1.

Variational message passing – again five iterations of the algorithm are run after the
state is obtained with EKF. The initial means are set identically to VB, the preci-
sions of normals are 0.01. The gamma distributions are preset noninformative with
hyperparameters (0.1, 0.1) as proposed in Gelman et al. [2003].

k-means – for comparison, the data are clustered with two centroids represented by means.
The scipy method kmean2 is directly used. Its initialization is at randomly chosen
points, only two iterations are used.

Median filtering – the simplest approach. After the state is obtained from EKF, the median
of Mz over all actually estimated torque loads is selected and the other are compared
to it.

Each method produces a ’global’ estimate M
(G)
z . In the variational methods and k-means

it corresponds to the mean, in median filtering it is directly the median. The results of

EKF estimation (true value in red, estimated blue) together with differences Mz −M (G)
z are

depicted in Figures 5 for VB, 6 for VMP, 7 for k-means and finally 8 for median filtering.
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Further insight into results provides Table 1, summarizing statistics of differences between

Mz estimates of each PMSM and the global estimate M
(G)
z . These statistics are minimum, all

three quartiles, maximum, mean, standard deviation and inter-quartile range. The differences
are also depicted by histograms in Figure 9.

Further improvements of variational methods can be made by reusing of flattened posterior
distribution as the prior in the next time step (it is assumed that the dynamics is reasonably
slower in reality). Also, instead of a fixed number of iterations, the variational lower bound
could be used as a stopping criterion. Since its evaluation is computationally expensive, we
have abandoned this idea.

Method, PMSM no Min q1 x̃ q3 Max x̄ s IQR

VB.PMSM1 -21.36 -0.04 -0.01 0.01 9.74 -2.61 6.21 0.05
VB.PMSM2 -3.97 -0.01 0.00 0.01 3.18 0.10 0.57 0.02
VB.PMSM3 -2.77 -0.01 0.00 0.01 3.19 0.12 0.55 0.02
VMP.PMSM1 -21.36 -0.04 -0.01 0.01 9.64 -2.67 6.25 0.05
VMP.PMSM2 -1.66 -0.01 0.00 0.01 1.33 0.04 0.27 0.02
VMP.PMSM3 -1.02 -0.01 0.00 0.01 1.33 0.06 0.24 0.02
k-means.PMSM1 -21.36 -0.06 0.00 0.00 9.64 -2.72 6.29 0.06
k-means.PMSM2 -0.94 0.00 0.00 0.00 0.23 -0.01 0.09 0.00
k-means.PMSM3 -0.40 0.00 0.00 0.00 0.94 0.01 0.08 0.01
median.PMSM1 -21.36 -0.06 0.00 0.00 8.76 -2.72 6.27 0.06
median.PMSM2 -1.87 0.00 0.00 0.00 0.19 -0.02 0.17 0.00
median.PMSM3 -0.08 0.00 0.00 0.00 0.11 0.00 0.02 0.00

Table 1: Statistics of Mz −M
(G)
z .
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Figure 5: Estimation of PMSM with adhesion loss detection with variational Bayes.
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Figure 6: Estimation of PMSM with adhesion loss detection with variational message passing.
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Figure 7: Estimation of PMSM with adhesion loss detection with k-means clustering.
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Figure 8: Estimation of PMSM with adhesion loss detection with median filter.
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Figure 9: Histograms of Mz −M (G)
z
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6 Conclusion

The report provides insight into the adhesion loss estimation based on sensorless concurrent
estimation of several PMSM drives using extended Kalman filter. Two variational methods
– the variational Bayes method and the variational message passing – were derived for this
purpose. They are compared to two ad-hoc simplistic approaches: the k-means clustering
and median filtering.

The presented work is based on centralized data processing. It may be interesting to
try a fully distributed algorithms, in which the variable of interest is estimated at each net-
work node with the help of information obtained from other nodes. An example of a fully
distributed variational Bayesian algorithm for estimation of normal mixtures in sensor net-
works is discussed in Safarinejadian et al. [2010]. While fully decentralized, it still assumes a
potential risk in the form of a Hamiltonian cycle.
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