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a b s t r a c t

Knowledge of the noise distribution is typically crucial for the state estimation of general state-space
models. However, properties of the noise process are often unknown in the majority of practical
applications. The distribution of the noise may also be non-stationary or state dependent and that
prevents the use of off-line tuning methods. For linear Gaussian models, Adaptive Kalman filters (AKF)
estimate unknown parameters in the noise distributions jointly with the state. For nonlinear models, we
provide a Bayesian solution for the estimation of the noise distributions in the exponential family, leading
to a marginalized adaptive particle filter (MAPF) where the noise parameters are updated using finite
dimensional sufficient statistics for each particle. The time evolution model for the noise parameters is
defined implicitly as a Kullback–Leibler norm constraint on the time variability, leading to an exponential
forgetting mechanism operating on the sufficient statistics. Many existing methods are based on the
standard approach of augmenting the state with the unknown variables and attempting to solve the
resulting filtering problem. The MAPF is significantly more computationally efficient than a comparable
particle filter that runs on the full augmented state. Further, the MAPF can handle sensor and actuator
offsets as unknown means in the noise distributions, avoiding the standard approach of augmenting the
state with such offsets. We illustrate the MAPF on first a standard example, and then on a tire radius
estimation problem on real data.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Systems with unknown and potentially time-varying noise
statistics are common in many applications, and a lot of effort was
invested into estimation of the noise properties. Estimation of the
covariance matrices for the Kalman filter was addressed in Mehra
(1972), where different approaches have been systematically
classified into the following categories: Bayesian, maximum
likelihood, correlation and covariance matching. Traditionally
the problem has been addressed for linear systems; see e.g.,
Kosanam and Simon (2004) and Liang, An, Zhou, and Pan (2004).
A correlation based adaptive Kalman filter for noise identification
using the weighted least squares criterion has been proposed
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in Oussalah and De Schutter (2000), while an asymptotic (in
time) maximum likelihood estimate has been proposed in Maine
and Iliff (1981). On the other hand, the Bayesian approach has
been used, for example, in Li and Bar-Shalom (1994) and Särkkä
and Nummenmaa (2009). In Li and Bar-Shalom (1994), the non-
stationary noise statistics are estimated using the so called IMM
method, while an adaptive Kalman filter based on variational
Bayesian methods is used in Särkkä and Nummenmaa (2009).
An adaptive sequential estimation with unknown noise statistics
has been proposed in Myers and Tapley (1976). Estimation of a
state dependent covariance matrix using the marginalized particle
filter approach has been considered by Šmídl (2008), where the
covariance matrix is treated as an additional state, for which a
state transition equation has been defined. Many of the parameter
estimationmethods in particle filtering rely on state augmentation
technique eg., Liu and West (2001) and Storvik (2002). Such
approaches have two main disadvantages. One is the increase in
the state dimension which should be avoided in particle filters as
they suffer from the curse of dimensionality. The second is the error
accumulation in case of static parameters estimation as addressed
in Andrieu, Doucet, and Tadic (2005).

In this paper, we are concerned with a more general case of
non-stationary noise characteristics belonging to the exponential
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family. Specifically, we focus on systems with slowly varying
parameters, where the term ‘‘slowly varying’’ is defined as a
constraint on Kullback–Leibler divergence rather than an explicit
random-walk model. We show that under such a constraint,
explicit parameter evolution is not necessary and the predictive
density of the parameter can be replaced by themaximum entropy
estimate. The estimate is shown to be closely related to the
classical technique of exponential forgetting (Kulhavý & Zarrop,
1993). Since the result of exponential forgetting is within the
exponential family, the concept of sufficient statistics can be used
to obtain analytical posterior. Analytical posteriors are necessary
for marginalization, which results in efficient particle filtering
algorithms (Schön, Gustafsson, & Nordlund, 2005).

The approach is closely related to the published results for
the estimation of stationary noise parameters using marginalized
particle filters e.g. by Bordin and Bruno (2008), Carvalho, Johannes,
Lopes, and Polson (2010), Djuric and Miguez (2002) and Storvik
(2002). The system considered in Bordin and Bruno (2008)
is a specific model for a binary output and it is partially
linear. The approach in Djuric and Miguez (2002) is focused
on Gaussian parameters, while Storvik (2002) has extended this
approach to general exponential family models. However, for the
stationary parameters, the approach is known to suffer from error
accumulation, as pointed out in Chopin et al. (2010). We show that
this problem does not arise in our case. Specifically, the forgetting
used in the prediction stage introduces the exponential forgetting
property of the system that is well known to mitigate the path
degeneracy problem (Crisan & Doucet, 2002).

Our experiments show that the proposed method is capable of
estimating the unknown parameters of the measurement noise as
well as the process noise even for highly nonlinear models. This
article is an extended version of our previous work presented in
Saha, Özkan, Gustafsson, and Šmídl (2010).

The paper is organized as follows. In Section 2, we establish
results for estimation of noise parameters for observed values of
the noise vector from the exponential family. These results are
generalized in Section 3 to the case of general state-space model
with unknown noise parameters where the marginalized particle
filtering algorithm is presented. In Section 4, a special case of
the proposed algorithm, the estimation of unknown parameters
of Gaussian distributions is described. The performance of the
algorithm is presented with simulations in Section 5. Application
of the algorithm to the problem of odometry-based navigation is
presented in Section 6.

2. Estimation of noise parameters for directly observed noise

In this section, we introduce estimation of the noise parameters
for the case of directly observable noise. Consider an observation
model of the noise

et ∼ p(et |θt) = ρ(et) exp(η(θt) · τ(et)− φ(θt)), (1)

where et is the vector of observations, θt is the vector of unknown
parameters, η(θt) and φ(θt) are vector and scalar valued functions
of the parameters, respectively; ρ(et) and τ(et) are scalar and
vector valued functions of the realization et ; the symbol · denotes
the scalar product of two vectors.

Since θt is time-varying, (1) may be complemented by an
evolution model p(θt |θt−1) to form a complete state-space model.
However, since it is typically unknown, we seek alternative
formulation in Section 2.2

2.1. Measurement update in exponential family

Since the likelihood function (1) for the unknown parameter θt
is in the exponential family, we assume that the prior on θt is in the
form conjugate to (1), i.e.

p(θt |e1:t−1) =
1

γ (Vt|t−1, νt|t−1)
exp(η(θt)Vt|t−1 − νt|t−1φ(θt)) (2)

where Vt|t−1 is a vector of sufficient statistics and νt|t−1 is a scalar
counter of the effective number of samples in the statistics. The
normalization factor γ (Vt|t−1, νt|t−1) is uniquely determined by
the statistics Vt|t−1 and νt|t−1. Then, the posterior density p(θt |e1:t)
is in the form (2) with statistics

Vt|t = Vt|t−1 + τ(et), (3a)

νt|t = νt|t−1 + 1. (3b)

The result is convenient for recursive evaluation of sufficient
statistics starting from a prior defined by V0, ν0.

The predictive distribution of et is then

p(et |e1:t−1) =


p(et |θt)p(θt |e1:t−1)dθt

=
γ (Vt|t , νt|t)

γ (Vt|t−1, νt|t−1)
ρ(et). (4)

2.2. Time update in exponential family

Bayesian estimation of non-stationary parameters θt requires
formalization of the parameter evolution model p(θt+1|θt). The
predictive density of the parameter θt+1 is obtained by marginal-
ization

p(θt+1|e1:t) =


p(θt+1|θt)p(θt |e1:t)dθt . (5)

Since the transition model p(θt+1|θt) is unknown, we seek
an estimate of the marginal p(θt+1|e1:t) among many possible
transition models. To restrict the space of all possible models, we
implicitly limit the change in the prediction density in time by the
Kullback–Leibler distance constraint

KL(p(θt+1|e1:t) ∥ pconst(θt+1|e1:t)) ≤ κ, (6)

where KL is the Kullback–Leibler divergence defined as

KL(p1 ∥ p2) =


∞

−∞

p1(x) log

p1(x)
p2(x)


dx, (7)

0 ≤ κ < ∞, is a known constant and pconst corresponds to the
predictive density in case the parameters do not change in time,

pconst(θt+1|e1:t) =


δ(θt+1 − θt)p(θt |e1:t)dθt , (8)

where δ() is the Dirac delta function. In other words, Eq. (8) gives
the predictive density for the case of time-invariant parameters.
The interpretation of (6) is that, we obtain an implicit definition of
a class of transition models p(θt+1|θt) giving predictive densities
p(θt+1|e1:t) which are close to pconst(θt+1|θt), where the closeness
is measured in the Kullback–Leibler sense. A deeper discussion is
provided in Section 2.3.

Following the principle of maximum entropy, we choose
to approximate (5) by a distribution p̂(θt+1|e1:t) that has the
maximum entropy of all distributions satisfying (6). Since most
of our applications use continuous distributions, we will use the
‘‘continuous’’ generalization of entropy by Jaynes (1963), where
the entropy is defined with respect to an invariant measure of
entropy, u(x):

H(p) = −


∞

−∞

p(x) log

p(x)
u(x)


dx. (9)

The straightforward generalization (known as differential entropy)
is revealed for u(x) = 1. If the invariant measure integrates to
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unity, i.e. pu(x) = u(x), (9) becomes equivalent to the relative en-
tropy (7).

Theorem 1 (MaximumEntropyUnder KLDivergence Constraint). For
a given pconst(θt+1|e1:t), the probability distribution

p̂(θt+1|e1:t , λt) ∝ pconst(θt+1|e1:t)λtu(θt+1)
1−λt , (10)

has maximum entropy of all densities p(θt+1) defined on the same
support as pconst(θt+1|e1:t) which satisfies (6) for a given value of κ
and u(θt+1). The forgetting factor λ has two possible values: λt = 0
if there exists pu(θt+1) ∝ u(θt+1) and KL(pu(·) ∥ pconst(·)) < κ ,
otherwise it is a solution to the equation

KL(p̂(θt+1|e1:t , λt) ∥ pconst(θt+1|e1:t)) = κ. (11)

Proof. Outlined in Kárný and Dedecius (2012) and elaborated in
detail in Appendix A.1 for discrete densities. �

The theorem states that if the true parameter evolution model is
in the class (6) the time update in (10) will not underestimate the
uncertainty by maximizing the entropy.

Note that, for the special case of stationary parameters, κ = 0,
(11) yields λ = 1. For sudden changes of the parameter, κ →

∞, λ → 0 and the invariant measure pu(θt+1) has the role of the
prior density.

The solution (10) is particularly advantageous in the exponen-
tial family, since (10) preserves the exponential formwith statistics
νt+1|t = λνt|t + (1 − λ)νu, (12a)

Vt+1|t = λVt|t + (1 − λ)Vu, (12b)
where we assume that the invariant measure is also in the
exponential form (2) with statistics νu, Vu.

Example 2 (Normal Distributed Parameters). Consider a scalar
time-varying parameter µt with Normal distributed posterior

p(µt |e1:t) = N (µ̂t|t , σ
2
t|t). (13)

The forgetting operator (10) with invariant measure u(µt+1) = 1
yields

p(µt+1|e1:t) = N


µ̂t|t ,

1
λ
σ 2
t|t


, (14)

which is again Normal with µ̂t+1|t = µ̂t|t , and σ 2
t+1|t =

1
λ
σ 2
t|t . Since

the KL divergence between two Normal distributions is

KL(p(µt+1|t |·) ∥ p(µt|t |·)) =
(µ̂t+1|t − µ̂t|t)

2

2σ 2
t|t

+
1
2


σ 2
t+1|t

σ 2
t|t

− 1 − ln
σ 2
t+1|t

σ 2
t|t


,

Eq. (11) has the form

1
2


1
λ

− 1 − ln
1
λ


= κ. (15)

Thus, it is independent of the statisticsµ and σ 2 and can be solved
numerically. For example, the solutions of (15) for κ = 1 and
κ = 0.01 are λ = 0.222 and λ = 0.824, respectively. Note
that (14) is also a result of marginalization (5) for the parameter
evolution model

p(µt+1|µt) = N


µt ,


1
λ

− 1

σ 2
t|t


. (16)

Hence, the exponential forgetting is equivalent to standard
Bayesian filtering with transition model (16), Raftery, Kárný, and
Ettler (2010).
Fig. 1. Illustration of the solution of (11) for λ in Example 3, for α =

[3, . . . , 160], β = 45. The solution is insensitive to the values of β . Dashed line
denotes the solution of Eq. (15) for the Normal distribution.

Example 3 (Inverse-Gamma Distributed Parameters). Consider a
scalar time-varying parameter rt with inverse-gamma density

p(rt−1|e1:t−1) = iΓ (α, β) =
βα

Γ (α)
r−α−1
t−1 exp


−
β

rt−1


,

α ≥ 0, β > 0, rt−1 > 0. (17)

The distribution (17) belongs to (2) under the assignments

Vt−1 = β, η(rt−1) = −
1
rt
,

νt−1 = α + 1, φ(rt−1) = log(rt),
γ (Vt−1, νt−1) = Γ (α)β−α.

The exponential form is preserved under Vu = 0, νu = 1, corre-
sponding to

u(rt−1) = r−1
t−1 = exp(−1 log(rt−1)),

which is (the improper) Jeffreys’ prior on scale parameters (Jef-
freys, 1961). The time-updated density is then

p(rt |e1:t−1) = iΓ (λα, λβ). (18)

In this example, it is also possible to solve (11) numerically; see
Fig. 1. Note that the solution for higher values α is approaching the
limit that holds for the Normal distribution (15).

2.3. The maximum entropy interpretation of forgetting

Eq. (12) is known as exponential forgetting, and it was derived
using heuristic arguments (Jazwinski, 1979), decision theoretic
(Kulhavý & Zarrop, 1993) and maximum entropy arguments
(Kárný & Dedecius, 2012). The maximum entropy interpretation
allows a new interpretation of the forgetting factor as a measure
on the parameter evolution model. Note from (6) that a single
value of κt determines a class of parameter evolution models
of various kinds, including state-dependent models. Maximum
entropy principle guarantees that if the true parameter evolution
model is in the class (6) the estimation procedure will not
underestimate the uncertainty.

An open research question is how to determine κt or,
alternatively, the forgetting factor λt since the relation between
these two is rather tight as demonstrated in Examples 2 and
3. Research results on the choice of forgetting factor for many
particular cases are available, e.g. Paleologu, Benesty, and Ciochina
(2008) and Šmídl and Quinn (2004). However, in many practical
applications, the forgetting factor is chosen to be constant and
manually tuned. We follow this approach in this paper and show
that this approach yields good results both in simulations and real
data. The results for different choices on the constant forgetting
factor are illustrated in Section 5.2. Bayesian treatment of λt is also
possible but outside the scope of this paper.



E. Özkan et al. / Automatica 49 (2013) 1566–1575 1569
2.4. Invariant measure

In this paper, we use the invariant measure mainly as a techni-
cal mean to derive the main results. In practical applications, we
choose u(·) as close to the uniformmeasure as possible, as demon-
strated in Example 2. However, it may be used as a regularization
term in recursive Bayesian estimation. Its benefits and dangers are
discussed in Appendix A.2.

3. Joint estimation of state and noise parameters

Consider the following nonlinear discrete time state space
model relating a hidden state xt to the observation yt
xt = ft(xt−1, ut−1)+ gt(xt−1, ut−1)vt , (19a)

yt = ht(xt , ut)+ dt(xt , ut)wt . (19b)

Here, t denotes the time index. f (.), h(.), d(.) and g(.) are possibly
nonlinear functions of the state vector x and the input u. In order to
avoid the degenerated case of perfect noise-free observations, we
will assume that d(.) is invertible. On the other hand, g(.) is not
assumed invertible, since most motion models in practice, includ-
ing those with integrators, lead to noninvertible g(.). We define
the noise vector et , [vTt , w

T
t ]

T as a realization from a distribution
which belongs to the exponential family (1) with unknown time-
varying parameter θt .

We are concerned with the evaluation of the joint density
p(xt , θt |y1:t). Following the concept of marginalized particle
filtering,we decompose the joint posterior density into conditional
densities as follows:

p(x0:t , θt |y0:t) = p(θt |x0:t , y0:t)p(x0:t |y0:t), (20)

where we choose to approximate p(x0:t |y0:t) by an empirical
density

p(x0:t |y0:t) ≈

n
i=1

ω
(i)
t δ(x0:t − x(i)0:t), (21)

with sample trajectories x(i)0:t and weights ω(i)t . Such a decomposi-
tion will result in a particle approximation of the state density and
analytical expressions for the conditional density of the parame-
ters p(θt |x0:t , y0:t).

Two key ideas will help us in deriving the recursive equations.
First, for a given value of (x0:t , y0:t), the conditional density
p(θt |x0:t , y0:t) can be considered as the posterior density of the
parameters and can be computed by a measurement update of the
noise distribution parameters. Second, sincewe have the analytical
expression p(θt |x0:t−1, y0:t−1) from the previous time instant, the
unknown parameter θt can be integrated out when computing
the recursive expressions for the marginal density of the state
p(x0:t |y0:t). The latter will be explained together with the weight
update equation later.

Under the approximation (21), the first part of (20) needs to be
evaluated only at points x(i)0:t . Note that, for a known value of x(i)t ,
(19a)–(19b) can be transformed into

e(i)t = e(x(i)t , yt) =


gĎt (x

(i)
t−1, ut−1)[x

(i)
t − ft(x

(i)
t−1, ut−1)]

d−1
t (x

(i)
t , ut)[yt − ht(x

(i)
t , ut)]


(22)

where gĎt (x
(i)
t−1, ut−1) stands for the pseudo-inverse of gt(x

(i)
t−1,

ut−1). Then, p(θt |x
(i)
0:t , y0:t) = p(θt |e

(i)
0:t) and the results from

Section 2 can be readily applied.
The joint density (20) is

p(x0:t , θt |y0:t) ≈

n
i=1

ω
(i)
t p(θt |V

(i)
t|t , ν

(i)
t|t )δ(x0:t − x(i)0:t), (23)

where the statistics ω(i)t , V
(i)
t|t , ν

(i)
t|t , x

(i)
0:t are evaluated as follows.
First, x(i)t are sampled fromaproposal density q(xt |x
(i)
0:t−1, y0:t−1).

Second, for the known value x(i)t , the conditional density p(θ |x(i)0:t ,
y0:t) is updated using the mapping (22) to e(i)t , and the statistics
V (i)t , ν

(i)
t are updated using (3). Finally, the update equation for the

weights w(i)t can be derived using the marginal density p(x0:t |y0:t)
from (20). Since,

p(x0:t |y0:t) ∝ p(yt , xt |x0:t−1, y0:t−1)p(x0:t−1|y0:t−1), (24)

substituting (21) into (24) in place of p(x0:t |y0:t) and p(x0:t−1|y0:t−1)
yields

ω
(i)
t ∝

p(yt , xt |x0:t−1, y0:t−1)

q(xt |x
(i)
0:t−1, y0:t−1)

w
(i)
t−1,

where

p(yt , xt |x0:t−1, y0:t−1) =


p(yt , xt |θt , x0:t−1, y0:t−1)

× p(θt |x0:t−1, y0:t−1)dθt , (25)

is the marginal predictive distribution of xt , yt . This marginal dis-
tribution is computed by integrating out the unknown param-
eters which leads to the predictive distribution of xt , yt , and
consequently et via (22). Notice that the predictive distribution
p(et |e0:t−1) is readily available for the exponential family in the
form of (4). The predictor (25) can be obtained using the lemma
on transformation of variables in probability density functions:

p(yt , xt |x0:t−1, y0:t−1) = |J(xt , yt)|p(e(xt , yt)|V
(i)
t|t−1, ν

(i)
t|t−1) (26)

where J(xt , yt) is the Jacobian of the transformation (22) and p(et |·)
is given by (4).

The final algorithm is summarized in Algorithm 1.

Remark 4 (Stationary Parameters).Note that estimation of station-
ary parameters can be obtained as a special case of the above
approach for κ = 0 in (6). Then, the only solution of (11) is
λ = 1reducing the update of sufficient statistics (3) to the form
of Storvik (2002). As pointed out e.g. by Chopin et al. (2010) the
stationary case suffers from the path degeneracy problem. Here,
we note that for a sequence of λt < 1,∀t , the posterior density
p(θt |x1:t , y1:t) and thus p(yt , xt |x0:t−1, y0:t−1) satisfies the exponen-
tial forgetting property (Crisan&Doucet, 2002). Therefore, the path
degeneracy problem is less severe in this case.

4. Special case of Gaussian noise

In this section, we specialize Algorithm 1 to the practically
important case of normal distributed noises.

4.1. Likelihood and conjugate prior

For multivariate normal distribution of et with unknown
mean µt and covariance Σt , a Normal–inverse-Wishart distribu-
tion defines a conjugate prior. Let us denote it as [µt ,Σt ] ∼

NiW(γt|t , µ̂t|t ,Λt|t , νt|t). The Normal–inverse-Wishart distribu-
tion defines a hierarchical Bayesian model given below:

et |µt ,Σt ∼ N (µt ,Σt), (27a)

µt |Σt ∼ N (µ̂t|t , γt|tΣt), (27b)

Σt ∼ iW(νt|t ,Λt|t)

∝ |Σt |
−

1
2 (νt|t+d+1) exp


−

1
2
tr(Λt|tΣ

−1
t )


, (27c)

where iW(.) denotes the Inverse Wishart distribution, and d is the
dimension of the vector et . The quantities µ̂t|t , γt|t ,Λt|t , νt|t can be
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Algorithm 1 Marginalized adaptive particle filter for nonlinear
model with time-varying noise parameters.
Initialization:
For each particle i = 1, ..,N do

• Sample x(i)0 ∼ p0(x0),
• Set initial weights ω(i)0 =

1
N ,

• Set initial noise statistics [ν0, V0] for each particle,

Iterations:
For t = 1, 2, . . . do

• For each particle i = 1, ..,N do
· perform the time update of the statistics V (i)t|t−1, ν

(i)
t|t−1 using

(12),
· sample x(i)t ∼ q(x(i)t |x(i)0:t−1, y0:t),
· set e(i)t = e(x(i)t , yt),
· compute the predictive likelihood p(yt , x

(i)
t |x(i)0:t−1, y0:t−1)

using (26),
· update the weights:

ω(i)t = ω
(i)
t−1

p(yt , x
(i)
t |x(i)0:t−1, y0:t−1)

q(x(i)t |x(i)0:t−1, y0:t)

· perform the measurement update of the statistics V (i)t|t , ν
(i)
t|t ,

using (3).

• Normalize the weights, ω(i)t =
ω(i)tN
i=1ω(i)t .

• Compute Neff =
1N

i=1(ω
(i)
t )

2
.

· If Neff ≤ η, resample the particles. Copy the corresponding
statistics and set ω(i)t = 1/N .

recursively computed as follows:

γt|t =
γt|t−1

1 + γt|t−1
, (28a)

µ̂t|t = µ̂t|t−1 + γt|t(et − µ̂t|t−1), (28b)

νt|t = νt|t−1 + 1, (28c)

Λt|t = Λt|t−1 +
1

1 + γt|t−1
(µ̂t|t−1 − et)(µ̂t|t−1 − et)′, (28d)

where the statistics of the predictive distribution are

γt|t−1 =
1
λ
γt−1|t−1, (29a)

µ̂t|t−1 = µ̂t−1|t−1, (29b)

νt|t−1 = λνt−1|t−1, (29c)

Λt|t−1 = λΛt−1|t−1. (29d)

These equations are derived in Peterka (1981) and their relation
to the exponential family is discussed in Kárný et al. (2006). The
predictive distribution of et (4) becomes a multivariate Student-t
density with νt|t−1 − d + 1 degrees of freedom

p(et |νt−1, Vt−1) = St

µ̂t|t−1,Λt|t−1, νt|t−1 − d + 1


∝

1 + (êt − µt|t−1)
Λ−1

t|t−1

1 + γt|t−1
(et − µ̂t|t−1)


−

1
2 (νt|t−1+1)

. (30)

The first two moments of (30) are

E(et) = µt|t−1, Var(et) =
1 + γt|t−1

νt|t−1 − d − 1
Λt|t−1.
The predictive distribution for yt and xt can be found using the
transformation (26). For one common case with transformations
dt(xt , ut) = 1 and gt(xt−1, ut−1) = 1 the Jacobian of the transfor-
mation is one, |J(xt , yt)| = 1.

A special case of the MAPF algorithm for the model (19a)–(19b)
with independent noises vt and wt , and without transformations
dt() and gt() is described in Algorithm 2. Due to the noise
independence, their posterior distributions are conditionally
independent, with statistics Sv,t|t = {µ̂v,t|t , γv,t|t ,Λv,t|t , νv,t|t} and
Sw,t|t = {µ̂w,t|t , γw,t|t ,Λw,t|t , νw,t|t}. The predictive distribution
(25) then simplifies to a product of multivariate Student-t
predictors

p(xt |Sv,t|t−1)

= St

f (x(i)t−1)+ µ̂v,t|t−1,Λv,t|t−1, νv,t|t−1 − dv + 1


, (31)

p(yt |Sw,t|t−1)

= St

h(x(i)t )+ µ̂w,t|t−1,Λw,t|t−1, νw,t|t−1 − dw + 1


, (32)

where we have used (26) with unit Jacobian. The proposal
distribution q(xt |x1:t−1, y1:t) is chosen as the predictor (31) which
simplifies evaluation of the weights ω(i)t ; see Algorithm 2.

Algorithm 2 Marginalized adaptive particle filter for nonlinear
model with Gaussian noise with time-varying parameters.
Initialization:
For each particle i = 1, ..,N do

• Sample x(i)0 from (31),
• Set initial weights ω(i)0 =

1
N ,

• Set initial noise statistics Sv,0, Sw,0 for each particle,

Iterations:
For t = 1, 2, . . . do

• For each particle i = 1, ..,N do
· perform the time update of the statistics S(i)v,t|t−1, S

(i)
w,t|t−1,

using (29),
· sample x(i)t from (31),
· update the weights ω̃(i)t
ω̃
(i)
t = p(yt |Sw,t|t−1)ω

(i)
t−1,

· perform the measurement update of the statistics Sv,t|t and
Sw,t|t , using (28).

• Normalize the weights, ω(i)t =
ω(i)tN
i=1ω(i)t .

• Compute Neff =
1N

i=1(ω
(i)
t )

2
.

· If Neff ≤ η, resample the particles. Copy the corresponding
statistics and set ω(i)t = 1/N .

5. Experimental results

5.1. Illustrative example

In this section we illustrate the performance of the proposed
marginalized particle filter algorithm and compare itwith the state
augmentation approach. We use the following benchmark scalar
nonlinear time series model for the illustrations:

xt =
xt−1

2
+

25xt−1

1 + x2t−1
+ 8 cos(1.2t)+ vt , (33)

yt =
x2t
20

+ wt , vt ⊥ wt , t = 1, 2, . . . (34)



E. Özkan et al. / Automatica 49 (2013) 1566–1575 1571
where vt ∼ N (µv,t ,Σv,t) and wt ∼ N (µw,t ,Σw,t). Both the
mean and the variance of the measurement and process noise
sequences are unknown and time varying. The true parameters of
the noises are initially set to an arbitrary choice of values: µv,0 =

1,Σv,0 = 2, µw,0 = 3,Σw,0 = 4 and the final values are set
to µv,4000 = 2, Σv,4000 = 4, µw,4000 = 1,Σw,4000 = 7; see
Fig. 2. In the following, we first give a brief description of the state
augmentation method and later describe the MAPF method.

• Augmented State PF : In this approach, a new state vector x̄t
is defined by augmenting the model state with the unknown
parameters. Artificial dynamics are used to account for the
change of the parameters in time. The augmented state vector
is defined as follows

x̄t ,

xt µv,t µw,t Σv,t Σw,t

T
. (35)

In our simulations, the unknown means are propagated by a
Gaussian random walk.

p(µv,t |µv,t−1) = N (µv,t−1, σ
2
vs) (36a)

p(µw,t |µw,t−1) = N (µw,t−1, σ
2
ws) (36b)

where the standard deviation of the random walk is set to
5% of the average value of the true parameters. The following
Markovian model with Inverse-Gamma distribution is used to
propagate the unknown covariances.

p(Σv,t |Σv,t−1) = iΓ (αv,t , βv,t) (37a)

p(Σw,t |Σw,t−1) = iΓ (αw,t , βw,t). (37b)

The parameters α and β are chosen such that the mean value
is preserved and the standard deviation is equal to 5% of the
previous value of the parameter.

E{Σv,t |Σv,t−1} = Σv,t−1 (38a)

E{Σw,t |Σw,t−1} = Σw,t−1 (38b)

Std{Σv,t |Σv,t−1} = 0.05Σv,t−1 (38c)

Std{Σw,t |Σw,t−1} = 0.05Σw,t−1. (38d)

• MAPF : For the marginalized adaptive particle filter, a NiW
distribution is used as the prior. The initial parameters
([γ0, µ̂0, ν0,Λ0]) are set to φw0 = [0.2, 1, 5, 27] and φv0 = [0.2,
3, 5, 9] for themeasurement and process noises respectively so
that the initial conditions match with the augmented state PF.
The exponential forgetting factor λ is chosen as 0.98 by con-
sidering the average RMS error over 100 MC runs for different
values of λ.

In order to make a fair comparison, we set the initial values of the
unknown parameters the same for both methods. Both algorithms
start from the initial values of parameters being equal to µv =

3,Σv = 3, µv = 1, Σw = 9; see Figs. 2 and 3. Moreover, in order
to avoid mistuning of the Augmented PF algorithm, we have made
multiple tests on the step size of the randomwalk and have chosen
the value which produced the minimum average RMS error on the
state estimates over 100 MC runs. Among the values 1%–10%, 5%
provided the best tuning. The performance is not over sensitive to
the step size unless it is chosen as the extreme values. Hence, a
finer grid was not needed.

In 100MC runs, the effects of increasing the number of particles
is also examined. In Figs. 2 and 3, the estimation performances of
the two methods are shown for the case where both algorithms
use 500 particles. The standard deviation of the estimates based on
different MC runs are also depicted on top of the estimates in the
same figures. The MAPF method produces estimates with smaller
covariance in comparison with the Augmented PF approach.
Another comparison is made in order to illustrate the effects of
changing the number of particles on both algorithms. The MC
Table 1
Average runtime of the algorithms in seconds.

♯ of particles 50 100 200 500 1000

MAPF 0.95 1.24 1.89 4.71 12.96
Augmented 0.87 1.04 1.67 4.40 12.88

Fig. 2. Estimated mean and variance of the measurement and the process noises
of the MAPF method over 100 Monte Carlo runs. The algorithm is run with 500
particles.

runs are repeated for 50, 100, 200, 500 and 1000 particles and
the average RMS errors of the state estimate are compared. In
Fig. 4, the average RMS state estimation errors are plotted with
respect to different numbers of particles for both methods. The
same curve for Oracle particle filter (the particle filter which uses
the true values of the parameters) is also plotted. The performance
gain by marginalization can be observed more explicitly in this
plot. As an example, in order to achieve the performance of the
MAPF method which uses 100 particles, one needs to use 500
particles in the state augmentation method. On the other hand,
for a fixed number of particles, one can get lower RMS error with
MAPF method especially when the number of particles is kept
low. Also notice that the performance of the Oracle particle filter
and the MAPF are relatively close to each other. As an example,
the average RMS error value of the Oracle particle filter with 100
particles can be achieved by MAPF method using 500 particles
without the knowledge of the true parameters. Similar RMS error
plots are obtained for the estimated parameters. In Fig. 5, the
average RMS error of the measurement noise variance estimate
is shown as an example. The average runtime of a single MC run
of the two methods on a PC are given in Table 1. As can be seen
from the table, the computation time of the MAPF is only slightly
higher than that of the augmented PF and the algorithms are of
the same computational complexity. Hence a lower RMS error can
be achieved for a fixed amount of available computational power
using MAPF.

5.2. Forgetting factor

In this sectionwe illustrate the effects of changing the forgetting
factor. For this purpose we present a single run of the algorithm
for different values of λ. In Figs. 6 and 7 the estimation results are
shown for λ = 0.98 and λ = 0.995 respectively. 500 particles are
used in the algorithm. As can be seen from the figures, the variance
of the estimates are larger for smaller λ and smoother estimates
are obtained for larger λ. On the other hand the smaller forgetting
factor can track faster changes in the parameters whereas a larger
value of the forgetting factor will produce a slower response.
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Fig. 3. Estimated mean and variance for the measurement and the process noises
of the augmented state PF over 100Monte Carlo runs. The algorithm is runwith 500
particles.

Fig. 4. Average RMS state estimation errors for different number of particles.

Fig. 5. Average RMS error of the measurement noise variance estimates for
different number of particles.

6. Application to odometry

In this section we test the proposed algorithm on real data. An
odometry application is investigated. Odometry is the term used
for dead reckoning the rotational speeds of twowheels on the same
axle of a wheeled vehicle. It is used in a large range of robotics
applications, aswell as in some vehicle navigation systems. As in all
dead-reckoning, sensor offsets generate a drift over time that can
be quite substantial. For odometry, the main reason for the drift is
due to unknown wheel radii. Therefore, all odometric applications
Fig. 6. Estimated mean and variance for the measurement and the process noises
of the algorithm in a single run. The forgetting factor is 0.98.

Fig. 7. Estimated mean and variance for the measurement and the process noises
of the algorithm in a single run. The forgetting factor is 0.995.

Fig. 8. Notation for lateral dynamics and curve radius relations for a four-wheeled
vehicle.

use some kind of absolute reference sensor to correct the drift.
For open air conditions, the global positioning system (GPS) is the
perfect complement. For indoor applications, markers or beacons
are usually placed in the environment. The raw signals are the
angular velocities of thewheels which can bemeasured by the ABS
sensors in cars or wheel encoders in ground robots.

6.1. Modeling

The angular velocities can be converted to virtual measure-
ments of the absolute longitudinal velocity and yaw rate assum-
ing a front wheel driven vehicle with slip-free motion of the rear
wheels, as described in Chapters 13 and 14 of Gustafsson (2010),

ϑvirt
=
ω3r + ω4r

2
(39a)

ψ̇virt
=
ω3r − ω4r

B
, (39b)
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where ω3 and ω4 are the angular velocities of the rear left and the
rear right wheels respectively and r is the nominal value of the
wheel radii; see Fig. 8 for the notation. The actual wheel radii are
unknown and may differ from their nominal value in practice,

r3 = r + δ3 (40a)
r4 = r + δ4, (40b)

where r3 and r4 are thewheel radii of the rear left and the rear right
wheels respectively. The actual velocity and yaw rate of the vehicle
differ from the virtual measurements, according to

ϑ =
ω3r3 + ω4r4

2
(41a)

ψ̇ =
ω3r3 − ω4r4

B
. (41b)

We model the error in the wheel radii with a noise term which is
subject to change in time,
r3(t)
r4(t)


=


r
r


+ wr(t), (42)

wherewr(t) is assumed to be Gaussian

wr(t) ∼ N


δ3
δ4


,


Σ3 0
0 Σ4


. (43)

Substituting (42) in Eqs. (41a) and (41b) results in


ϑ

ψ̇


=


ϑvirt

ψ̇virt


+


ω3

2
ω4

2
ω3

B
−ω4

B

wr . (44)

The odometric dead reckoning can be formulated using the
following discrete time model by defining the state vector as the
planar position and the heading angle:

xt =

Xt
Yt
ψt


, xt+1 = xt +

Tϑt cos(ψ(t))
Tϑt sin(ψ(t))

T ψ̇t

 . (45)

Plugging in the observed speed and yaw rate gives the following
dynamic model with the process noise

Xt+1 = Xt +


ϑvirt(t)+


ω3(t)
2

ω4(t)
2


wr(t)


× T cos(ψt), (46a)

Yt+1 = Yt +


ϑvirt(t)+


ω3(t)
2

ω4(t)
2


wr(t)


× T sin(ψt), (46b)

ψt+1 = ψt +


ψ̇virt(t)+


ω3(t)
B

−ω4(t)
B


wr(t)


T . (46c)

Note that the virtual measurements in (39a) and (39b) of
speed and yaw rate are computed from the rotational speeds.
Here, the rotational speeds are considered as inputs rather than
measurements. This is in accordance with all navigation systems
where inertial measurements are dead-reckoned in similar ways.
This formulation is in accordance with the general state space
model given in Eqs. (19a) and (19b) where the GPS measurements
are used as the reference measurements
xGPSt
yGPSt


=


1 0 0
0 1 0


xt + vt . (47)
Fig. 9. GPS position measurements of the driven trajectory. Estimated trajectory is
shown by the dashed line. (© Lantmäteriet Medgivande i2012/0898, reprinted with
permission.)

Fig. 10. Estimated mean and covariance of the tire radius errors of the rear wheels
where the tire pressures are RR = 2.8 bar and RL = 1.5 bar.

6.2. Experiments

In the experiments, two sets of data are collected with a pas-
senger car in the urban area of Linköping. The car is equipped with
standard vehicle sensors, such as wheel speed sensors, and a GPS
receiver. We estimate the tire radii as well as the trajectory via the
GPS and the virtual velocity and yaw rate measurements online.
The trajectory followed by the car is plotted in Fig. 9. Two runs are
completed with different tire pressure settings for the rear wheels.
In the first setup, the tire pressure of the rear left (RL) wheel is re-
duced to 1.5 bar where as the tire pressure of the rear right (RR)
wheel is kept at its nominal value of 2.8 bar. In the second setup,
the tire pressure of the rear left wheel is kept at 2.8 bar and the tire
pressure of the rear rightwheel is reduced to 1.4 bar. The estimated
tire radii in both experiments are plotted in Figs. 10 and 11. The
true tire radii difference is calculated by computing the effective
tire radii using the data collected during a long and straight seg-
ment of the road. The true tire radius differences are approximately
1.5 mm and 1.9 mm in the two experiments in the Figs. 10 and 11,
respectively. As can be observed from the figures, the mean value
of the tire radii in the upper plots can be estimated within sub-
millimeter accuracy by the algorithm. Note that the covariances of
the tire radii bias are larger for the tireswith reduced pressure than
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Fig. 11. Estimated mean and covariance of the tire radius errors of the rear wheels
where the tire pressures are RR = 1.4 bar and RL = 2.8 bar.

the ones with nominal pressure. This can be explained by the in-
creased vibration amplitude of a soft tire. The estimated trajectory
in one run is also plotted in Fig. 9. The estimated trajectorymatches
the GPS and roadmap successfully in both runs.

7. Conclusions

A new Bayesian solution of the noise adaptive filtering problem
is presented in this article. The algorithm is based on particle
filtering, and it can be applied to a large class of nonlinear state
space models. The algorithm makes use of marginalization and
conjugate priors, such that analytic posterior distributions of the
noise parameters is obtained, which makes the implementation
simple and efficient. We employ the maximum entropy approach
in computing the posterior distribution of the noise parameters
where the parameters are assumed to be slowly varying but the
evolution of the parameters is unknown. The solution utilizes the
exponential forgetting factor which prevents the accumulation of
error in the sufficient statistics of the noise. Performance of the
algorithm is tested on highly nonlinear benchmark models and in
an odometry application using real data.
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Appendix

A.1. Proof of Theorem 1

The proof is described for discrete densities for simplicity.
Proof of the continuous version is technically more complex but
completely analogous using the infinite dimensional setting of
Karush–Kuhn–Tucker conditions (Tapia & Trosset, 1994).

Consider a distribution pconst ≡ pconst(θt+1|e1:t) and a measure
u ≡ u(θt+1|e1:t) to be defined on a discrete set of parameters
θt+1 ∈ {θ1, . . . , θm}. Maximization of entropy of a distribution
p∗
≡ p∗(θt+1|e1:t) is then anm-dimensional optimization problem

in p∗

i , i = 1, . . . ,m,

p∗

i = argmax


−


p∗

i log
p∗

i

ui


,

KL(p∗
∥ pconst) ≤ κ,

m
i=1

p∗

i = 1.

Using the definition of KL divergence, the Lagrangian of the
optimization problem is:

i

p∗

i ln
p∗

i

ui
+ µ


i

p∗

i ln
p∗

i

pconst,i
− κ


+ λ


i

p∗

i − 1


= 0,

yielding a set of Karush–Kuhn–Tucker conditions:

(ln p∗

i − ln ui)+ 1 + µ(ln p∗

i − ln pconst,i + 1)+ λ = 0, (A.1)
p∗

i (ln p∗

i − ln pconst,i) ≤ κ, (A.2)

µ


p∗

i (ln p∗

i − ln pconst,i)− κ


= 0, (A.3)
p∗

i = 1, µ ≥ 0. (A.4)

From (A.1) it follows that

p∗

i ∝ u
1

1+µ
i p

µ
1+µ
const,i. (A.5)

The conditions (A.3) are satisfied if: (i) µ = 0, p∗

i = pu ∝ ui and
KL(pu ∥ pconst) ≤ κ , or (ii) KL(pu ∥ pconst) > κ,µ > 0, in which
case p∗ (A.5) is at the boundary

KL(p∗
∥ pconst) = κ. (A.6)

An analytical solution for (A.6) is not available, however, it is a
smooth function in µ, for µ → ∞,KL(p∗

∥ pconst) → 0 and
for µ → 0,KL(p∗

∥ pconst) > κ . Hence, there exists a value
µ∗ such that (A.6) holds. The equality (10) corresponds to (A.5)
under substitution λt = µ/(1 + µ). Since entropy is a convex
function and the Slater regularity condition is trivially satisfied for
p∗

= pconst, (10) is the global maximum of the entropy.

A.2. Invariant measure

Over the classical formulation of forgetting in Jazwinski (1979),
the entropy formulation has an additional degree of freedom
in the choice of the invariant measure u(·). This element is
equivalent to the alternative distribution of decision theoretic
approach (Kulhavý & Zarrop, 1993), which compares several of its
possible choices. In this text, we focus on the original formulation
of Jaynes (1963), in which the main purpose of the invariant
measure is to preserve invariance of the entropy under the change
of coordinates. However, it should be as uninformative as possible.
Hence, its choice is governed by the same rules that apply to
uninformative prior distributions (Jaynes, 1968; Jeffreys, 1961).
This was the case in Examples 2 and 3, where the Jeffrey’s
invariant measures for location and scale parameters were used,
respectively. In cases where prior information is available, as a
prior distribution pu(θt+1) ∝ u(θt+1), it can be used as the
invariant measure. Note that the influence of this choice on the
posterior can be significant. To see that, consider a stationary λt =

λ and a constant u(θt+1) = u(θt) = · · · = pu(·|Vu, νu). Recursive
substitution of (5) into Bayes’ rule yields:

p̂(θt |e1:t , λt) ∝ p(θt |e1:t−1, λt)p(et |θt)

∝ u(θt)
t

τ=1

p(eτ |θτ )λ
t−τ
.
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Hence, u(θt) can be interpreted as a prior for estimation of
a stationary parameter θt on an exponential window of the
measurements with the effective number of records 1/(1−λ). The
posterior may become prior dominated especially for small values
of λ.
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