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V. Šḿıdl, R. Hofman, P. Pecha

Data assimilation methods used in the ASIM module

Project VG20102013018

No. 2333 Draft, November 2013
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Abstract

The task of the decision support in the case of a radiation accident is to provide
up-to-date information on the radiation situation, prognosis of its future evolution
and possible consequences. The reliability of predictions can be significantly im-
proved using data assimilation, which refers to a group of mathematical methods
allowing an efficient combination of observed data with a numerical model. The
report concerns application of the advanced data assimilation methods in the field
of radiation protection. We focus on assessment of off-site consequences in the case
of a radiation accident when radionuclides are released into the environment.

In this report, we present a comprehensive review of data assimilation meth-
ods that are implemented in the ASIM module developed within the grant project
VG20102013018 provided by the Ministry of the Interior of the Czech Republic. All
new methods designed under this project have been published in scientific journals
and international conferences. Here, we provide a unifying summary with refer-
ences to appropriate publications with details. The methods are divided in two ap-
proaches, numerical optimization techniques and sequential Monte Carlo techniques.
Application of these techniques to the early and the late phases of a radiation acci-
dent is illustrated on selected scenarios.

Data assimilation methodology for the early phase employs particle filtering with
adaptive selection of proposal density for estimation of the most important variables
describing the aerial propagation of radionuclides. The general methodology is ap-
plicable to all parametrized atmospheric dispersion models. It is demonstrated on
a simulated release, where a bias of the basic meteorological inputs and the source
term is corrected using inference of gamma dose measurements. Data assimilation
in the late phase is based on numerical optimization approach using derivative free
approach, specifically the Nelder-Mead algorithm.
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1 Introduction

In the case of a radiation accident, the risk evaluation and the decision-making
process focused on protecting the public have the highest priority. The task of the
decision support is to provide reliable and up-to-date information on the radiation
situation, prognosis of its future evolution and possible consequences. Knowledge
of spatial distribution of radionuclides and prediction of the future evolution are
essential for planning of effective countermeasures. Historically, accidents in nuclear
facilities have revealed unsatisfactory level of preparedness and lack of adequate
modeling tools. Great attention has been paid to this topic since the Chernobyl
disaster [OVZ07]. Nowadays, decision makers dispose of complex computer systems
intended to provide assistance to them throughout various phases of the accident,
e.g., [PS00, PHP07, TNDM99].

During the last decades, a great progress has been made in our understanding the
atmospheric dispersion and related natural phenomena. Despite all the effort, the
stochastic nature of involved physical processes, the deficiencies in their mathemat-
ical conceptualization and particularly ignorance of the initial conditions prevent
obtaining of accurate results. The only way how to attain satisfactory accuracy of
the model forecasts is exploitation of observational data, which represent the only
connection with the physical reality. Observations are often sparse in both time and
space and it is not possible to get a complete picture of radiological situation based
on monitoring data alone, especially during the first hours after the accident.

Data assimilation provides a framework for optimal combination of numerical
model predictions and the available observational data [Kal03].

1.1 Introduction and terminology
Data assimilation results from the methods of objective analysis introduced in the
middle of the 20th century in order to eliminate a subjective human factor in nu-
merical weather prediction [Dal93]. It refers to a group of mathematical methods
for estimation of a state of a dynamic system by the means of combining multiple
sources of information, typically observational data with a numerical model of the
system under investigation. We are concerned with 4-D data assimilation, where
the assimilation is performed in time and space.

1.1.1 Classification of data assimilation methods

There are two basic approaches to data assimilation: (i) sequential assimilation,
that only considers observation made in the past until the time of analysis, which
is the case of real-time assimilation systems, and (ii) non-sequential, or retrospec-
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tive assimilation, where observation from the future can be used, for instance in a
reanalysis exercise. In this work, we focus on the first type of methods.

1.1.2 Data assimilation cycle

Data assimilation is performed in cycles, where each the assimilation cycle has two
steps. Adopting the generally accepted data assimilation terminology unified in
[ICGL97], the first step, the data update, can be described as follows: Given the
model forecast (so called background field) and the observations, the data update
produces their statistically optimal combination called analysis . It is an estimate of
the current system state considered to be better both the standalone model forecast
and the observations. Essentially, the analysis step tries to balance the uncertainty
in the data and in the forecast. In the second step, the time update, the analysis is
integrated forward in time using the model equations. This becomes the new forecast
in the next assimilation cycle. Periodic updating of the model with observations
should ensure that the model will not diverge from the physical truth.

Illustration of the sequential data assimilation process is in Figure 1.1: Let the
system state be a one-dimensional continuous random variable estimated in discrete
time steps. Observations available in discrete time steps represent a connection with
the physical reality and can be understood as a noisy samples from the true state
represented by the blue curve. Observations are denoted with squares and the green
circles represent their uncertainty. In each time instance, the best state estimate—
analysis denoted by asterisk—is produced on basis of current model forecast (plus
sign) and observations. The red and yellow circles represent the uncertainties of
forecast and analysis, respectively. In the figure is schematically depicted that the
forecast error is reduced in each time step after the data update (yellow dashed line).
The red dashed line represents the time update step, when the analysis is advanced
via the model forward in time.

1.2 Atmospheric dispersion modeling
Atmospheric dispersion modeling is the mathematical simulation of how air pollu-
tants disperse in the ambient atmosphere. Dispersion models are computer codes
solving equations describing the propagation of pollutants given the initial condi-
tions, i.e., the meteorological conditions (wind speed and direction, precipitation)
and the process conditions (heat capacity of the plume, terrain roughness, etc.) pre-
vailing in the atmospheric boundary layer. Output from such a dispersion model
is a 3-dimensional field of pollutant concentration in air. In the case of radioactive
pollutants, the output is given in terms of activity concentration in air [Bqm

�3].
Atmospheric dispersion models are basic tools for decision makers when assessing

the atmospheric radionuclide releases. The models predict concentration of pollu-
tants in the downwind directions from the source. Combined with the information
on demography, the models can estimate expected exposure of population to ioniz-
ing radiation, and consequently, the health effects in terms of total committed doses.
Nowadays, there exist various approaches to atmospheric dispersion modeling.
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Figure 1.1: Illustration of basic principle of sequential data assimilation.

Models vary considerably in their complexity, and may take account of differ-
ent physical and chemical processes affecting the flow and transport. Different
mathematical expressions can be derived to represent these atmospheric processes.
Consequently, there is an enormous range of available atmospheric dispersion mod-
els. Comprehensive review of atmospheric dispersion methodology is given, e.g. by
[HM06].

1.2.1 Box models

This is a simple model, largely based on the concepts of conservation of mass and
conservation of energy. The treatment of transport is simplified, but the model is
capable to include complex chemistry. The model evaluates mass balance of a given
system using the conservation laws, where the particles of pollutant are transferred
from one domain of the environment to another. Inside a domain, the air mass
is assumed to be well mixed and concentration of the pollutant is assumed to be
homogeneous. Boundaries of the domains are boxes. For every pollutant, we can
write the mass balance equation:

Input rate = Output rate + Transformation rate + Accumulation rate
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Depending on the physical and chemical interactions, some of the pollutants may
pass through the system unchanged, some may accumulate within the system, while
some may undergo chemical transformation or radioactive decay.

The simplicity of the model implies that it requires simple meteorological in-
puts and simple parametrization of the emission source. As it provides area-wide
averages of concentration for a given region, the box model is a useful tool for
screening purposes, where we need quick answers without any stress on accuracy.
However, well-mixed and homogeneous conditions are sometimes unrealistic and the
box models should not be used to calculate concentration in large areas, where the
local changes must be reflected. For more detailed modeling we need more complex
models continuously tracking the plume through the environment as it is advected
by the wind, spread by diffusion, mixed by turbulence and reflected or channeled by
surfaces such as the ground and the buildings [Bar01].

1.2.2 Lagrangian and Eulerian models

Both the Lagrangian and the Eulerian models solve the same advection-diffusion
equation. The difference between Lagrangian and Eulerian approach to model-
ing consists in the different treatment of the frame of reference. The Lagrangian
approach is based on studying the property of a particular fluid by following its
trajectory. Lagrangian models are similar to the box models, where the region of air
containing an initial concentration of pollutants is considered as a box [Gur08]. The
box is considered to be advected with the flow and the model follows the trajectory
of the box. It is said that an observer of a Lagrangian model follows along with the
plume. The motion of air parcels is modeled as a superposition of the mean wind
speed and a random perturbations simulating chaotic nature of the atmosphere. It is
a random walk process indeed. Concentration is in the Lagrangian models evaluated
in partial volumes (boxes) forming a 3-dimensional grid. Average concentration in a
given grid cell is evaluated in a way that we sum up all the elemental concentrations
associated with the particles in the cell. The main advantage of Lagrangian models
is the capability to account for many physical processes in a natural way. They
work well both for homogeneous and stationary conditions over the flat terrain and
for inhomogeneous and unstable media conditions for the complex terrain. Particle
dispersion model is an example of practical implementation of a Lagrangian model
[ZLLL07].

In Eulerian modeling, we also track the movement of a hypothetical parcel of air,
but we use a fixed frame of reference. The Eulerian approach is based on studying
fluid property in a control volume at a fixed point in space, that is, the control
volume is stationary and fluid moves through the control volume [Gur08]. It is said
that an observer of an Eulerian model watches the plume go by. Eulerian models use
2-dimensional and 3-dimensional grids for solving the differential equations where
diffusion, transport, and removal of pollutant emission is simulated in each cell.
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1.2.3 Gaussian models

Gaussian models are widely used in atmospheric dispersion modeling, and are often
“nested” within Lagrangian and Eulerian models. They are based on a Gaussian dis-
tribution of concentration in the plume in vertical and horizontal directions under
the steady state conditions [Zan90, HM06]. Gaussian models are popular, particu-
larly for the following reasons:

• The Gaussian models represent a solution of general equations under some
simplifying assumptions (e.g., constant wind and eddy diffusivity coefficients)
and they are consistent with the random nature of the turbulence.

• Their simplicity allows for fast evaluation even with small computational re-
sources. This is an essential property when we attempt to employ assimilation
techniques based on Monte Carlo approach, when the model must be repeat-
edly run for many times.

• The analytical form of the Gaussian models allows for a good insight and a
transparent evaluation of experimental results.

• The Gaussian models are easy to implement and they can be embedded into
various forecasting and assimilation systems.

• Validity of the Gaussian models was satisfactorily verified for different mete-
orological conditions via comparison to the results of field tests with tracer
releases, when the agreement of measured and modeled concentration was as-
sessed, e.g. [CEE+95].

Gaussian models are not designed to model dispersion under low wind conditions
or at sites close to the source, i.e., at distances closer than 100m. It was found that
these models over-predict concentrations in low wind conditions [HBHJ82].

Gaussian models—in their basic form—assume just the diffusion and advection
of the pollutants. Modified versions of the Gaussian models are capable to include
physical processes such as dry and wet deposition and radioactive decay [HPP08].
We can distinguish two main variants of the Gaussian models. The Gaussian plume
model assumes a continuous release when a plume in the downwind direction is
formed under stationary conditions. The Gaussian puff model assumes a sudden in-
stantaneous release when an expanding puff is formed. In this work, we are focusing
on the segmented Gaussian plume model.

1.2.4 Computational fluid dynamics models

Computational fluid dynamics models are able to deal with the fluid flux in a com-
plex geometry by solving the Navier-Stokes equation and the continuity equation
when the flow is idealized as a laminar flow [Gur08]. These two equations can be
solved simultaneously using finite difference or finite volume methods. If the flow is
turbulent, the Reynolds Navier-Stokes equation with the continuity and turbulence
closure models is used for this case [TL72].
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1.3 Data assimilation in radiation protection
We are concerned with application of data assimilation in the case of a severe ra-
diation accident, when an accidental release of radionuclides into the environment
occurred and it is likely to require at least partial implementation of countermea-
sures. The main objective of data assimilation is to estimate the true scale of the
accident and predict its consequences in order to improve reliability of the decision
support through different phases of the accident.

The time tract of an accidental release of radionuclides can be formally split into
two consecutive phases:

Early phase begins when the radionuclides are released into the environment. We
focus on atmospheric releases, when the effluent forms a radioactive plume
advected by the wind field and dispersed by turbulent processes. The plume
causes external irradiation from cloudshine and internal irradiation due to in-
halation. Duration of this phase is from a few hours up to several days and let it
formally ends when the plume leaves the area of interest. The main objectives
of data assimilation in the early phase are (i) on-line estimation of radiation
situation and its evolution and (ii) estimation of committed population doses.

Late phase covers latter stages of the accident and immediately follows after the
early phase. After the plume passage, there is no more irradiation due to
cloudshine, however, on the ground remains deposited radioactive material.
It causes external irradiation from groundshine and internal irradiation from
inhalation due to resuspension and ingestion. This phase ends when radiation
levels resume to background values. The main objectives of data assimilation
in the late phase are (i) identification of contaminated areas and (ii) estimation
of radiation levels and the speed of the radionuclides removal for purposes of
long-term forecasting. The estimates enter subsequent models of radionuclides
propagation through the different compartments of the environment.

Data assimilation is potentially applicable in both phases, however, different physical
processes, time scales etc., determine specific requirements on assimilation inputs
and target fields of predictions. The key properties of the early and the late phase
are summarized in Table 1.1.

1.4 State of the art

1.4.1 Assimilation of Lagrangian particle models

Lagrangian particle model is a Monte Carlo dispersion model, where the spreading
of pollutants is simulated using a large number of particles released from the source,
each of them carrying some elemental activity. Trajectories of particles are given by
a meteorological forecast entering the model. Random perturbations are added to
the wind speed of the particles in order to simulate stochastic turbulent processes in
the atmosphere. In this model, the three-dimensional space is divided into partial
volumes. At each time step, movement of all the particles is traced and the activity
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concentration in each partial volume is obtained by summing up the activity assigned
to particles within the volume. When a new set of observations is available, the
assimilation procedure is performed as a modification of the number of particles in
the partial volumes, e.g. [ZLLL07]. Between consecutive measurement updates, the
redistributed particles are propagated forward in time by the meteorological forcing.

The advantage of Lagrangian models is their capability to account for many physi-
cal processes in a natural way. Their application in data assimilation allows for local
assimilation of the activity concentrations and thus the results better consider local
variations in terrain, meteorology etc. The disadvantage is the fact, that a large
number of particle trajectories must be computed to simulate a release using this
type of model. Such an assimilation algorithm based on this approach model must
be run on a supercomputer in order to meet the strict time constraints in the early
phase.

1.4.2 Assimilation of parameterized models

A substantial reduction of the computational complexity can be reached by the use
of a parametric model described in Section 1.2.3. The pollutant is modeled by a
limited set of model parameters. Appropriate parameterization of these models have
been studied for a long time, with many results being available, including uncertainty
and sensitivity studies [EKT07, Rao05, TvTB07]. Given some particular values of
the paremeters, concentration in air is calculated simply by evaluation of the model
as a deterministic function of the variables. Contrary to the Lagrangian particle
models, direct assimilation of concentration values in the grid points is not possible
with these models. Modification of the analytical shape of the plume would forbid
its propagation in the next time step. Data assimilation is then formulated as
an optimization of the parameters in order to reach the best correspondence of the
model forecast with the available observations. These estimates may in turn re-enter
atmospheric dispersion models, resulting in a greatly improved dose rate assessment.

The most simple methods for optimization of the parameters are not probabilistic
and minimize just a loss function measuring point-wise distance between model
and observations. [EKT07] presented a simple assimilation scheme for tuning of
the effective release height and the wind direction of the Gaussian plume model.
This idea is more developed in [PH08], where a segmented version of the Gaussian
plume model [HPP08] is used and the set of optimized parameters is extended to
address their time variability. The advantage of this method is its simplicity and a
potential for extension of the set of optimized parameters. The disadvantage is the
fact that the method does not consider error statistics of the model and observations,
contrary to variational methods, where the difference between the model forecast
and the observations is weighted with appropriate error statistics. Assimilation
schemes based on variational approach are described in [JKS+05, KTAB09, QSI05]
where all optimized parameters are treated as time invariant.

More advanced methods are based on sequential data assimilation. [DLM05] de-
scribed extended Kalman filtering of the Gaussian plume. Here, the set of optimized
parameters is restricted to the ratio of the release rate and the wind speed, the wind
direction and the plume height. Similar assimilation scheme is proposed in [ATP+04]
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describing assimilation of the RIMPUFF model [TNDM99]. A continuous release is
with the RIMPUFF (RIsø Mesoscale PUFF) model approximated by a sequence of
overlapping puffs. This allows inclusion of complex meteorological and other local
characteristics. Parameters are radioactive inventories of partial puffs and the wind
direction affecting spatial positions of the puffs within the computation domain. The
number of parameters changes dynamically as new puffs are released and other puffs
leave the domain. This assimilation methodology for the early phase is implemented
in the RODOS (Real-time Online Decision Support System for nuclear emergency
management), [PMG+03].

Due to time pressure in the early phase, we will focus our attention to the se-
quential version of the Monte Carlo technique, which is also known as the particle
filter [GSS93, DGA00]. It has been shown in [JHN04, HKvD11] that it provides
results comparable to those obtained by the classical Monte Carlo Markov Chain
algorithm.

1.4.3 Data assimilation in the late phase

The basic aspects of modeling and assimilation in the late phase are formulated in
[GWW+04]. Modeling in the late phase covers a broad range of disciplines focusing
on different problems, e.g., contamination of arable soil and urban areas, contam-
ination of water resources, propagation of radionuclides in the food chain, etc. In
[YKM+05], the method iterations to optimal solution is applied for assimilation of
an aquatic model with observations of the Black Sea contamination after the Cher-
nobyl accident. The details regarding this simple empirical interpolation method
can be found in [Dal93].

In [Pal05], the ensemble Kalman filtering (EnKF) based data assimilation system
for assimilation of the groundshine measurements with a radio-ecological model is
described. The system is a part of the RODOS. EnKF introduced by [Eve94] is
proposed here as the most promising approach for data assimilation in the late
phase.

1.5 Evaluation of performance
The performance assessment of data assimilation methods is in the field of radiation
protection problematic. The dispersion modeling of radioactive pollutants has its
specific properties and the existing data sets from experiments with non-radioactive
pollutants are not suitable. Since there is a lack of observational data sets from
the real reactor accidents, the measurements used for validation of data assimilation
methods are simulated using the twin experiments [EKT07]. It means, that the mea-
surements are generated using a model of the system under investigation, initialized
by some reference values. Observations are sampled from the model output fields in
locations of the receptor points. From the theoretic point of view, the twin experi-
ments are useful, because they make possible to evaluate assimilation performance
against a known “background truth” and the convergence can be easily assessed.
The method also provides a transparent tool for controlling of measurement error
type and magnitude.
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2 Data assimilation as an

optimization task

In this Section we show that data assimilation can be also understood as an opti-
mization task, where we optimize values of parameters of a parameterized model
in order to obtain a good fit of observations. During assimilation we assume pre-
cise measurements and thus the procedure cannot be presented as pure statistical
DA. On the other hand it requires proper environmental model which describes un-
certainty propagation. Our model is based on segmented Gaussian plume model
(SGPM) approach that can account approximately for dynamics of released dis-
charges and short-term forecast of hourly changes of meteorological conditions. For
near area from the source and constant meteorological conditions is used also simpli-
fied version of Gaussian straight-line propagation (GPM). Implemented numerical
difference scheme enables to approximate simulations of important parent-daughter
pair formation. The objective multi-dimensional function F of N variables (subjected
to bounds) is minimized starting at initial estimate. Commonly used Nelder-Mead
direct search or Powell minimization methods are tested here for elementary scenar-
ios of accidental harmful discharges. Applicability bounds are examined for which
satisfactory results at acceptable time of computation were achieved.

Even for the simplest formulation of atmospheric dispersion and deposition in
terms of Gaussian straight-line propagation the model M is nonlinear. In the fol-
lowing paragraphs we shall concentrate on accidental radioactivity release into at-
mosphere and its further deposition on terrain. Approximation in terms of source
depletion scheme accounts for remNoval mechanisms of admixtures from the plume
due to radioactive decay and dry and wet deposition on terrain [PHP07]. Let us
proceed directly to the examination of the resulting fields of radioactivity deposition
of a certain nuclide on terrain. The output is assumed to be represented by vector Z
having dimension equal to the number N of total calculating points in the polar grid
(in our case N=2800, what means 80 radial sections and 35 concentric radial zones
up to 100 km from the source of pollution). General expression for dependency of
Z on model input parameters ✓1, ✓2, . . . , ✓K can be formally written as

Z = M(✓1, ✓2, . . . , ✓K). (2.1)

Let there be R receptor points on terrain where the respective values are measured.
Generally, the number of receptors is much lower then N and we meet the prob-
lem with rare measurements expressed by observation vector Y ⌘ (y1, y2, ...., yR).
Positions of sensors generally differ from the points of calculation grid.

The number of input parameters, K, is potentially rather high (several tenth)
and therefore only S of them are treated as unknown for tractability. These are
selected to be the parameter with highest influence on the uncertainty of the release
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consequences. The remaining parameters are assumed to have negligible influence
of uncertainty and are considered to be known with their values chosen as their best
estimated values. (2.1) has then the form

Z = M(✓1, ✓2, . . . , ✓S, ✓
b

S+1, . . . , ✓
b

K

)

where ✓

b denotes best estimated value of a parameter. In other words a certain
number S of selected problem-dependent optimization parameters ✓1, ✓2, . . . , ✓S, are
considered to be uncertain and subjected to fluctuations within some range. A loss
function F is constructed as a sum of squares in the measurement points between
the values of the model predictions and the values observed on the terrain expressed
as:

F (✓1, ✓2, . . . , ✓S) =
RX

r=1

[y
r

�H(M(✓1, ✓2, . . . , ✓S))]
2
. (2.2)

Here, H denotes the observation operator from Z to Y.
Minimization algorithm is then applied to search for a minimum of scalar function

F of S parameters starting at an initial “best estimate”. The commonly used Nelder-
Mead method arranges the test points ✓1, ✓2, . . . , ✓S of the objective function F as
a S-dimensional simplex and the algorithm tries to replace iteratively individual
points with the aim to shrink the simplex towards the best points.

Specifically, model predictions given by a dispersion model can be interpreted
as surface over the terrain. Our objective is to merge these predictions and mea-
surements to improve spatial distribution of deposited radioactivity. The iterative
process of cost function F minimization can be viewed as a series of adjustments of
the resulting respond surface (model result given adjusted parameters ✓1, ✓2, . . . , ✓S).
Thus, the predicted respond surface of results is gradually “deformed by permissi-
ble manipulations” directly driven by changes of problem-dependent optimization
parameters ✓ . Minimization algorithm controls the procedure until the best fit
of modified surface with observation values is reached. Important feature of the
method insists in preservation of physical knowledge, because the new set of pa-
rameters evaluated by minimization algorithm always re-enters the entire nonlinear
environmental model M according to (2.1).
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3 Bayesian Methods for Data

Assimilation

3.1 Identification of data assimilation with
Bayesian estimation

Bayesian approach is based on quantifying uncertainty in statistical inference via
probability density functions (pdfs). The importance of such approach is justified
by the fact, that it facilitates a common-sense interpretation of statistical conclusions
[Gel04].

If we think of the forecast and the analysis as of pdfs, the data assimilation can
be understood as a particular case of recursive Bayesian estimation [Pet81]. In the
Bayesian framework, the forecast and the analysis are represented by the prior pdf
and posterior pdf, respectively. When no measurements are available, the pdf of the
considered state must be rather wide to cover all possible realizations of the state.
Each incoming measurement brings information about the “true” state, reducing the
original uncertainty. In effect, the posterior pdf is narrowing down around the best
possible estimate with increasing number of measurements. From the Bayesian point
of view, data assimilation is analogical to the problem of filtering, i.e., characterizing
the distribution of the state of the hidden Markov model at the present time, given
the information provided by all of the observations received up to the present time.
Data update step of the assimilation cycle is implemented using Bayes formula.

3.2 Recursive Bayesian filtering
The task of data assimilation can be interpreted as a problem of inference of a
discrete-time stochastic process :

x
t

⇠ p(x
t

|x
t�1), (3.1)

y
t

⇠ p(y
t

|x
t

). (3.2)

Here, x
t

2 RN

x is a vector known as the state variable which is essentially a set of
parameters necessary for prediction of the future trajectory of the release. y

t

2 RN

y

is a vector of observations, t is the time index, and p(·|·) denotes the conditional
pdf of the variable. State evolution model (3.1) describes the evolution of the state
variables x

t

over time, whereas the measurement model (3.2) explains how the mea-
surements y

t

relate to the state variables.
System given by (3.1)–(3.2) is rather general. It represents a Markov process of

the first order, where realization of the process at time t contains all the information
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about the past, which is necessary to calculate its future behavior. In data assim-
ilation we often restrict to its special case, where the explicit expressions for both
the state model and the measurement model exist. This results in a discrete-time
state-space models with additive noise represented by a set of difference equations
[Jaz70]:

x
t

= M
t

(x
t�1) +w

t

, (3.3)
y
t

= H
t

(x
t

) + v
t

. (3.4)

The state transition operator M
t

: RN

x ! RN

x integrates the state forward to the
next time step. The observation operator H

t

: RN

x ! RN

y transforms vectors from
the state-space to the space of observations and makes them thus comparable with
the observations. In environmental modeling, these operators represent our math-
ematical conceptualization of the physical reality under investigation. Vectors w

t

and v
t

with appropriate dimensions represent mutually independent noise processes
of the model and the observations, respectively.

Formally, the prior distribution p(x0) representing uncertainty of the forecast in
time t = 0 is transformed into the posterior pdf p(x

t

|y1;t) using measurements
y1:t = [y1, . . . ,yt

] by recursive application of the data update and the time update:

1. Data update:

p(x
t

|y1:t) =
p (y

t

|x
t

) p (x
t

|y1:t�1)

p(y
t

|y1:t�1)
=

p(y
t

|x
t

)p(x
t

|y1:t�1)´
p(y

t

|x
t

)p(x
t

|y1:t�1)dxt

, (3.5)

2. Time update:
p(x

t+1|y1:t) =

ˆ
p(x

t+1|xt

)p(x
t

|y1:t)dxt

. (3.6)

Given the prior pdf p(x
t

|y1:t�1) representing uncertainty in the forecast in time t,
we use Bayes formula (3.5) and evaluate the posterior pdf p (x

t

|y1:t) representing
uncertainty in the analysis in time t. Likelihood function p(y

t

|x
t

) is defined by the
observation model (3.4). In recursive Bayesian filtering, we exploit the fact that if
the prior pdf is properly chosen from a class conjugate to (3.2), the formula (3.5)
yields a posterior pdf of the same type.

Chapman–Kolmogorov equation (3.6) [Jaz70] advances the the posterior p (x
t

|y1:t)
in time and produces the forecast in time t+1 represented by the prior p(x

t+1|y1:t).
Pdf p(x

t+1|xt

) is called the state transition pdf and represents model dynamics given
by (3.3). Integration in (3.5)–(3.6) and everywhere else in this work is performed
over the maximum support of the integrand, if not stated otherwise.

Using posterior p (x
t

|y1:t), we can evaluate the expected value of a function f(·)
of x

t

integrable with respect to p(x
t

|y1:t), [DDFG01a]:

E[f(x
t

)|y1:t] =

ˆ
f(x

t

)p(x
t

|y1:t)dxt

. (3.7)

Evaluation of (3.5) and (3.6) may involve integration over complex spaces and in
the most cases it is computationally infeasible. Thats the reason why were devel-
oped methods for solution of the problem under simplifying conditions or methods
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providing some sub-optimal, but still satisfactory, solution. In the following text we
briefly review the basic approaches to solution of the sequential data assimilation
problem.

3.3 Kalman filter
Kalman Filter (KF) [Kal60] gives us the optimal solution for the system (3.3)–(3.4)
with linear dynamics (operators M

t

and H
t

are linear) and zero mean Gaussian
white noise processes w

t

and v
t

. The state transition pdf p(x
t

|x
t�1) and the likeli-

hood function p(y
t

|x
t

) then become of the Gaussian type:

p(x
t

|x
t�1) = N (M

t

x
t�1,Qt

), p(y
t

|x
t

) = N (H
t

x
t

,R
t

).

Here, N (µ,⌃) is a Gaussian pdf with mean value µ and covariance matrix ⌃.
Matrices M

t

2 RN

x

⇥N

x and H
t

2 RN

y

⇥N

x are matrices of linear operators M
t

and
H

t

, respectively. Matrices Q
t

and R
t

are known covariance matrices of model error
and measurement error, respectively, with appropriate dimensions:

Q
t

= E
⇥
v
t

vT
t

⇤
, R

t

= E
⇥
w

t

wT
t

⇤
.

The analysis (posterior state estimate) is in the Kalman filter represented by mean
value x̄

t|t and covariance matrix P
t|t of the estimated filtering Gaussian distribution:

x̄
t|t = E [x

t

|y1:t] , P
t|t = E

⇥
(x

t

� x̄
t|t)(xt

� x̄
t|t)

T|y1:t

⇤
. (3.8)

Similarly, the forecast (prior state estimate) is represented with mean value x̄
t+1|t

and its covariance P
t+1|t of estimated predictive Gaussian distribution:

x̄
t+1|t = E[x

t+1|y1:t], P
t+1|t = E

⇥
(x

t+1 � x̄
t+1|t)(xt+1 � x̄

t+1|t)
T|y1:t

⇤
. (3.9)

The data update step of the KF assimilation cycled is given by the following
equations:

K
t

= P
t|t�1H

T
t

�
H

t

P
t|t�1H

T
t

+R
t

��1
, (3.10)

x̄
t|t = x̄

t|t�1 +K
t

�
y1:t �H

t

x̄
t|t�1

�
, (3.11)

P
t|t = (I�K

t

H
t

)P
t|t�1(I�K

t

H
t

)T +K
t

R
t

KT
t

(3.12)
= (I�K

t

H
t

)P
t|t�1, (3.13)

where I 2 RN

x

⇥N

x is the identity matrix. We use the Kalman gain matrix K
t

2
RN

x

⇥N

y for linear weighing of contributions given by the current observations y
t

and the forecast to the resulting analysis. The analysis x̄
t|t together with the pos-

terior error covariance matrix P
t|t represent the sufficient statistics of the estimated

posterior Gaussian pdf,

p(x
t

|y1:t) = N (x̄
t|t,Pt|t).
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The time update given by (3.14)–(3.15)

x̄
t+1|t = Mx̄

t|t, (3.14)
P

t+1|t = M
t

P
t|tM

T
t

+Q
t+1, (3.15)

evaluates new prior pdf given by the forecast x̄
t+1|t and its error covariance matrix

P
t+1|t,

p(x
t+1|y1:t) = N (x̄

t+1|t,Pt+1|t).

The algorithm is initialized with prior estimates of the mean value x̄0|�1 and covari-
ance matrix P0|�1.

Generally, violation of assumptions on linearity of the model and normality of the
noise terms leads to a suboptimal solution. The computationally cheaper form of
the posterior error covariance matrix (3.13) should be used only for the optimal gain
K

t

, otherwise it can cause a numerical instability.

3.3.1 Suboptimal solution for nonlinear model

Suboptimal modification of the KF algorithm for nonlinear M
t

and H
t

is called the
Extended Kalman Filter (EKF) [WB95]. The EKF is based on assumption that
local linearization of (3.3)–(3.4) may be sufficient description of nonlinearity. Given
the M

t

and H
t

are differentiable functions, we can linearize them around the current
estimates using the first terms in their Taylor series expansions:

M
t

⇡ @M
t

@x

����
x=x̄

t|t

, H
t

⇡ @H
t

@x

����
x=x̄

t+1|t

. (3.16)

Matrices M
t

and H
t

are used in the Kalman filter equations for advancing the
posterior covariance matrix and during the data update step, respectively. Since
the Jacobians (3.16) are dependent on the current state estimates, they must be
recalculated at each time step.

If the functions M
t

and H
t

are highly nonlinear, the results of the EKF are rather
poor. We can use expansions of higher orders or choose an alternative filtering
methodology, e.g., the Unscented Kalman Filter [JU97] or an ensemble filter .

3.3.2 Ensemble filters

Since the propagation and storing of large covariance matrices is computationally de-
manding, formally correct KF and its variants are not suitable for high-dimensional
problems commonly occurring in different geoscience applications, for instance, in
meteorology [HMP+05]. The idea of ensemble filtering was introduced by [Eve94].
Ensemble filters avoid explicit evolution of covariance by approximating the esti-
mated pdf with an ensemble of states. It can be understood as a Monte Carlo
approximation of the traditional KF.

In Ensemble Kalman Filter (EnKF), a small random ensemble of states is used to
represent the estimated pdf. Similarly to the KF, the EnKF makes the assumption
that all probability density functions involved are Gaussian.
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Let X
t|t�1 denote prior ensemble in time t,

X
t|t�1 = [x1

t|t�1,x
2
t|t�1, . . . ,x

M

t|t�1].

The prior estimate x̄
t|t�1 and prior covariance matrix P

t|t�1 are approximated as
sample mean and sample variance of X

t|t�1, respectively:

x̄
t|t�1 ⌘ 1

M

MX

i=1

xi

t|t�1, (3.17)

P
t|t�1 ⌘ 1

M � 1

MX

i=1

�
xi

t|t�1 � x̄
t|t�1

� �
xi

t|t�1 � x̄
t|t�1

�T
. (3.18)

The posterior ensemble
X

t|t = [x1
t|t,x

2
t|t, . . . ,x

M

t|t ]

is given by the Bayesian data update, where each ensemble member is updated
separately:

K
t

= P
t|t�1H

T
t

�
H

t

P
t|t�1H

T
t

+R
t

��1
, (3.19)

xi

t|t = xi

t|t�1 +K
t

�
yi

1:t �H
t

xi

t|t�1

�
, i = 1, . . . ,M. (3.20)

A set of perturbed observation vectors yi

t

⇠ N (y
t

,R
t

), i = 1, . . . ,M , must be used
to update the ensemble members in order to fulfill (3.12). It can be shown that if
all the ensemble members were updated with the same observation vector y

t

and
the same gain K

t

, the posterior covariance will be

P
t|t = (I�K

t

H
t

)P
t|t�1(I�K

t

H
t

)T. (3.21)

Without the term K
t

R
t

KT
t

is the posterior covariance systematically underesti-
mated.

Using posterior ensemble X
t|t, posterior estimate x̄

t|t and covariance P
t|t are ap-

proximated with its sample mean and variance:

x̄
t|t ⌘ 1

M

MX

i=1

xi

t|t, (3.22)

P
t|t ⌘ 1

M � 1

MX

i=1

�
xi

t|t � x̄
t|t
� �

xi

t|t � x̄
t|t
�T

. (3.23)

Advancing of the estimated Gaussian pdf approximated with the ensemble in time
is achieved by simply advancing each ensemble member with the nonlinear forecast
model M

t

:
xi

t+1|t = M
t

�
xi

t|t
�
, i = 1, . . . ,M.

Since the time evolution of the posterior covariance is performed by evolution of an
ensemble, the posterior covariance itself does not have to be stored.
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What is more, since only P
t|t�1H

T and HP
t|t�1H

T are required during filter eval-
uation, the full prior covariance matrix P

t|t�1 needs never to be calculated [Eve94].
We can directly calculate the terms occurring in the expression for the Kalman gain,

P
t|t�1H

T
t

=
1

M � 1

MX

i=1

�
xi

t|t�1 � x̄
t|t�1

� �
H
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�T
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=
1

M � 1

MX
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�
H

t

xi

t|t�1 �H
t

x̄
t|t�1

� �
H

t

xi

t|t�1 �H
t

x̄
t|t�1

�T
.

Covariance P
t|t�1 is also used in the formula for predictive density of the observa-

tions,

p(y
t

|y1:t�1) = N (H
t

x̄
t|t�1,Zt

), Z
t

= H
t

P
t|t�1H

T
t

+R
t

, (3.24)

which corresponds to the standard predictive density of the Kalman filter [Pet81].
This quantity is often called marginal likelihood (marginalization is with respect to
x
t

) and plays an important role in statistical model selection [Jef61].

3.3.2.1 Ensemble Inflation

For a finite-sized ensemble, there is a sampling error in the estimation of forecast
error covariance matrix (3.18). The theoretical exact forecast error covariance ob-
tained from an infinite-sized ensemble differs from any obtained from a finite-sized
ensemble of M 2 N members [WH02]. Implication of this fact is, that in ensemble-
based assimilation systems, the forecast error is systematically underestimated. In-
formation brought by new measurements is then penalized because the measurement
error seems to be relatively higher to the underestimated forecast error. Filter be-
comes too confident in the forecast and the divergence may occur. This effect can
be observed particularly in small ensembles. Multiplicative ensemble inflation is
a method for artificial increase of the model forecast error variance [AA99]. The
inflation is used to replace the forecast ensemble according to:

xi ! �
�
xi � x̄i

�
+ x̄i

, i = 1, . . . ,M (3.25)

with inflation factor � slightly greater than 1. From (3.25) is obvious that the mean
value of the ensemble remains unchanged but its variance is increased.

3.3.2.2 Localization of covariance

The sampling error introduced by the finite ensemble size also causes spurious covari-
ances in the estimated forecast error covariance matrix. Techniques of covariance
localization filter out the small and noisy covariances and reduce the impact of the
observations on remote state variables. In spatial data assimilation, where the state
vector usually represent values of a quantity on a computational grid, the distance
between states and observation simply denotes the real geographical distance be-
tween the grid points and the place of observation. Localization of a covariance
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matrix can be performed by using the Schur product of a localization matrix with
the covariance matrix [GC99]. Schur product is an element-by-element matrix mul-
tiplication: the Schur product A�B of matrices A 2 Rm⇥n and B 2 Rm⇥n is matrix
C 2 Rm⇥n, where C

ij

= A

ij

B

ij

, i = 1, . . . , n, j = 1, . . . ,m.
More specifically, we modify the formula for the Kalman gain (3.19) to be

K
t

= (⇢ �P
t|t�1)H

T
t

�
H

t

(⇢ �P
t|t�1)H

T
t

+R
t

��1
, (3.26)

where ⇢ is a localization matrix [HM01]. Localization matrices are constructed
by the means of correlation functions. Maximum of such a function reached at
the observation location is 1 and the function typically decreases monotonically to
zero at some finite distance from the observation location. The rate of correlation
decrease with distance is given by the length-scale parameter l.

3.4 Particle filter
Particle filtering (PF) refers to a group of methods further generalizing the Bayesian
update problem for non-Gaussian pdfs. It includes a range of Monte Carlo tech-
niques for generating an empirical approximation of posterior p(x1:t|y1:t) of a state
trajectory x1:t = (x1, . . . ,xt

),

p(x1:t|y1:t) ⇡ 1

N

NX

i=1

�

⇣
x1:t � x

(i)
1:t

⌘
. (3.27)

Here, x(i)
1:t, i = 1, . . . , N , are i.i.d..samples from the posterior p(x1:t|y1:t) and �(·) is

the Dirac �-function. It comes out from the method of Monte Carlo integration. Ex-
pected value of an arbitrary function f(·) of x1:t integrable with respect to p(x1:t|y1:t)
can be then approximated as

E[f(x1:t)|y1:t] =

ˆ
f(x1:t)p(x1:t|y1:t)dx1:t ⇡ 1

N

NX

i=1

f

⇣
x
(i)
1:t

⌘
, (3.28)

and the rate of convergence of this approximation is independent of the dimension
of the integrand [DDFG01a].

In most of real applications we are not able to sample directly from the exact
posterior, however, we can draw samples from a chosen proposal density (importance
function) q(x1:t|y1:t):

p(x1:t|y1:t) =
p(x1:t|y1:t)

q(x1:t|y1:t)
q(x1:t|y1:t)

⇡ p(x1:t|y1:t)

q(x1:t|y1:t)

1

N

NX

i=1

�

⇣
x1:t � x

(i)
1:t

⌘
. (3.29)
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Approximation (3.29) can be written in a form of the weighted empirical distribution,

p(x1:t|y1:t) ⇡
NX

i=1

w

(i)
t

�

⇣
x1:t � x

(i)
1:t

⌘
, (3.30)

w

(i)
t

/ p(x
(i)
1:t|y1:t)

q(x
(i)
1:t|y1:t)

. (3.31)

Under this importance sampling procedure [RK08], the true posterior distribution
needs to be evaluated point-wise only, since (3.30) can be normalized trivially via a
constant c =

P
n

i=1 w
(i)
t

.
In the following text, we will show how to recursively update a pdf given as

a weighted empirical distribution. Following [RAG04], suppose we have a set of
samples approximating posterior p(x1:t�1|y1:t�1) at time t� 1 and a new vector of
measurements y

t

. We wish to approximate p(x1:t|y1:t) with a new set of samples. If
the proposal density is chosen to factorize such that

q(x1:t|y1:t) = q(x
t

|x1:t�1,y1:t)q(x1:t�1|y1:t�1), (3.32)

then the new samples x
(i)
1:t ⇠ q(x1:t|y1:t) can be obtained by augmenting each of the

existing samples x
(i)
1:t�1 ⇠ q(x1:t�1|y1:t�1) with the new state x

(i)
t

⇠ q(x
t

|x1:t�1,y1:t).
Using the chain rule and the Bayes formula, p(x1:t|y1:t) can be written in terms of
p(x1:t�1|y1:t�1), p(xt

|x
t�1) and p(y

t

|x
t

), as follows:

p(x1:t|y1:t) =
p(y

t

|x1:t,y1:t�1)p(x1:t|y1:t�1)

p(y
t

|y1:t�1)

=
p(y

t

|x1:t,y1:t�1)p(xt

|x1:t�1,y1:t�1)p(x1:t�1|y1:t�1)

p(y
t

|y1:t�1)

=
p(y

t

|x
t

)p(x
t

|x
t�1)p(x1:t�1|y1:t�1)

p(y
t

|y1:t�1)
(3.33)

/ p(y
t

|x
t

)p(x
t

|x
t�1)p(x1:t�1|y1:t�1) (3.34)

By substituting (3.32) and (3.33) into (3.31), (3.31) may be written in the following
recursive form:

w

(i)
t

/ p(y
t

|x(i)
t

)p(x
(i)
t

|x(i)
t�1)p(x

(i)
1:t�1|y1:t�1)

q(x
(i)
t

|x(i)
1:t�1,y1:t)q(x

(i)
1:t�1|y1:t�1)

/ w

(i)
t�1

p(y
t

|x(i)
t

)p(x
(i)
t

|x(i)
t�1)

q(x
(i)
t

|x(i)
1:t�1,y1:t)

. (3.35)

Furthermore, if the proposal density is chosen as follows,

q (x
t

|x1:t�1,y1:t) = q (x
t

|x
t�1,yt

) (3.36)

then the proposal density becomes only dependent on the x
t�1 and y

t

. This is par-
ticularly useful in the common case when only an estimate of the marginal posterior
p(x

t

|y1:t) is required at each time step. It means, that only samples x
(i)
t

need to be
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stored [RAG04] and the marginal posterior density p(x
t

|y1:t) can be approximated
as

p(x
t

|y1:t) ⇡
NX

i=1

w

(i)
t

�

⇣
x
t

� x
(i)
t

⌘
, (3.37)

w

(i)
t

/ w

(i)
t�1

p(y
t

|x(i)
t

)p(x
(i)
t

|x(i)
t�1)

q(x
(i)
t

|x(i)
t�1,yt

)
. (3.38)

Using the particles, the mean value x̄1:t and the covariance ⌃1:t of the posterior
approximation (3.30) can be calculated as follows,

x̄1:t =
NX

i=1

w

(i)
t

x
(i)
1:t, (3.39)

⌃1:t =
NX

i=1

w

(i)
t

⇣
x
(i)
1:t � x̄1:t

⌘⇣
x
(i)
1:t � x̄1:t

⌘T
�
. (3.40)

The scheme for sequential evaluation of the weight with incoming observations is
referred to as sampling-importance-sampling (SIS) [ADFDJ03]. Besides the appro-
priate choice of the proposal density, successful application of the PF requires more
steps, namely implementation of a re-sampling algorithm, which avoids degeneracy
of the weights.

3.4.1 Degeneracy problem and re-sampling

The variance of weights (3.35) increases during their recursive evaluation. The in-
crease has a harmful effect on the accuracy and leads to the weights degeneracy,
which is a common problems with the SIS particle filter [RAG04]. The weights
degeneracy means, that after certain number of recursive steps, all but one particle
have negligible normalized weight which implies sample impoverishment and loss of
diversity of the particles. In the SIS framework, weight degeneracy is unavoidable
and has negative effects. Computational time must be spent on propagation of par-
ticles with negligible weights whose contribution to the approximation of p(x

t

|y1:t)
is small.

A suitable measure of degeneracy of an algorithm is the effective sample size Ne↵

[RAG04], which can be estimated using normalized weights w

(i)
t

as follows:

Ne↵ =
1

P
N

i=1 (w
(i)
t

)2
, (3.41)

When all the weight are approximately of the same value—ideally w

(i)
t

= 1/N ,
i = 1, . . . , N—then Ne↵ = N . If there is a particle j such that w(j)

t

= 1, and w

(i)
t

= 0
for all i 6= j, then Ne↵ = 1. Small values of Ne↵ indicate a severe degeneracy of
particle weights and the particles should be re-sampled.

Re-sampling is a method for elimination of the particles with low importance
weights and copying of those samples with high importance weights. Reproduction
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Figure 3.1: Illustration of basic principle of re-sampling in PF. The piecewise-
constant blue line denotes the cumulative weight

P
i

w

(i) of N = 10
particles. The higher the weight w

(i), the longer the interval I (3.43)
and the higher the probability that random samples u

i

⇠ U [0, 1), de-
noted with dashed lines, are from I. Particle 1 was copied twice, particle
2 once, particle 5 for three times, particle 6 once, particle 8 twice and
particle 10 once.

of the best particles brings more focus on the promising parts of the state-space.
During re-sampling, a random measure {x(i)

t

, w

(i)
t

}N
i=1 is replaced with {x(i)⇤

t

, 1/N}N
i=1

with uniform weights [RAG04]. Re-sampling is not deterministic. The new set of
particles and weights is generated in a way that the probability of sampling a particle
x
(j)
t

from discrete approximation of p(x
t

|y1:t) is given by its normalized importance
weight w(j)

t

:
Pr

⇣
x
(i)⇤
t

= x
(j)
t

⌘
= w

(j)
t

, i = 1, . . . , N. (3.42)

The resulting sample is an i.i.d. sample from the discrete approximation of density
p(x

t

|y1:t), where the weights of all the particles are uniform.
Illustration of the basic idea behind the re-sampling is in Figure 3.1. The piecewise-

constant blue line denotes the cumulative weight
P

i

w

(i) of N = 10 particles. Par-
ticles with high weights have a high probability being re-sampled. The higher the
weight w(i)

t

, the longer the interval

I =

"
i�1X

s=1

w

(s)
t

,

iX

s=1

w

(s)
t

!
, i = 1, . . . , N, (3.43)

and the higher the probability that random samples u

i

⇠ U [0, 1), denoted with
dashed lines, will be from I. In the figure, particle 1 was copied twice, particle 2
once, particle 5 for three times, particle 6 once, particle 8 twice and particle 10 once.
These 10 samples with uniform weights represent the re-sampled empirical density.

Example of a re-sampling algorithm is the systematic re-sampling given in Algo-
rithm 3.1, where we have to sample only one number from U [0, 1). Modification of
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Algorithm 3.1 Systematic re-sampling.
1. Generate N increasingly ordered numbers

uj =
(j � 1) + ũ

N
, j = 1, . . . , N,

where ũ is sampled from uniform distribution U(0, 1).
2. Produce new set of particles. Particle x

(i)
t is copied ni-times, where

ni is the number of uk 2
"

i�iX

s=1

w(s)
t ,

iX

s=1

w(s)
t

!
.

Algorithm 3.2 Sampling–importance–re-sampling algorithm (particle filter).

1. Initialization. For i = 1, . . . , N initialize particles x

(i)
0|�1 ⇠ p(x0) and set t := 0.

2. PF data update: Evaluate the importance weights

w̃(i)
t = w(i)

t�1p
⇣
yt|x(i)

t|t�1

⌘
, i = 1, . . . , N,

and normalize w(i)
t = w̃(i)

t /
PN

j=1 w̃
(j)
t .

3. Re-sampling: Evaluate estimate of effective sample size Ne↵ . If Ne↵ < NThr, where NThr is

a given threshold, sample N particles, with replacement, according to

Pr
⇣
x

(i)
t|t = x

(j)
t|t�1

⌘
= w(j)

t , i = 1, . . . , N,

and set uniform weights w(i)
t = 1

N , i = 1, . . . , N.

4. PF time update: Predict new particles according to

x

(i)
t+1|t ⇠ p

⇣
xt+1|t|x(i)

t|t

⌘
, i = 1, . . . , N.

5. Set t := t+ 1 and iterate from step 2.

the SIS algorithm with re-sampling is called sampling-importance-resampling (SIR),
see Algorithm 3.2. More on re-sampling algorithms can be found, e.g., in [DC05].

3.4.2 Choice of proposal density

The proposal density is often the determining factor in the computational efficiency
of the particle filter and was heavily studied for this purpose. The optimal proposal
density is [DdFG01b]:

q(x1:t|y1:t) = q(x
t

|x
t�1,yt

)q(x1:t�1|y1:t�1),

q(x
t

|x
t�1,yt

) =
p(x

t

|x
t�1)p(yt|xt

)´
p(x

t

|x
t�1)p(yt|xt

)dx
t

. (3.44)
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However, evaluation of the integral in (3.44) is computationally intractable and
(3.44) is helpful only as a theoretical concept. The goal is to approximate (3.44) as
closely as possible, with many approaches for how to achieve it. From the range of
possibilities, we will focus on the following options:

• the original approximation q(x
t

|x
t�1,yt

) ⌘ p(x
t

|x
t�1) of [GSS93], which is

often called the bootstrap approximation. The main advantage of this choice
is simplicity of the resulting algorithm.

• local linearization of (3.44) via a Taylor expansion [PS99, DGA00], which is
also known as the Laplace approximation [KR95]. The mode of the proposal
function can be found by optimization algorithms described in Section 2.

• parametric representation of the proposal, q(x
t

|x
t�1, ✓), and estimation of the

parameter using several populations of particles. This technique is well known
in classical Monte Carlo methods, [OB92, RK04], and has been used in se-
quential Monte Carlo in [CMO08].

Each of these approaches is well suited for models that meet their assumptions. For
more complex models it is advantageous to combine them for different parts of the
model to improve the performance.

3.4.3 Adaptive Particle Filtering

The problem of generating good samples of parameters of dispersion models has
already been studied in [JHN04], where a combination of MCMC and SMC has been
proposed. This is particularly advantageous for estimating an unknown location of
the source. However, this approach is not suitable for releases form a known location.

We propose to follow the population Monte Carlo approach (PMC), [CGMR04].
These methods are based on repetitive runs of the importance sampling, each time
with a different proposal. Each run of the importance sampling produces a popula-
tion of the particles. The key improvement is in using the statistics of the previous
population to adjust parameters of the proposal function for the next run. For-
mally, the full set of N particles is composed of particles from M populations, each
of n[m] particles, m = 1, . . . ,M ,

P
M

m=1 n
[m] = N . The proposal function is in the

form q(x
t

|✓), with parameter ✓, and is adapted in each population by replacing pa-
rameter ✓ with its actual estimate, giving q(x

t

|✓̂[m]). Various modifications of the
basic method have been proposed; we will focus on AMIS. idea of deterministic mix-
ture sampling is used to increase computational efficiency of the scheme [CMMR12].
Each parametric proposal generated by the previous populations is interpreted as a
component of a mixture density

q

[m]
AMIS

(x
t

|✓) =
mX

k=1

n

[k]

P
m

k=1 n
[k]
q(x

t

|✓̂[k]), (3.45)

and the weights (3.35) are reevaluated after each population. The estimates of the
parameters ✓̂

[m+1] are evaluated using all re-weighted samples. However, proof of
convergence of this approach to the optimal value is not available. Full algorithm of
the methods is displayed in Algorithm 3.3.

29



3.4.3.1 Gaussian parametrization of the proposal

We choose the parametric form to be

q

AMIS

(x̃
t

|✓) = N (µ
✓

,⌃
✓

), (3.46)
x̃
t

= g(x
t

), (3.47)

where g(x
t

) is a known transformation of the state variable. Note that evaluation of
q(x

t

|✓) requires an additional Jacobian in the evaluation of the likelihood function.
However, this transformation allows to model for example positive values of he
released dose, such as x̃

t

= [logQ
t

, b

t

].
Estimation of the parameters ✓ = [µ

✓

,⌃
✓

] can be done via the cross entropy
(CE) minimization [RK04]. The idea of CE is to choose a value of the parameter
✓ as the one that minimizes the Kullback-Leibler divergence between the empirical
representation (3.29) and q(x

t

|✓). For parametric forms from the exponential family,
the minimum can be obtained analytically. Specifically, for the Normal distribution,
q(x

t

|✓) = N (µ
✓

,⌃
✓

):

µ̂

✓

=
X

i

w

i

x
(i)
t

, ⌃̂
✓

=
X

i

w

i

x
(i)
t

(x
(i)
t

)0 � µ̂

✓

µ̂

0
✓

. (3.48)

Note however, that for an extremely low number of effective samples, n

eff

=

(
P

i

(w
(i)
t

)2)�1, this estimate would be misleading since the covariance matrix may
not be positive definite.

To derive a more robust solution, we note that the CE method is a special case
of the so-called geometric parameter estimation [Kul96]. Specifically, (3.48) is the
maximum likelihood estimate which is sensitive to the lack of data. Therefore, we
propose to replace it by Bayesian version of geometric estimation, [Kul96, chapter
2]:

p(✓|x
t

, w

t

) / p(✓) exp (�n

eff

KL(p
emp

(x
t

|y1:t), p(xt

|✓))) , (3.49)

Here, p
emp

(·) denotes the approximate posterior (??), and KL(·, ·) is the Kullback-
Leibler divergence. Substituting a Normal distribution (3.48) into (3.49), we obtain a
non-standard form of a conjugate Bayesian update of its parameters. The conjugate
prior for the Normal likelihood is in the form of Gaussian-inverse-Wishart

p(✓|x
t

, w

t

) = N (x̂[0]
, �

[0]⌃
✓

)iW (⌫ [0]
,⇤[0]),

with statistics x̂[0]
, �

[0]
, ⌫

[0]
,⇤[0]. Posterior statistics in the sense of (3.49) are:

�

[m]
t

=
�

[0]

1 + �

[0]
n

eff

,

x̂
[m]
t

= x̂[0] + �

t
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(µ̂
✓

� x̂[0]), (3.50)

⌫

[m]
t

= ⌫

[0] + n

eff

,

⇤
[m]
t

= ⇤[0] +


n

eff

(⌃̂
✓

+ µ̂

✓

µ̂

0
✓

� x̂
t

x̂0
t

) +
1

�

[0]

�
x̂[0](x̂[0])0 � x̂

t

x̂0
t

��
.

Note that (3.50) can approach (3.48) arbitrarily close by for a very flat prior. How-
ever, an informative prior regularizes the parameter estimates in cases with very
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Algorithm 3.3 Population Monte Carlo estimation for the continuous monitoring
system
Initialization: sample state variable x

t

from prior densities, p(x
t

). Select the num-
ber of populations M and the number of particles in them, e.g. n

[m] = N

M

. Choose
prior statistics x̂[0]

, �

[0]
, ⌫

[0]
,⇤[0], set µ̂

[0]
✓

= x̂[0].
At each time t do:

1. Collect measurements y
t

,

2. Set initial estimates µ̂

[0]
✓

= µ̂

[M ]
✓

, ⌃̂
[0]
✓

= 1

⌫

[0]
t

⇤
[0]
t

3. For each population m = 1, . . . ,M � 1 do:

a) Sample particles in the n

[m] population from (3.46) with µ̂

[m�1]
✓

, ⌃̂
[m�1]
✓

.

b) Evaluate weights w

(i)
t

(3.35) for all previous samples using (3.45). Com-
pute n

eff

.

c) Evaluate parameters x̂[m]
t

, �

[m]
t

, ⌫

[m]
t

,⇤
[m]
t

using weights from step 3(b) via
(3.50) and (3.48), and recompute µ̂

[m]
✓

, ⌃̂
[m]
✓

= 1

⌫

[m]
t

⇤
[m]
t

.

4. Evaluate weights w

(i)
t

(3.35) for all samples using (3.45).

small n
eff

. For this application, we propose to set the prior statistics ⇤[0] to be set
to an expert chosen prior values. The full algorithm for population Monte Carlo
setup of M populations is in Algorithm 1.

More details on the algorithm and its comparison with alternative techniques can
be found in [SH13].
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4 Numerical experiments

4.1 Data assimilation using optimization approach

4.1.1 Early phase

In this section we shall illustrate an application of the optimization task expressed
by (2.2). The near-field dispersion problem of a sequential stepwise assimilation of
the representative model parameters using errorless observations from the terrain is
carried out. Before starting, two indispensable requirements being involved should
be pointed out:

• The SW component HARP35 of the HARP system is extended to the HARP42
environment. Besides various other changes [PHP13], two main modifications
have to be introduced:

– Computational grid in the near area should be denser. The original 35
radial zones from the source up to 100 km were extended to 42 zones :
50m, 150m, 250m, 400m, 600m, 850m, 1200m, 1650m, 2200m, 2850m,
3600m, 4500m, .... , up to 100 km. The seeming simple fact brought
some complications in the code extensions and update of the associated
databases.

– This fine grid provides more realistic estimation of the external irradiation
doses/dose rates at near distances, most importantly in the positions of
the TDS sensors [PH12].

• The original deterministic component HDET35 should be extended to the
probabilistic code. Only under these circumstances the uncertain values of
some model parameters are submitted to the statistical techniques of the un-
certainty analysis or the advanced assimilation procedures. It follows the re-
cent trends in risk assessment methodology, which insist in transition from
deterministic procedures to the probabilistic approach. The technique enables
generate more informative probabilistic answers on the assessment questions.
Corresponding analysis should involve uncertainties due to the stochastic char-
acter of input data, insufficient description of the real physical processes by
parameterization, incomplete knowledge of submodel parameters, uncertain
release scenario, simplifications in computational procedure etc. (more in
[PHP13]).

The uncertainty group and corresponding probability density functions derived from
expert judgments are formulated in Table 4.1 as a default for the HARP probability
calculations.
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parameter meaning pdf type parameter meaning pdf type

ADM1: release intensity log-uniform ADM8: mean wind speed log-uniform

ADM2: �y horiz. disp. normal 3-� trunc. ADM9: wind profile exp. uniform

ADM3: horizontal wind fluct. uniform discrete ADM10: �z vertical disp. normal 3-� trunc.

ADM4: dry depo-elem iodine log-uniform ADM11: mixing height corr. uniform

ADM5: dry depo-aerosol log-uniform ADM12: thermal energy corr. uniform

ADM6: scavenging el. iod. log-uniform ADM13: precip. intensity uniform

ADM7: scavenging earos. log-uniform ADM14: time shift of precip. uniform discrete

Table 4.1: Implicit group of input random parameters of atmospheric dispersion and
deposition model ADM of the code HARP.

Let us define a scenario for procedure of the recursive stepwise assimilation scheme
at near distances from the source of pollution. One-hour hypothetical discharge of
the radionuclides is selected:

Hourly d i s cha rge o f r ad i onu c l i d e s [Bq . h�1] :
KR88 1 .00E17
I131 1 .00E15
CS137 1 .00E15

The meteorological forecast from April 24, 2012 was used. Simple forecast for the
point of release is written in the file METEO.WEA. The time stamp 20120424-
1400 -n 48 defines the release start at 14.00 p.m. The file is used for genera-
tion of the TWIN matrix. The associated more detailed meteorological data on
the grid 200⇥200 kilometres around the source of pollution enters the calcula-
tion, which models input uncertainty propagation through the model (including
the basic “best estimate” estimation). Specifically, the gridded meteorological data
ZASEBOU_20120424-1400.txt controls the progression of the radioactivity trans-
port whenever the dispersion model is called. The assimilation procedure superposes
at each individual time step of recursion the random fluctuations on the release
source strength, wind speed and wind direction, thus generating the realisations of
the random model trajectories. For each such trajectory a certain degree of likeli-
hood in relation with “observations” (TWIN matrix) are directly generated.

METEO.WEA:
�s ETE �d 20120424�1400 �n 48 �f HRCFRC

Wind Wind S t a b i l i t y Prec ip .
d i r . speed

1 .00 .00 143 .00 2 .30 C .00
1 .00 1 .00 220 .00 1 .50 B .00
1 .00 2 .00 269 .00 4 .00 C .71
1 .00 3 .00 272 .00 6 .60 D 1.66
1 .00 4 .00 276 .00 3 .70 D 2.82
1 .00 5 .00 253 .00 3 .20 D .33
1 .00 6 .00 250 .00 3 .80 D .00
1 .00 7 .00 248 .00 3 .40 D .00
1 .00 8 .00 246 .00 3 .10 D .00
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Figure 4.1: "Best estimate" (left) and TWIN (right) trajectories.

Comment on TWIN data: Due to lack of the real measurements, during the assim-
ilation experiment the “observations” can be simulated artificially. Any reasonable
way for the TWIN data predetermination can be considered. In our case we use
the same dispersion model. In order to avoid an identical TWIN experiment, at
least the different meteorological inputs described above are used. Specifically, the
file METEO.WEA steers the generation of the artificial measurements in the form
of matrices in the positions of measurement (each matrix for each hour JTWIN,
JTWIN=1, ... , MAXTW). Associated dispersion model uses the gridded data.
Physical knowledge in both files is maintained, but a certain disturbance in the
form of time shift between both data is introduced to decrease their resemblance.

4.1.1.1 The objective of assimilation procedure

We shall demonstrate the recursive forcing of the model predictions towards the mea-
surements represented by the TWIN model. The 2-D trajectories of the dose rates
just at the moment after 8 hours from the release beginning are illustrated in Figure
4.1. The left part belongs to the best estimated values Cbest(g),'best(g), u10best(g), g =
1, . . . , 8 hour, which are driven by more detailed gridded meteorological data and
c1best(g = 1) = 1.00. The trajectory (driven by the point meteorological data ME-
TEO.WEA) according to the selected TWIN values c1twin(g), ctwin

'

(g), ctwin

u10 (g), g =
1, . . . , 8 hour is shown on the right. The dose rate values are higher because of the
TWIN option c1twin(g = 1) = 7.77.

The details of the simulation experiment is given in Appendix A and B. The
index IFCN stands for IFCN-th call of the function to be minimized within the non-
linear minimization Nelder-Mead (NM) algorithm, IFCN

max

(g) denotes the index
when the convergence in the time step g was reached. Specifically, the resulted
assimilated parameters c1asim(g), c

'

asim (g), c
u10

asim(g) in each individual recursive
time steps (hours) g should converge to the TWIN values c1twin(g), c

'

twin (g), c
u10

twin

(g) within IFCN
max

(g) iterations of the NM algorithm through the evaluation of the
scalar function F from (2.2). For the final stage at 8 hours after the release start
the "best" trajectory is step by step inclined to the twin shape and magnitudes.
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4.1.1.2 Computational feasibility

The scenario analysed here takes into consideration one-hour discharge of the three
radionuclides. The minimization procedure is very fast and the analysis for the
first 8 hours lasts a few minutes and the real-time assimilation is fairly realizable.
For multi-segment release the task is more complicated. Source release strength
should be re-estimated for the particular segments. Moreover, a large mixture of
nuclides cannot be treated reasonably without spectral sensors. Current apparatus
can detect only total dose rates (cloudshine plus groundshine). Thus, the feasibility
of analysis of such highly complex scenarios is still questionable.

4.1.2 Conclusion

The simulations carried out for the common release proved to be useful tool for the
improvement of the important model parameters resulting in the source strength
re-estimation and recursive tracking of the plume progression. It can sufficiently
contribute to the more accurate determination of the most impacted areas.

4.1.3 Late phase

In this section we illustrate application of optimization approach in the latter phase
of the accident when the plume has gone and we aim at reconstruction of the accident
using gamma dose measurements from deposition only. The approach is illustrated
on twin experiments with straight line- and segmented Gaussian plume models. In
both experiments, direct search complex minimization algorithm [NM65] was used.

4.1.3.1 Application to Gaussian straight line model

In this experiment, a simulated one-hour release of 1.28E+11 Bq of I-131 is recon-
structed. Release height of the twin model was 100 m and the propagation occurred
in the north-east direction, Pasquill’s category D without rain and wind speed 1.6
m/s. Atmospheric dispersion coefficients were set according to KFK-Jülich semi-
empirical formulas.

The list of parameters optimized in this experiment together with their parametriza-
tion and uncertainty bounds is in Table 4.2. Parameters Qb

, �

b

y

,'

b

, v

b

g

represent first-
guess values. More specifically, the Nelder-Mead optimization is started from this
point in the state space. We do not optimize wind speed because in the analytical
formula of the Gaussian plume model it appears in a product with the magnitude
of release and the problem would not be well conditioned (it would have infinity of
possible solutions). We assume, that the wind speed is known. Uncertainty bound
from the table enters the optimization algorithm and the solution is sought in a
subspace defined as a scalar product of the intervals.

In Figure 4.2 we see the shape of the first-guess plume (gray region, TRACE I) and
isolines of the assimilation plume (TRACE II). The first-guess plume is produced
by the model initialized with first-guess values, i.e. (c1, c2, c3,c4) = (1.0, 1.0, 0.0, 1.0).
Measurements of gamma dose rate from groundshine were generated using the model
initialized with parameters (c1, c2, c3,c4)

TWIN = (1.73, 1.51, 4.00, 1.98) (radioactive

35



Parameter Unit Parametrization in the code Uncertainty bounds
source release rate Bq.s

�1
Q = c1Q

b

c1 2 h0.1, 2.9i
horizontal dispersion m �

y

(x) = c2�
b

y

(x) c2 2 h0.1, 3.1i
wind direction rad ' = '

b + c32⇡/80 c3 2 h�5.0, 5.0i
dry deposition velocity m.s

�1
v

g

= c4v
b

g

c4 2 h0.1, 4.0i

Table 4.2: Optimized parameters of the model.

Figure 4.2: I-131 deposition levels [Bq.m

�2]. Gray area denotes shape of the plume
given by first-guess parameters. Color isolines represents deposition
given by the twin model. Locations of receptors are denoted with red
circles. The task of optimization algorithm is to find a set of parameters
which was used for initialization of the twin model.

decay of the deposition was assumed). Optimization algorithm found in 220 itera-
tions following values: (c1, c2, c3,c4)

ASIM = (1.731, 1.514, 4.003, 1.982). Such a great
agreement with (c1, c2, c3,c4)

TWIN was achieved thanks to he fact that the experi-
ment was conducted as an identical twin experiment (measurements were generated
using the assimilated model) and it can not be expected in a realistic experiment.
However, the results demonstrate that the algorithm is due to is speed and simplic-
ity suitable for screening estimations in near distances with constant meteorological
conditions.

4.1.3.2 Application to Gaussian segmented model

In this more realistic experiment we use the optimization approach with segmented
Gaussian plume model which is capable to propagate the plume under variable me-
teorological conditions and variable release rate. In this experiment we simulate two
hourly consecutive releases of Cs-137 with magnitudes 2.0E+17Bq and 1.0E+17Bq.
This release has character of severe loss of coolant accident (LOCA) with partial
fuel cladding rupture and fuel melting, see TRACE II in Figure 4.3.

The set of optimized parameters has increased due to variable meteorological
conditions and the fact that we also attempt for estimation of wind speed in this
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Figure 4.3: Assimilation of predicted deposition of 137Cs and simulated measure-
ments just 3 hours after the release start; artificially simulated measure-
ments in black squares.

experiment. Parametrization remains the same as in the previous experiment (Table
4.2). Parametrization of wind speed and its uncertainty bounds are as follows:

u

i

= u

b

i

(1 + 0.35c
i5); i = 1 . . . 3; c 2 h�1, 1i.

The total number of estimated parameters is 9:

1. Magnitude of release (scaling factor common for both segments)

2. Wind speed in hours 1-3

3. Wind direction in hours 1-3

4. Horizontal dispersion (assumed time independent)

5. Dry deposition velocity (assumed time independent)

Release rate is estimated using one parameter which means that we assume that the
ratio between the release segments is given.

In Figure 4.3 we see the deposition given by first-guess model TRACE I and
the assimilated result TRACE II. Similarly to the previous experiment, parameters
found by the optimization procedure were very close to those used for simulation
of measurements. This experiment demonstrated that is can be applied even to
scenarios with time variable parameters.
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Figure 4.4: Illustration of data assimilation. Left: Simulation results without data
assimilation. Model was propagated with initial magnitude of release
1.0E+15 Bq of Cs-137 and forced by a gridded meteorological forecast.
Middle: Twin model simulating a real release of the magnitude 5.0E+15
Bq forced by a point-wise observed wind speed and direction. Right:
Data assimilation result where the magnitude of release and biases of
wind speed and direction were were estimated using gamma dose mea-
surements from radiation monitoring network (denoted by red triangles).

4.2 Data assimilation using sequential Monte Carlo
In this Section we illustrate the data assimilation algorithm described in Section
3.4.3. We employ AMIS algorithm for reconstruction of a simulated accident with
synthetic measurements. These are simulated with a model initialized with a known
set of inputs—so called twin model. Time series of simulated measurements is sam-
pled in locations of receptors and perturbed with random noise. Correspondence of
estimates parameters with these used for simulation of measurements can be then
easily assessed. To avoid identical twin experiment, the twin model was forced us-
ing point-wise meteorological measured at the site of NPP Temelín while gridded
numerical meteorological forecasts are used for forcing the data assimilated model.
Spatially and temporally variable differences of wind speed and direction between
these two data sets were estimated during data assimilation in tandem with the
magnitude of release. Accuracy of the radiation dose sensors providing gamma dose
rate from cloudshine and groundshine was 20%. The simulated accident is repre-
sented by one hour long continuous release of 5.0E+15 Bq of Cs-137. Assimilation
was performed for the first 5 hours of the release. Spatial integration needed for
evaluation of cloudshine dose rates is approximated using semifinite cloud model,
which is corrected on the finite shape at near distances. Alternative and more con-
venient approach of the finite cloud model based on the “n/µ” method is successfully
tested for configuration when the size of the plume is small compared to the mean
free path of the gamma rays. Data assimilation is initialized using Monte Carlo
procedure for population of 200 particles.
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4.3 Application to testing of radiation monitoring
networks

In the previous section is was demonstrated that the sequential data assimilation pro-
cedure is able to correct important parameters of a dispersion model using data from
radiation monitoring networks. The quality of data assimilation result is strongly
dependent on quality and quantity of the data provided by these networks. In other
words, the ability of data assimilation algorithm to reconstruct an event given data
from a monitoring network can be used as a benchmark of the monitoring network
performance. This approach does not provide optimal positions of sensors but can
assess performance of a given set of fixed monitoring networks and compare them
from different points of view.

The principal framework of network evaluation is the statistical decision theory
which is commonly used in this context. The main result of decision theory under
uncertainty is formally simple (Berger,J.O., 1985). If we are to choose which net-
work, n?, from a given set of candidate networks n = {1, . . . , N} is the best, we are
to choose the one that minimizes the expected value of the chosen loss function

n

? = argmin
n2N

E
X

[L(n,X)],

where X represents unknown parameters of the event, L(·) is a loss function quan-
tifying the examined property of a network. E

X

[L(n,X)] represents expected loss
of a network n over the posterior pdf of parameters p(X|n):

E
X

[L(n,X)] =

ˆ
p(X|n)L(n,X)dX.

Altering of loss function L(·) yields different assessment criteria. Since the modeling
is performed on a discretized spatial and temporal domains in our case, loss functions
are evaluated point-wisely. In the following text, let A

m

and B

m

be an estimated
value and the true value of a radiological quantity in time-space grid cell m =
1, . . . ,M , respectively. Representative examples of loss function are:

• Mean square error (MSE) measuring the magnitude of deviation and an esti-
mate from the truth (the lower value, the better):

MSE =
1

M

MX

m=1

(A
m

� B

m

)2. (4.1)

• Factor of two (FA2) measuring the number of grid points where the estimated
value of a radiological quantity fits in the interval given by half and double of
the true value (the higher value, the better):

FA2 =
N(0.5B

m

< A

m

< 2B
m

)

N

, {m|A
m

B

m

> 0}, (4.2)

where N(·) is the number of grid points satisfying condition in the argument.
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Figure 4.5: Tested radiation monitoring networks. RMN 1 approximates the current
monitoring network of NPP Temelin. RMN 2 and RMN 3 are possible
extensions of RMN 1 (with equal number of receptors) with regular spa-
tial coverage and coverage of inhabited places, respectively.

The above presented loss functions measures only spatial and temporal correspon-
dence of the estimate with the physical reality, where all the time and space grid
cells are treated in the same manner. Hoverer, it could of a particular interest to
more focus on performance of the networks with respect to inhabited areas. This
can be achieved easily by weighting the contribution to summations in (4.1), (4.2)
by the number of people living in the corresponding grid cell (we assume that the
number of people is spatially variable and temporally constant).

To illustrate the principle, we compared 3 different monitoring networks, see Fig-
ure 4.5. RMN 1 approximates the current monitoring network around NPP Temelín
which has two circles: the dense inner circle around the NPP (“on fence” recep-
tors) and the much sparser outer circle (Figure 4.5-left). The other two monitoring
networks represent possible extensions: (i) a variant with regular coverage of the ter-
rain (Figure 4.5-middle) and (ii) a variant with receptors placed in inhabited areas
(Figure 4.5-right). Data assimilation was performed for all networks for 100 differ-
ent randomly selected meteorological situations from year 2009 (gridded numerical
forecasts for forcing the assimilated model and on-site meteorological observations
for forcing the twin model). Estimated parameters were X = [Q, u,�]T , i.e. the
magnitude of release, wind speed and wind direction. The reference release of the
twin model has the same parameters as in the previous section (1 hour long release
of 5.0E+15 Bq of Cs-137).

Results are shown in Figure 4.6. In the left figure we see the empirical posterior
distributions of Q for all tested networks visualized as boxplots. Medians of for all
the networks are located very close to the true value 5.0E+15. This is due to the
presence of the “on fence” receptors in all configurations. However, the variance
of networks RMN 2 and RMN 3 with higher number of receptors is significantly
lower. In middle and left figures we see results for FA2 and MSE, respectively.
The loss functions were evaluated point wisely in terms of gamma dose rate (blue
lines in figures) and gamma dose rates weighted by number of inhabitants (green
lines). RMN 1 is far worse network in both criteria due to its sparsity. RMN 3
focused on inhabited places attains the best value of FA2 in terms of people but it
is outperformed by RMN 2 regularly covering the terrain in terms of MSE.
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Figure 4.6: Results of network assessment. Left: Boxplots of estimated magnitudes
of release given by the ensemble for all three monitoring networks. We
observe that median for all networks is sufficiently close to the true value
5.0E+15 Bq of 137Cs. Middle-Right: Values of loss functions. RMN 2
with regularly spaced receptors attained higher value of FA2 (grid points)
over FA2 (inhabitants). RMN 3 with receptors placed in the inhabited
sites attains higher value of FA2 (inhabitants).

APPENDIX A: STEPWISE RECURSIVE
SEQUENTIAL ASSIMILATION SCHEME
Initialization phase:

• Simulation of artificial “measurements” based on TWIN model

• Setup of best estimate of dispersion model parameters

• Selection of the most important random model parameter subset:
C

rand

. . . . . . Release source strength (Bq/hour) = ADM1 from Table X4.1)
'

rand

. . . . . . . Wind direction (deg) = ADM3 from Table X4.1)
U10,rand. . . . Wind velocity (at 10 meters height) (m/s) = ADM8 from Table
X4.1)

Parametrization of the optimiztaion task is relative parameters ✓ = [c1, c', cu10]
defined as follows:

• c1 is an unknown multiplicative factor affecting the initial best estimate (nom-
inal) source strength value C

best: C

rand

= C

best ⇥ c1.

• c

'

is an unknown additive factor affecting the nominal (forecasted) wind di-
rection value: '

rand

= '

best + c

'

.

• c

u10 is a multiplicative unknown factor affecting the nominal (forecasted) wind
speed value at 10 meters height:U10,rand = U

best

10 ⇥ c

u10.

Notation:

• c

asim

1 (g), c

asim

'

(g), c

asim

u10 (g) are assimilated values of the parameters in each
previous recursive time steps g = 1, . . . , JTWIN
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• TR

asim

fix

(JTWIN): assimilated plume 2-D trajectory from the same release
beginning up to the hour JTWIN created by the assimilated parameters from
all previous steps of recursion g = 1, . . . , JTWIN . The trajectories TR can be
also interpreted as a n⇥m matrix in the computational polar nodes, n = 42
is the number of radial distances, m = 80 is number of angular sectors.

Assimilation phase:

1. JTWIN=1,
Comment : running model for successive hours (phases) JTWIN
Read “simulated measurements” TWIN for hour JTWIN from the external file
prepared in advance

2. IF ( JTWIN>1 ) THEN

• Construct preceding fixed part of the assimilated trajectory TR

asim

fix

(JTWIN�
1) by running dispersion model SGPM for g = 1, . . . , JTWIN � 1 with
parameters c

asim

1 (g), casim
'

(g), casim
u10 (g).

ELSE
• TR

asim

fix

(JTWIN � 1) =NULL matrix
ENDIF

3. IF(JTWIN==1) THEN

CONSTRAINTS for minimisation:
c1 2 h0.1, 10i, c

'

2 h�90, 90i, c
u10 2 h0.99; 1.01i , U best

10 = U

mer

10 ,

where U

mer

10 is on site measured value of the wind speed at the time of
release.

ELSE
CONSTRAINS for minimisation hours > 1:
c1 2 h0.999, 1.001i, c

'

2 h�90, 90i, c
u10 2 h0.5; 2.5i, Cbest = c

asim

1 , U

best

10 =
U

asim

10 .
ENDIF

4. RUN optimization routine BCPOL with the evaluation function FIT.

FUNCTION FIT(✓current = [ccurrent1 (g), ccurrent
'

(g), ccurrent
u10 (g)])

1. Calculation of the new trajectory increment from �TR

rand

(JTWIN)

2. Superposition with previous trajectory:
TR

rand

(JTWIN) = TR

asim

fix

(JTWIN � 1) +�TR

rand

(JTWIN)

3. Transformation of the TR

rand

to the observation space using observation op-
erator.

4. RETURN sum of squares F (2.2).
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Figure 4.7: Assimilation in the first hour: "Best estimate" (left) and TWIN (right)
trajectories. TWIN: c1=7.77 c'= -46.90 c

u10

= 1.00; Assimilated values
reached after 124 iterations: IFCN=124, c1=7.768 c' = -47.96 c

u10

=
0.999.

APPENDIX B: Detailed description of the stepwise
nonlinear minimisation algorithm in the early phase
of a radiation accident
We shall follow the scenario summarised in Figure 4.1. The recursive process in the
first three hours will be illustrated in details in the figures bellow. The assimilated
model predictions are step by step inclined to the twin shape and magnitudes. For
this common scenario definition no problems with convergence of the NM minimi-
sation algorithm has been encountered.

Some results selected from the assimilation procedure in the first hour are illus-
trated in Figure 4.7. Two specific features for the first hour segment should be
pointed out:

• Relatively dense of teledosimetric sensors in the TDS ring enables to estimate
sufficiently the multiplicative factor c1 of the source strength re-estimation
which afterwards enters into the next recursive time phases as constant.

• The source strength and mean advection velocity of the plume introduce strong
dependency when calculating the dose rate values. For this reason we shall
follow the "gold rule" of assimilation: "All available information resources
should be taken into account". Up to now we have omitted the real onsite
meteorological measurements for the time of release. Now we are using the
measured value of u10best , which is assumed constant during all minimisation
iterations for the first hour (see "Constraints" in Scheme in Appendix A).

The superposition of the second hour variation on the previous fixed assimilated
trajectory for the first hour indicates Figure 4.8.

The following Figure 4.9 presents superposition of the variations generated for the
third hour on the previous, already assimilated, fix part of the trajectory for the
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Figure 4.8: Assimilation in the second hour: Left: The trajectory of dose rate in the
beginning of the minimalisation procedure for IFCN=2 : c1=7.77, c' =
-66.749, c

u10

= 0.521. Right: The convergence is reached after the 96
iterations - the assimilated trajectory: IFCN=95, c1=7.76, c' = -4.803,
c
u10

= 0.724.

first and second hours of propagation (described in more details in Appendix A :
Sequential recursive assimilation scheme).

Comment:

For setup of the TWIN experiment an interactive tool is offered in [PHP13]:

• Using HAVAR-DET system for determination of TWIN "artificial measure-
ments",

• Selection a file of sensors from archive / interactive editing on map background,

• After editing: save with bilinear interpolation into the real sensor positions,

• Re-create the TWIN into the measurement space, save sequentially basely the
hours,

• Run BCPOL_MINI.exe module with all necessary data.
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Figure 4.9: Assimilation in the third hour: Upper-left: The trajectory of dose rate in
the beginning of the minimalisation procedure for IFCN=2 : c1=7.773,
c' = -66.749, c

u10

= 0.521. Upper-right: Trajectory IFCN=3 : c1=7.760,
c' = -33.829, c

u10

= 2.151. Lower-left: IFCN=4 : c1=7.773, c' =
+76.047, c

u10

= 0.934. Lower-right: The convergence is reached after
the 84 iterations: IFCN=84: c1=7.768, c' = -1.238, c

u10

= 0.583.

45



Bibliography

[AA99] J.L. Anderson and S.L. Anderson, A Monte Carlo implementation of
the nonlinear filtering problem to produce ensemble assimilations and
forecasts, Monthly Weather Review 127 (1999), 2741–2758.

[ADFDJ03] C. Andrieu, N. De Freitas, A. Doucet, and M.I. Jordan, An introduction
to MCMC for machine learning, Machine learning 50 (2003), no. 1, 5–
43.

[ATP+04] P. Astrup, C. Turcanu, RO Puch, C.R. Palma, and T. Mikkelsen, Data
assimilation in the early phase: Kalman filtering RIMPUFF, Risø NL
(2004).

[Bar01] R. Barratt, Atmospheric dispersion modelling: an introduction to prac-
tical applications, Earthscan, 2001.

[CEE+95] DJ Carruthers, HA Edmunds, KL Ellis, CA McHugh, BM Davies,
and DJ Thomson, Atmospheric Dispersion Modelling System (ADMS):
Comparisons with data from the Kincaid experiment, International
Journal of Environment and Pollution 5 (1995), no. 4, 382–400.

[CGMR04] O. Cappé, A. Guillin, J.M. Marin, and C.P. Robert, Population Monte
Carlo, Journal of Computational and Graphical Statistics 13 (2004),
no. 4, 907–929.

[CMMR12] J. M. Cornuet, J. M. Marin, A. Mira, and Ch. P. Robert, Adaptive
multiple importance sampling, Scandinavian Journal of Statistics 39
(2012), no. 4, 798–812.

[CMO08] J. Cornebise, E. Moulines, and J. Olsson, Adaptive methods for se-
quential importance sampling with application to state space models,
Statistics and Computing 18 (2008), no. 4, 461–480.

[Dal93] R. Daley, Atmospheric data analysis, Cambridge Univ Pr, 1993.

[DC05] R. Douc and O. Cappé, Comparison of resampling schemes for particle
filtering, Proceedings of the 4th International Symposium on Image and
Signal Processing and Analysis, 2005. ISPA 2005., IEEE, 2005, pp. 64–
69.

[DDFG01a] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo meth-
ods in practice, Springer Verlag, 2001.

46



[DdFG01b] A. Doucet, N. de Freitas, and N. Gordon (eds.), Sequential Monte Carlo
methods in practice, Springer, 2001.

[DGA00] A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo
sampling methods for Bayesian filtering, Statistics and computing 10
(2000), no. 3, 197–208.

[DLM05] M. Drews, B. Lauritzen, and H. Madsen, Analysis of a Kalman filter
based method for on-line estimation of atmospheric dispersion param-
eters using radiation monitoring data, Radiation protection dosimetry
113 (2005), no. 1, 75.

[EKT07] H. Eleveld, Y.S. Kok, and C.J.W. Twenhöfel, Data assimilation, sensi-
tivity and uncertainty analyses in the Dutch nuclear emergency manage-
ment system: a pilot study, International Journal of Emergency Man-
agement 4 (2007), no. 3, 551–563.

[Eve94] G. Evensen, Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statis-
tics, Journal of Geophysical Research 99 (1994), 10–10.

[GC99] G. Gaspari and S.E. Cohn, Construction of correlation functions in two
and three dimensions, Quarterly Journal of the Royal Meteorological
Society 125 (1999), no. 554, 723–758.

[Gel04] A. Gelman, Bayesian data analysis, CRC press, 2004.

[GSS93] N.J. Gordon, D.J. Salmond, and A.F.M. Smith, Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, Radar and Signal
Processing, IEE Proceedings F, vol. 140, IEE, 1993, pp. 107–113.

[Gur08] B.R. Gurjar, Air Pollution: Health and Environmental Impacts, CRC,
2008.

[GWW+04] F. Gering, W. Weiss, E. Wirth, R. Stapel, P. Jacob, H. Müller, and
G. Pröhl, Assessment and evaluation of the radiological situation in the
late phase of a nuclear accident, Radiation protection dosimetry 109
(2004), no. 1-2, 25.

[HBHJ82] SR Hanna, GA Briggs, and RP Hosker Jr, Handbook on atmospheric
diffusion, Tech. report, National Oceanic and Atmospheric Adminis-
tration, Oak Ridge, TN (USA). Atmospheric Turbulence and Diffusion
Lab., 1982.

[HKvD11] P.H. Hiemstra, D. Karssenberg, and A. van Dijk, Assimilation of obser-
vations of radiation level into an atmospheric transport model: A case
study with the particle filter and the etex tracer dataset, Atmospheric
Environment (2011), 6149–6157.

47



[HM01] P.L. Houtekamer and H.L. Mitchell, A sequential ensemble Kalman fil-
ter for atmospheric data assimilation, Monthly Weather Review 129
(2001), 123–137.

[HM06] N.S. Holmes and L. Morawska, A review of dispersion modelling and its
application to the dispersion of particles: An overview of different dis-
persion models available, Atmospheric Environment 40 (2006), no. 30,
5902–5928.

[HMP+05] P.L. Houtekamer, H.L. Mitchell, G. Pellerin, M. Buehner, M. Charron,
L. Spacek, and B. Hansen, Atmospheric data assimilation with an en-
semble Kalman filter: Results with real observations, Monthly Weather
Review 133 (2005), no. 3, 604–620.

[HPP08] R. Hofman, P. Pecha, and E. Pechová, A simplified approach for so-
lution of time update problem during toxic waste plume spreading in
atmosphere, Proc. of 12th Inter. Conf. on Harmonization within At-
mospheric Dispersion Modelling for Regulatory Purposes, HARMO-12,
Hrvatski Meterološki Časopis, 2008, pp. 510–515.

[ICGL97] K. Ide, P. Courtier, M. Ghil, and A.C. Lorenc, Unified notation for
data assimilation: Operational, sequential and variational, J. Met. Soc.
Japan 75 (1997), no. 1B, 181–189.

[Jaz70] A.H. Jazwinski, Stochastic processes and filtering theory, Academic Pr,
1970.

[Jef61] H Jeffreys, Theory of probability, 3 ed., Oxford University Press, 1961.

[JHN04] G. Johannesson, B. Hanley, and J. Nitao, Dynamic Bayesian models
via Monte Carlo–an introduction with examples, Tech. report, Lawrence
Livermore National Laboratory, 2004.

[JKS+05] H.J. Jeong, E.H. Kim, K.S. Suh, W.T. Hwang, M.H. Han, and H.K. Lee,
Determination of the source rate released into the environment from a
nuclear power plant, Radiation protection dosimetry 113 (2005), no. 3,
308.

[JU97] S.J. Julier and J.K. Uhlmann, A new extension of the Kalman filter to
nonlinear systems, Int. Symp. Aerospace/Defense Sensing, Simul. and
Controls, vol. 3, 1997, p. 26.

[Kal60] R.E. Kalman, A new approach to linear filtering and prediction prob-
lems, Journal of Basic Engineering 82 (1960), no. 1, 35–45.

[Kal03] E. Kalnay, Atmospheric modeling, data assimilation, and predictability,
Cambridge Univ Pr, 2003.

[KR95] R. E. Kass and A. E. Raftery, Bayes factors, Journal of American Sta-
tistical Association 90 (1995), 773–795.

48



[KTAB09] I.V. Kovalets, V. Tsiouri, S. Andronopoulos, and J.G. Bartzis, Improve-
ment of source and wind field input of atmospheric dispersion model by
assimilation of concentration measurements: Method and applications
in idealized settings, Applied Mathematical Modelling 33 (2009), no. 8,
3511–3521.

[Kul96] R. Kulhavý, Recursive nonlinear estimation: a geometric approach,
Springer, 1996.

[NM65] John A Nelder and Roger Mead, A simplex method for function mini-
mization, The computer journal 7 (1965), no. 4, 308–313.

[OB92] M.S. Oh and J.O. Berger, Adaptive importance sampling in Monte
Carlo integration, Journal of Statistical Computation and Simulation
41 (1992), no. 3, 143–168.

[OVZ07] Y. Onishi, O.V. Voitsekhovich, and M.J. Zheleznyak, Chernobyl–what
have we learned?: the successes and failures to mitigate water contam-
ination over 20 years, Springer, 2007.

[Pal05] C.R. Palma, Data assimilation for off-site nuclear emergency manage-
ment, report RODOS(RA5)-RE(04)-01, 2005.

[Pet81] V. Peterka, Bayesian system identification, Automatica 17 (1981),
no. 1, 41–53.

[PH08] P. Pecha and R. Hofman, Fitting of segmented gaussian plume model
predictions on measured data, Proc. of 22th European Simulation and
Modelling Conference ESM’2008, Le Havre, France, 2008.

[PH12] , Calculations of external irradiation from radioactive plume in
the early stage of a nuclear accident, Int. J. Environment and Pollution
50 (2012), 420–430.

[PHP07] P. Pecha, R. Hofman, and E. Pechová, Training simulator for analysis
of environmental consequences of accidental radioactivity releases, Proc.
of 6th EUROSIM Congress on Modelling and Simulation, Ljubljana,
Slovenia, 2007.

[PHP13] P Pecha, R. Hofman, and E. Pechová, Rozvoj deterministické verze
systému HARP a její pravděpodobnostní rozšíření , 2013.

[PMG+03] C.R. Palma, H. Madsen, F. Gering, R. Puch, C. Turcanu, P. Astrup,
H. Müller, K. Richter, M. Zheleznyak, D. Treebushny, et al., Data as-
similation in the decision support system RODOS, Radiation protection
dosimetry 104 (2003), no. 1, 31.

[PS99] M.K. Pitt and N. Shephard, Filtering via simulation: Auxiliary parti-
cle filters, Journal of the American Statistical Association 94 (1999),
no. 446, 590–599.

49



[PS00] J. Päsler-Sauer, Description of the atmospheric dispersion model AT-
STEP, Report of project RODOS (WG2)-TN (99)-11 (2000).

[QSI05] D. Quelo, B. Sportisse, and O. Isnard, Data assimilation for short range
atmospheric dispersion of radionuclides: a case study of second-order
sensitivity, Journal of environmental radioactivity 84 (2005), no. 3,
393–408.

[RAG04] Branko Ristic, Sanjeev Arulampalm, and Neil James Gordon, Beyond
the kalman filter: Particle filters for tracking applications, Artech House
Publishers, 2004.

[Rao05] K.S. Rao, Uncertainty analysis in atmospheric dispersion modeling,
Pure and Applied Geophysics 162 (2005), no. 10, 1893–1917.

[RK04] R.Y. Rubinstein and D.P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization, monte-carlo simulation, and
machine learning, Springer Verlag, 2004.

[RK08] , Simulation and the Monte Carlo method, Wiley-Interscience,
2008.

[SH13] V. Smidl and R. Hofman, Efficient sequential monte carlo assimila-
tion for continuous monitoring of a radiation situation, Technometrics
(2013), to appear.

[TL72] H. Tennekes and J.L. Lumley, A first course in turbulence, MIT press,
1972.

[TNDM99] S. Thykier-Nielsen, S. Deme, and T. Mikkelsen, Description of the
atmospheric dispersion module RIMPUFF, Risø National Laboratory,
1999.

[TvTB07] CJW Twenhöfel, MM van Troost, and S. Bader, Uncertainty analysis
and parameter optimization in early phase nuclear emergency manage-
ment, Tech. report, RIVM, 2007.

[WB95] G. Welch and G. Bishop, An introduction to the Kalman filter, Univer-
sity of North Carolina at Chapel Hill (1995).

[WH02] J.S. Whitaker and T.M. Hamill, Ensemble data assimilation without
perturbed observations, Monthly Weather Review 130 (2002), 1913–
1924.

[YKM+05] S. Yuschenko, I. Kovalets, V. Maderich, D. Treebushny, and
M. Zheleznyak, Modelling the radionuclide contamination of the black
sea in the result of chernobyl accident using circulation model and data
assimilation, Radioprotection 40 (2005), 685–691.

[Zan90] P. Zannetti, Air pollution modeling, Van Nostrand Reinhold, 1990.

50



[ZLLL07] D.Q. Zheng, J.K.C. Leung, B.Y. Lee, and H.Y. Lam, Data assimilation
in the atmospheric dispersion model for nuclear accident assessments,
Atmospheric environment 41 (2007), no. 11, 2438–2446.

51


	Introduction
	Introduction and terminology
	Classification of data assimilation methods
	Data assimilation cycle

	Atmospheric dispersion modeling
	Box models
	Lagrangian and Eulerian models
	Gaussian models
	Computational fluid dynamics models

	Data assimilation in radiation protection
	State of the art
	Assimilation of Lagrangian particle models
	Assimilation of parameterized models
	Data assimilation in the late phase

	Evaluation of performance

	Data assimilation as an optimization task
	Bayesian Methods for Data Assimilation
	Identification of data assimilation with Bayesian estimation
	Recursive Bayesian filtering
	Kalman filter
	Suboptimal solution for nonlinear model
	Ensemble filters
	Ensemble Inflation
	Localization of covariance


	Particle filter
	Degeneracy problem and re-sampling
	Choice of proposal density
	Adaptive Particle Filtering
	Gaussian parametrization of the proposal



	Numerical experiments
	Data assimilation using optimization approach
	Early phase
	The objective of assimilation procedure
	Computational feasibility

	Conclusion
	Late phase
	Application to Gaussian straight line model
	Application to Gaussian segmented model


	Data assimilation using sequential Monte Carlo
	Application to testing of radiation monitoring networks


