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Motivated by variational problems in non-linear elasticity, we explicitly charac-
terize the set of Young measures generated by gradients of a uniformly bounded
sequence in W 1,∞(�; R

n) where the inverted gradients are also bounded in
L∞(�; R

n×n). This extends the original results due to the studies of Kinderlehrer
and Pedregal. Besides, we completely describe Young measures generated by
a sequence of matrix-valued mappings {Yk}k∈N ⊂ L p(�; R

n×n), such that
{Y −1

k }k∈N ⊂ L p(�; R
n×n) is bounded, too, and the generating sequence satisfies

the constraint det Yk > 0.

Keywords: orientation-preserving mappings; relaxation; Young measures

AMS Subject Classifications: 49J45; 35B05

1. Introduction

In this paper, we investigate a new tool to study minimization problems for integral func-
tionals defined over matrix-valued mappings that take values only in the set of invertible
matrices. Typical examples are found, e.g. in non-linear elasticity where static equilibria
are minimizers of the elastic energy

J (y) :=
∫
�

W (∇ y(x)) dx, (1.1)

where� ⊂ R
n denotes the reference configuration of the material, y ∈ W 1,p(�; R

n) is the
deformation, 1 < p ≤ +∞, y = y0 on ∂� and W : R

n×n → R is the stored energy density,
i.e. the potential of the first Piola–Kirchhoff stress tensor. Further, usually in elasticity, one
demands either det ∇ y 	= 0 to assure local invertibility of ∇ y or even det ∇ y > 0 in order
to preserve orientation of y.

If W is polyconvex, i.e. A 
→ W (A) can be written as a convex function of all minors
of A, then the existence of minimizers to (1.1) was proved by J.M. Ball in his pioneering
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2 B. Benešová et al.

paper [1]. We refer, for example, to [2,3] for various further results in this direction. Namely,
the existence theory for polyconvex materials can even cope with the important physical
assumption

W (A) → +∞whenever det A → 0+. (1.2)

On the other hand, there are many materials that cannot be modelled by polyconvex
stored energies, prominent examples are materials with microstructure, like shape-memory
materials [4,5]. If we give up (1.2) and suppose that W has polynomial growth at infinity,
i.e. there exist c, c̃ > 0 such that

c(−1 + |A|p) ≤ W (A) ≤ c̃(1 + |A|p), (1.3)

the existence of a solution to (1.1) is guaranteed if W is quasiconvex [6], which means that
for all ϕ ∈ W 1,∞

0 (�; R
n) and all A ∈ R

n×n it holds that

|�|W (A) ≤
∫
�

W (A + ∇ϕ(x)) dx . (1.4)

However, stored energy densities of materials with microstructure do not possess this
property either. As a result, solutions to (1.1) might not exist. Various relaxation techniques
were developed [3,5,7] and used in numerical approximations [8] to overcome this drawback
for integrands satisfying (1.3). Some relaxation results for the case W (A) → +∞ if
det A → 0 but W (A) < +∞ even if det A < 0 were recently stated in [9]. In both
situations, one replaces the integrand by its quasiconvex envelope (the pointwise supremum
of all quasiconvex functions not greater than W ).

Another approach is to extend the notion of solutions from Sobolev mappings to pa-
rameterized measures called Young measures [7,10–14,30]. The idea is to describe the limit
behaviour of {J (yk)}k∈N along a minimizing sequence {yk}k∈N. Nevertheless, the growth
condition (1.3) is still a key ingredient in these considerations.

Our goal is to tailor the Young-measure relaxation to functions satisfying (1.2). In order
to reach this, we allow W to depend on the inverse of its argument, more precisely, we
suppose that W is continuous on invertible matrices and that there exist positive constants
c, c̃ > 0 such that

c(−1 + |A|p + |A−1|p) ≤ W (A) ≤ c̃(1 + |A|p + |A−1|p). (1.5)

Notice that (1.5) implies (1.2) and that W has polynomial growth in |A| and |A−1| at
infinity. In the context of non-linear elasticity, A plays the role of a deformation gradient
measuring deformation strain and A−1 is just another strain measure. We refer, for example
e.g. to [15,16] for the so-called Seth–Hill family of strain measures or to [17] where the
physical meaning of the Piola tensor and of the Finger tensor depending on A−1 A−� and
on A−� A−1, respectively, is discussed in great detail.

To justify (1.5), we notice that if y : � → R
n is a deformation of the reference

domain � ⊂ R
n and y−1 : y(�) → � is its differentiable inverse then, for x ∈ �

(∇ y(x))−1 = ∇ y−1(z), z := y(x). Hence, if we exchange the role of the reference
and deformed configurations, our model requires the same integrability for the original
deformation gradient as well as for the deformation gradient of the inverse deformation.
Also, if we consider n = 3, p ≥ 2, q ≥ 1 satisfying r := pq/(p + 2q) ≥ 1, and a

D
ow

nl
oa

de
d 

by
 [

M
ar

tin
 K

ru
ží

k]
 a

t 0
8:

22
 0

4 
A

pr
il 

20
13

 



Applicable Analysis 3

polyconvex stored energy density of the form

W (F) :=
{

|F |p + 1/(det F)q if det F > 0

+∞ otherwise

then we see that every minimizing sequence {yk}k∈N ⊂ W 1,p(�; R
n) of J from (1.1) is

such that {‖(∇ yk)
−1‖Lr (�;Rn×n)}k∈N is bounded by a constant independent of k ∈ N. Hence,

boundedness of the sequences of “inverted gradients” {(∇ yk)
−1}k∈N in some Lebesgue

space may appear as a necessary condition on minimizing sequences in non-linear elasticity.
On the other hand, if W satisfies (1.5) then {1/det ∇ yk}k∈N is bounded in L p(�) for any
minimizing sequence {yk}k∈N of J .

This all motivates the idea to perform relaxation in terms of gradient Young measures
generated by gradients of functions {yk}k∈N ⊂ W 1,p(�; R

n) such that {(∇ yk)
−1}k∈N ⊂

L p(�; R
n×n) is bounded, too. In order to do so, an explicit characterization of this specific

set of measures is essential. In this work, however, we concentrate merely on parameterized
measures generated by gradients of Lipschitz maps. Therefore, these results should be
understood as a first step in the analysis of more realistic hyperelastic models where p is
finite.

In particular, we completely and explicitly describe Young measures generated by
gradients of functions {yk}k∈N ⊂ W 1,∞(�; R

n) with {(∇ yk)
−1}k∈N ⊂ L∞(�; R

n×n) also
bounded. The main characterization is exposed in Theorem 2.5 following the work [18],
only additional constraints on the support of the measure and a restricted set of test functions
for the Jensen inequality needs to be introduced for which the envelope from (1.10) does
not need to be quasiconvex anymore.

Moreover, we also characterize Young measures generated by matrix-valued mappings
{Yk}k∈N ⊂ L p(�; R

n×n) with {Y −1
k }k∈N ⊂ L p(�; R

n×n) bounded. Namely, we show
that, in this case, the Young measures are necessarily supported on invertible matrices and
satisfy a certain integral condition, cf. (2.1), Theorem 2.2 and Proposition 2.4. Contrary
to the general theory of Young measures generated by L p-maps [7,19], where only the
behaviour of test functions at infinity is important, Young measures supported on invertible
matrices are also sensitive to the asymptotics of test functions as the argument approaches
a singular matrix. The constraint det Yk > 0 almost everywhere in � can be incorporated,
too.

Let us mention that while the matrix case is an extension of the results due to Freddi and
Paroni [20] who considered a related case for vector-valued maps, the results concerning the
curl constraint are the main novelty of the paper. We refer also to [21] for another refinement
of Young measures involving discontinuous integrands.

The plan of the paper is as follows. After introducing Young measures we state our
main results – Theorems 2.1, 2.2 and 2.5 in Section 2. The proofs of our statements are
left, however, to Section 3 for the L p-case and Section 4 for the W 1,∞-case. In particular,
Propositions 3.1 and 3.2 are of special interest as they form an L∞-version of our main
Theorems 2.1 and 2.2.

1.1. Notation

Throughout the paper, we use standard notation for Lebesgue L p, Sobolev W 1,p spaces
and the space C(S) of continuous functions on S ⊂ R

n . If not said otherwise, � ⊂ R
n is a
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4 B. Benešová et al.

bounded domain with Lipschitz boundary. For p ≥ 0, we define the following subspace of
C(Rn×n):

C p(R
n×n) :=

{
v ∈ C(Rn×n); lim|s|→∞

v(s)

|s|p
= 0

}
.

R
n×n
inv shall denote the set of invertible matrices in R

n×n and R
n×n
inv+ denotes the set of

matrices in R
n×n with positive determinant. Further, we define the following subsets of the

set of invertible matrices:

Rn×n
� := {A ∈ R

n×n
inv ; max(|A|, |A−1|) ≤ �}, (1.6)

Rn×n
�+ := {A ∈ Rn×n

� ; det A > 0} (1.7)

for 0 < � < ∞, while Rn×n+∞ := R
n×n
inv . Note that both Rn×n

� and Rn×n
�+ are compact for

every 1 ≤ � < ∞ and empty for � < 1.
When analysing the W 1,∞-case, we shall need, for � ∈ [1;+∞], the following set

O(�) := {v : R
n×n → R ∪ {+∞}; v ∈ C(Rn×n

� ) , v(s) = +∞ if s ∈ R
n×n \ Rn×n

� }.
(1.8)

In the L p-case, we will work with the following subspace of C(Rn×n
inv )

C p,−p(R
n×n
inv ) :=

{
v ∈ C(Rn×n

inv ); lim
|s|+|s−1|→∞

v(s)

|s|p + |s−1|p
= 0

}
(1.9)

and C p,−p(Rn×n
inv ) is defined as

C p,−p(Rn×n
inv ) := { f ∈ C(Rn×n

inv ); | f (s)| ≤ C(1 + |s|p + |s−1|p) ∀s ∈ R
n×n
inv };

here and in the sequel |A| is the spectral norm of the matrix A, i.e. the largest singular value
of A (the largest eigenvalue of

√
AAT).

If v : R
n×n → R ∪ {+∞} is bounded from below and Borel measurable we define

Z∞v(A) := inf
ϕ∈W 1,∞

A (�;Rn)

|�|−1
∫
�

v(∇ϕ(x)) dx, (1.10)

where W 1,∞
A (�; R

n) := {ψ ∈ W 1,∞(�; R
n); ψ(x) = Ax for x ∈ ∂�}.

It is well known that the right-hand side of (1.10) is the same if we replace � by any
other bounded Lipschitz domain in R

n .
Note that v is quasiconvex if v = Z∞v. The quasiconvex envelope of v, Qv is defined

as:
Qv(A) := sup{g(A); g : R

n×n → R ∪ {+∞}; g ≤ v, g is quasiconvex}.
We say that {uk}k∈N ⊂ L1(�) is equi-integrable if we can extract a subsequence weakly

converging in L1(�). We refer, e.g. to [11,22] for details about equi-integrability and relative
weak compactness in L1(�). Finally, C denotes a generic positive constant which may
change from place to place.

1.2. Young measures

Young measures on a bounded domain � ⊂ R
n are weakly* measurable mappings

x 
→ νx : � → rca(Rn×n) with values in probability measures; and the adjective
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Applicable Analysis 5

“weakly* measurable” means that, for any v ∈ C0(R
n×n), the mapping � → R : x 
→

〈νx , v〉 = ∫
Rn×n v(s)νx (ds) is measurable in the usual sense. Let us remind that, by

the Riesz theorem, rca(Rn×n), normed by the total variation, is a Banach space which
is isometrically isomorphic with C0(R

n×n)∗, where C0(R
n×n) stands for the space of

all continuous functions R
n×n → R vanishing at infinity. Let us denote the set of all

Young measures by Y(�; R
n×n). It is known that Y(�; R

n×n) is a convex subset of
L∞

w (�; rca(Rn×n)) ∼= L1(�; C0(R
n×n))∗, where the subscript “w” indicates the aforemen-

tioned property of weak* measurability. Let S ⊂ R
n×n be a compact set. A classical result

[12,23] is that for every sequence {Yk}k∈N bounded in L∞(�; R
n×n) such that Yk(x) ∈ S,

there exists a subsequence (denoted by the same indices for notational simplicity) and a
Young measure ν = {νx }x∈� ∈ Y(�; R

n×n) satisfying

∀v ∈ C(S) : lim
k→∞ v(Yk) =

∫
Rn×n

v(s)νx (ds) weakly* in L∞(�). (1.11)

Moreover, νx is supported on S for almost all x ∈ �. On the other hand, if μ = {μx }x∈�,
μx is supported on S for almost all x ∈ � and x 
→ μx is weakly* measurable, then there
exists a sequence {Zk}k∈N ⊂ L∞(�; R

n×n), Zk(x) ∈ S and (1.11) holds with μ and Zk

instead of ν and Yk , respectively.
Let us denote by Y∞(�; R

n×n) the set of all Young measures that are created in
this way, i.e. by taking all bounded sequences in L∞(�; R

n×n). Moreover, we denote by
GY∞(�; R

n×n) the subset of Y∞(�; R
n×n) consisting of measures generated by gradients

of {yk}k∈N ⊂ W 1,∞(�; R
n), i.e. Yk := ∇ yk in (1.11). It is due to Kinderlehrer and Pedregal

[18] that ν ∈ Y∞(�; R
n×n) is in GY∞(�; R

n×n) if and only if

(1) there exists z ∈ W 1,∞(�; R
n) such that ∇z(x) = ∫

Rn×n Aνx (d A) for a.e. x ∈ �,
(2) ψ(∇z(x)) ≤ ∫

Rn×n ψ(A)νx (d A) for a.e. x ∈ � and for all ψ quasiconvex, contin-
uous and bounded from below,
(3) supp νx ⊂ K for some compact set K ⊂ R

n×n for a.e. x ∈ �.

A generalization of the L∞-result (1.11) was formulated by Schonbek [19] (cf. also
[10]): if 1 ≤ p < +∞ then for every sequence {Yk}k∈N bounded in L p(�; R

n×n) there
exists a subsequence (denoted by the same indices) and a Young measure ν = {νx }x∈� ∈
Y(�; R

n×n) such that

∀v ∈ C p(R
n×n) : lim

k→∞ v(Yk) =
∫

Rn×n
v(s)νx (ds) weakly in L1(�) . (1.12)

We say that {Yk}k∈N generates ν if (1.12) holds. Let us denote by Y p(�; R
n×n) the set of all

Young measures that are obtained through the latter procedure, i.e. by taking all bounded
sequences in L p(�; R

n×n). It was shown in [24] that if ν ∈ Y(�; R
n×n) satisfies the bound∫

�

∫
Rn×n

|s|pνx (ds) dx < +∞ (1.13)

then ν ∈ Y p(�; R
n×n).

2. Main results

Let us, at this point, summarize the main results of the paper.
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6 B. Benešová et al.

2.1. L p-case

We define the following subsets of Y p(�; R
n×n):

Y p,−p(�; R
n×n) :=

{
ν ∈ Y p(�; R

n×n);
∫
�

∫
R

n×n
inv

(|s|p + |s−1|p)νx (ds) dx < +∞,

νx (R
n×n
inv ) = 1 for a.a. x ∈ �

}
, (2.1)

Y p,−p
+ (�; R

n×n) := {
ν ∈ Y p,−p(�; R

n×n); νx (R
n×n
inv+) = 1 for a.a. x ∈ �} . (2.2)

Our results concerning the L p-case are then summarized in the following theorems.

Theorem 2.1 Let +∞ > p ≥ 1, let � ⊂ R
n be open and bounded, and let {Yk}k∈N,

{Y −1
k }k∈N ⊂ L p(�; R

n×n) be bounded. Then there is a subsequence of {Yk}k∈N (not
relabelled) and ν ∈ Y p,−p(�; R

n×n) such that for every g ∈ L∞(�) and every v ∈
C p,−p(R

n×n
inv ) it holds that

lim
k→∞

∫
�

v(Yk(x))g(x) dx =
∫
�

∫
R

n×n
inv

v(s)νx (ds)g(x) dx, (2.3)

Conversely, if ν ∈ Y p,−p(�; R
n×n) then there is a bounded sequence {Yk}k∈N ⊂ L p(�;

R
n×n) such that {Y −1

k }k∈N ⊂ L p(�; R
n×n) is also bounded and (2.3) holds for all g and

v defined above.

Theorem 2.2 Let +∞ > p ≥ 1, let � ⊂ R
n be open and bounded, and let {Yk}k∈N,

{Y −1
k }k∈N ⊂ L p(�; R

n×n) be bounded and for every k ∈ N det Yk > 0 almost everywhere
in �. Then there is a subsequence of {Yk}k∈N (not relabelled) and ν ∈ Y p,−p

+ (�; R
n×n)

such that for every g ∈ L∞(�) and every v ∈ C p,−p(R
n×n
inv ) (2.3) holds.

Conversely, if ν ∈ Y p,−p
+ (�; R

n×n) then there is a bounded sequence {Yk}k∈N ⊂
L p(�; R

n×n) such that {Y −1
k }k∈N ⊂ L p(�; R

n×n) is also bounded, for every k ∈ N

det Yk > 0 almost everywhere in �, and (2.3) holds for all g and v defined above.

Remark 2.3 We could also define the sets

Y p, f (·)(�; R
n×n) :=

{
ν ∈ Y p(�; R

n×n);
∫
�

∫
R

n×n
inv

(|s|p + f (s−1))νx (ds) dx < +∞ ,

νx (R
n×n
inv ) = 1 for a.a. x ∈ �

}
,

(2.4)

Y p, f (·)
+ (�; R

n×n) :=
{
ν ∈ Y p(�; R

n×n);
∫
�

∫
R

n×n
inv+
(|s|p + f (s−1))νx (ds) dx < +∞ ,

νx (R
n×n
inv+) = 1 for a.a. x ∈ �

}
,

(2.5)

with f (·) ≥ |det (·)|q for some q > 0. Obvious modifications of the proofs below give
that ν is in Y p, f (·)(�; R

n×n)(Y p, f (·)
+ (�; R

n×n)) if and only if it can be generated by a

sequence of invertible matrices with inverses
{

Y −1
k

}
k∈N

bounded in Lq(�; R
n×n) (and

det Yk(x) > 0 for all k ∈ N and a.a. x ∈ �). Defining these sets allows us to relax even a
larger class of functions than C p,−p(R

n×n
inv ).
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Applicable Analysis 7

The next result shows that the weak limit of a sequence of gradients with positive
determinant inherits this property if we control the behaviour of the inverse.

Proposition 2.4 Let p > n. If yk ⇀ y in W 1,p(�; R
n) is such that det ∇ yk > 0 a.e. in

� for all k ∈ N and {(∇ yk)
−1}k∈N ⊂ L p(�; R

n×n) is bounded then det ∇ y > 0 a.e. in �.
Moreover, every Young measure generated by a subsequence of {∇ yk}k∈N is supported on
R

n×n
inv+.

2.2. W1,∞-case

We now turn to a characterization of gradient Young measures supported on invertible
matrices. We shall see that the characterization is similar to the one obtained by Kinderlehrer
and Pedregal for gradient Young measures [18,25], however, the set of test functions for the
Jensen inequality is restricted to O(�) from (1.8), it is not known if Z∞v is still quasiconvex
in this case.

Let us define the following sets of Young measures generated by bounded and invertible
gradients of W 1,∞(�; R

n) maps:

GY+∞,−∞
� (�; R

n×n) :=
{
ν ∈ Y∞(�; R

n×n); ∃{yk}k∈N ⊂ W 1,∞(�; R
n) ,

for a.a. x ∈ � {∇ yk(x)}k∈N ⊂ Rn×n
� and {∇ yk}k∈N generates ν

}
(2.6)

and GY+∞,−∞(�; R
n×n) := ⋃

�>0 GY+∞,−∞
� (�; R

n×n).

Theorem 2.5 Let ν ∈ Y∞(�; R
n×n). Then ν ∈ GY+∞,−∞(�; R

n×n) if and only if the
following three conditions hold:

supp νx ⊂ Rn×n
� for a.a. x ∈ � and some � ≥ 1, (2.7)

∃ u ∈ W 1,∞(�; R
n) : ∇u(x) =

∫
R

n×n
inv

sνx (ds), (2.8)

for a.a. x ∈ �, all �̃ ∈ (�;+∞], and all v ∈ O(�̃) the following inequality is valid

Z∞v(∇u(x)) ≤
∫

R
n×n
inv

v(s)νx (ds). (2.9)

Remark 2.6 It will follow from the proof of Theorem 2.5 that if |∇u(x)| ≤ �−ε for some
ε < � and almost all x ∈ � then we can take �̃ ≥ � in (2.9). Otherwise �̃ > � seems to be
necessary, similarly as in [18].

If there is a convex compact K ⊂ Rn×n
� such that supp νx ⊂ K for almost all x ∈ � in

Theorem 2.5 then it is sufficient to consider (2.9) only for all v : R
n×n → R quasiconvex

and bounded from below; cf. [26, Cor. 3]. In particular, either K ⊂ Rn×n
�+ or det A < 0

for all A ∈ K . Assume that K ⊂ Rn×n
�+ , i.e. det A > 0 for all A ∈ K . Following [26,

Cor. 3] we find a sequence {uk}k∈N ⊂ W 1,∞(�; R
n) such that {∇uk}k∈N generates ν

and ‖dist(∇uk, K )‖L∞ → 0 as k → ∞. Hence, det ∇uk > 0 for almost all x ∈ � if
k ≥ k0 ∈ N is large enough. This observation can be used in approximating minimizers of
ν 
→ J̄ (ν) := ∫

�

∫
R

n×n
inv+

W (A)νx (d A) dx .
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8 B. Benešová et al.

3. Proofs in the L p-case

This section is devoted to prove Theorems 2.1 and 2.2 when proving the necessity part
of Theorem 2.1 by a combination of Propositions 3.3 and 3.5; the sufficiency part heavily
relies on Proposition 3.6.

Proposition 3.1 Let ν ∈ Y(�; R
n×n) and suppose that there is � > 0 such that for

almost all x ∈ � supp νx ⊂ Rn×n
� . Then there exists {Yk}k∈N ⊂ L∞(�; R

n×n) such that
{Yk(x)}k∈N ⊂ Rn×n

� for almost all x ∈ � and {Yk}k∈N generates ν. The same result holds
if we replace Rn×n

� with Rn×n
�+ .

Proof This is a classical result mentioned in (1.11). See e.g. [12, Th. 1] for details. �
Proposition 3.2 Let � > 0 and let {Yk}k∈N ⊂ L∞(�; R

n×n), {Yk}k∈N ⊂ Rn×n
� for

almost all x ∈ � and all k ∈ N. If {Yk}k∈N generates ν ∈ Y∞(�; R
n×n) and if {Y −1

k }k∈N

generates μ ∈ Y∞(�; R
n×n) then for almost all x ∈ � and every continuous f : Rn×n

� →
R it holds ∫

Rn×n
�

f (s)μx (ds) =
∫

Rn×n
�

f (s−1)νx (ds). (3.1)

Moreover, supp νx ⊂ Rn×n
� for almost all x ∈ �. The same result holds for Rn×n

�+ instead
of Rn×n

� .

Proof First of all, recall that [27,28] for almost all x ∈ � νx is supported on the set
∩∞

l=1{Yk(x); k ≥ l}, i.e. νx is supported on Rn×n
� . Further, notice that {Y −1

k (x)}k∈N ⊂ Rn×n
�

for a.a. x ∈ �. If f : Rn×n
� → R is continuous, so is F : Rn×n

� → R, F(s) := f (s−1).
Then we have for any g ∈ L1(�)

lim
k→∞

∫
�

f (Y −1
k (x))g(x) dx =

∫
�

∫
Rn×n
�

f (s)μx (ds)g(x) dx .

At the same time,

lim
k→∞

∫
�

F(Yk(x))g(x) dx =
∫
�

∫
Rn×n
�

F(s)νx (ds)g(x) dx

=
∫
�

∫
Rn×n
�

f (s−1)νx (ds)g(x) dx .

Note that the above procedure stays valid for Rn×n
�+ instead of Rn×n

� . �

Proposition 3.3 Let {Yk}k∈N ⊂ L p(�; R
n×n) generate ν ∈ Y p(�; R

n×n) and let∫
�

|det Y −1
k |qdx ≤ C for some C > 0 and some q > 0. Then

νx (R
n×n \ R

n×n
inv ) = 0 for almost all x ∈ �. (3.2)

Moreover, if det Yk > 0 a.e. in � then νx (R
n×n \ R

n×n
inv+) = 0.

Proof Define v : R
n×n → [0;+∞]

v(Y ) :=
{

|det Y −1|q if Y ∈ R
n×n
inv ,

+∞ otherwise.
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Applicable Analysis 9

Then v is lower semicontinuous and by a fundamental result on Young measures (see e.g.
[11, Th. 8.61]) we have that∫

�

∫
Rn×n

v(s)νx (ds) dx ≤ lim inf
k→∞

∫
�

v(Yk(x)) dx = lim inf
k→∞

∫
�

|det Y −1
k |q dx ≤ C,

which means that νx (R
n×n \ R

n×n
inv ) = 0 for almost all x ∈ �. To prove the second claim,

we argue the same way with a re-defined function v : R
n×n → [0;+∞]

v(Y ) :=
{

|det Y −1|q if det Y > 0,

+∞ otherwise.

�

Lemma 3.4 Let ν ∈ Y p,−p(�; R
n×n), μ ∈ Y p,−p(�; R

n×n). Let f ∈ C p,−p(Rn×n
inv ).

Let also, ∫
�

∫
R

n×n
inv

f �(s)μx (ds) dx =
∫
�

∫
R

n×n
inv

f �(s−1)νx (ds)dx (3.3)

for all f � ∈ {h ∈ C0(R
n×n); supp h ⊂ Rn×n

� }, for any � > 0. Then∫
�

∫
R

n×n
inv

f (s)μx (ds)dx =
∫
�

∫
R

n×n
inv

f (s−1)νx (ds)dx . (3.4)

Proof The proof is a simple application of suitable cut-off functions and of Lebesgue’s
dominated convergence theorem. �

Proposition 3.5 Let p ∈ [1,∞) and {Yk}k∈N ⊂ L p(�; R
n×n), {Y −1

k }k∈N ⊂ L p(�;
Rn×n) be bounded. Then there is a (not relabelled) subsequence of {Yk}k∈N generating a
Young measure ν ∈ Y p,−p(�; R

n×n).
Moreover, if we denoted μ the Young measure generated by (a further subsequence of)

{Y −1
k }k∈N then (3.4) holds for all f ∈ C p,−p(Rn×n

inv ).

Proof It follows from (1.12) that a (not relabelled) subsequence of {Yk}k∈N generates
a Young measure ν ∈ Y p(�; R

n×n) and {Y −1
k }k∈N generates a Young measure μ ∈

Y p(�; R
n×n). As

∫
�

|det (Y −1
k )|p/ndx ≤ C

∫
�

|Y −1
k |pdx < +∞, we know from Proposi-

tion 3.3 that νx and μx are both supported on R
n×n
inv for almost all x ∈ �. We have for all

g ∈ L∞(�) and all v ∈ C0(R
n×n)

lim
k→∞

∫
�

v(Y −1
k (x))g(x) dx =

∫
�

∫
R

n×n
inv

v(s−1)νx (ds)g(x) dx,

lim
k→∞

∫
�

v(Y −1
k (x))g(x) dx =

∫
�

∫
R

n×n
inv

v(s)μx (ds)g(x) dx .

This means that for all g ∈ L∞(�) and all v ∈ C0(R
n×n)∫

�

∫
R

n×n
inv

v(s−1)νx (ds)g(x) dx =
∫
�

∫
R

n×n
inv

v(s)μx (ds)g(x) dx; (3.5)

in particular, the equality holds for all v supported on Rn×n
� .
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10 B. Benešová et al.

It remains only to prove that
∫
�

∫
R

n×n
inv

(|s|p + |s−1|p)νx (ds)dx is bounded. This can be shown
by an application of [11, Th. 8.61], similarly as in the proof of Proposition 3.3, when setting
s−1 = +∞ in singular matrices. Note that, since νx is supported on invertible matrices,
this extension will not play a role.

Therefore, by Lemma 3.4, (3.4) holds for all f ∈ C p,−p(Rn×n
inv ). �

Proposition 3.6 Let ν ∈ Y p,−p(�; R
n×n). Then there is a generating sequence {Yk}k∈N

⊂ L p(�; R
n×n) such that {Y −1

k }k∈N ⊂ L p(�; R
n×n) is bounded. Moreover, {|Y −1

k |p}k∈N

as well as {|Yk |p}k∈N are equi-integrable.

Proof Notice that inevitably supp νx ⊂ R
n×n
inv for a.a. x ∈ � (cf. (2.1)). Therefore,

we define smooth cut-off functions 
� which are 1 on Rn×n
� and 0 on R

n×n
inv \ Rn×n

�+1 ; note
that 
� can be found as follows: construct �� a smooth function which is 1 inside the
ball B(0, �) ⊂ R

n×n and equals 0 on R
n×n \ B(0, � + 1). Now, we may set 
�(s) :=

��(s)��(s−1). Then, we define

ν
�
x := 
�νx +

(∫
R

n×n
inv

(
1 −
�(s)

)
νx (ds)

)
δI , (3.6)

where δI denotes the Dirac measure supported at the identity matrix. It is a simple obser-
vation that {ν�x }x∈� =: ν� ∈ Y(�; R

n×n) such that supp ν�x ⊂ Rn×n
�+1 for a.e. x ∈ �.

Due to Propositions 3.1 and 3.2, there exists {Y �k }k∈N ⊂ Rn×n
�+1 with {(Y �k )−1}k∈N ⊂

Rn×n
�+1 for a.e. x ∈ � generating ν� and μ�, respectively, that satisfy for all v ∈ C0(R

n×n)∫
R

n×n
inv

v(s−1)ν
�
x (ds) =

∫
R

n×n
inv

v(s)μ�x (ds). (3.7)

Now, for any g ∈ L∞(�) we can write

lim
�→∞

∫
�

g(x)
∫

R
n×n
inv

v(s)ν�x (ds)dx

= lim
�→∞

∫
�

g(x)
∫

R
n×n
inv

v(s)
�(s)νx (ds)dx

+ lim
�→∞ v(I )

∫
�

g(x)
∫

R
n×n
inv

(1 −
�(s))νx (ds)dx .

As v
� converges strongly in the C0-norm to v and
∫

R
n×n
inv
(1 − 
�(s))νx (ds) converges

to 0 for a.e. x ∈ �, thanks to Lebesgue’s dominated convergence theorem, we are in the
situation that

lim
�→∞ lim

k→∞ v(Y
�

k ) =
∫

R
n×n
inv

v(s)νx (ds) weakly in L1(�).

Further, we verify that {Y �k }k∈N as well as {(Y �k )−1}k∈N are bounded in L p(�; R
n×n)

independently of �. Indeed, for every � ≥ 1 fixed we have that,

lim
k→∞

∫
�

|Y �k |p dx =
∫
�

∫
R

n×n
inv

|s|p ν
�
x (ds) dx

≤
∫
�

∫
B(0,�+1)

|s|pνx (ds) dx ≤
∫
�

∫
R

n×n
inv

|s|p νx (ds) dx ≤ C; (3.8)
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Applicable Analysis 11

an analogous calculation could be carried out for {(Y �k )−1}k∈N.
Applying the diagonalization argument (as L1(�; C0(R

n×n)) is separable) we get a
sequence {Yk}k∈N ⊂ L p(�; R

n×n) generating ν that is, thanks to (3.8), also equi-integrable;
the same holds for the inverse.

Moreover, if we defined μ as the weak* limit of μ�, then μ would be generated by
{Y −1

k }k∈N ⊂ L p(�; R
n×n) as, due to its definition,

lim
�→∞ lim

k→∞ v((Y
�

k )
−1) =

∫
R

n×n
inv

v(s)μx (ds) weakly in L1(�) .

Also, by applying � → ∞ in (3.7), it holds that∫
R

n×n
inv

v(s−1)νx (ds) =
∫

R
n×n
inv

v(s)μx (ds), (3.9)

for all v ∈ C0(R
n×n) and hence, by Lemma 3.4, also for all v ∈ C p,−p(Rn×n

inv ). �

Proof of Theorem 2.1. The necessity part follows from Propositions 3.3 and 3.5 while
the sufficiency part follows from Proposition 3.6.

It thus remains to prove relation (2.3), which can be proven analogously to [11, Th. 8.6];
however, we need to show that if f (x, s) = g(x)v(s) for some g ∈ L∞(�) and v ∈
C p,−p(R

n×n
inv ) then { f (x, Yk(x))}k∈N is equi-integrable. To see this, we use [30, Lemma 6.1]

and show only that for every ε > 0 there exists K > 0 such that
∫
{x∈�;|v(Yk (x))|≥K } |v(Yk(x))|

dx ≤ ε.
Notice that there exists C > 0 such that v0(s) := |v(s)|/(|s|p + |s−1|p) ≤ C for every

s ∈ R
n×n
inv . Moreover, lim|s|p+|s−1|p→∞ v0(s) = 0. Let (‖Yk‖p

L p +‖Y −1
k ‖p

L p ) ≤ M and take
ε > 0 and K > 0 large enough so that |v0(s)| < ε/M if |s|p + |s−1|p ≥ K/C . Then for
all k∫

{x∈�; |v(Yk (x))|≥K }
|v(Yk(x))| dx ≤

∫
{x∈�; |Yk (x)|p+|(Yk (x))−1|p≥K/C}

|v(Yk(x))| dx

≤
∫

{x∈�;|Yk (x)|p+|Y −1
k (x)|p≥K/C}

|v0(Yk(x))|(|Yk(x)|p + |Y −1
k (x)|p)dx

≤ ε/M?
∫
�

|Yk(x)|p + |Y −1
k (x)|pdx ≤ ε.

�
Proof of Theorem 2.2. It is analogous to the proof of Theorem 2.1. Notice that ν
is supported on matrices with positive determinant due to Proposition 3.3. The converse
implication follows from Proposition 3.1. �

Proof of Proposition 2.4. By the Mazur lemma det ∇ y ≥ 0. Suppose, by contradiction,
there existed a set ω ⊂ � of non-zero Lebesgue measure such that det ∇ y = 0 on ω. We
have by the sequential weak continuity of y 
→ det ∇ y from W 1,p(�; R

n) to L p/n(�) [2]
that ∫

ω

|det ∇ yk(x)| dx =
∫
ω

det ∇ yk(x) dx → 0 as k → ∞,
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12 B. Benešová et al.

so, it holds for a subsequence (not relabelled) that 0 < det ∇ yk → 0 a.e. in ω. By the Fatou
lemma, we have∫

ω

lim inf
k→∞

dx

det ∇ yk(x)
≤ lim inf

k→∞

∫
ω

dx

det ∇ yk(x)
≤ C lim inf

k→∞

∫
ω

|(∇ yk(x))
−1|n dx,

however, the left-hand side tends to +∞. This contradicts the boundedness of {(∇ yk)
−1}k∈N

in L p(�; R
n×n) because p > n and � is bounded. Hence, det ∇ y > 0 a.e. in �. The

assertion about the support follows from Proposition 3.3. �

4. Proofs in the W1,∞-case

We shall heavily rely on the following convex integration result which can be found in
[29, p. 199 and Remark 2.4]; recall that O(n) will standardly denote the set of orthogonal
matrices in R

n×n , i.e. O(n) := {A ∈ R
n×n; A� A = AA� = I }.

Lemma 4.1 Let ω ⊂ R
n be open and Lipschitz. Let ϕ ∈ W 1,∞(ω; R

n) be such that there
is ϑ > 0, so that 0 ≤ |∇ϕ| ≤ 1−ϑ a.e. in ω. Then there exist mappings u ∈ W 1,∞(ω; R

n)

for which ∇u ∈ O(n) a.e. inω and u = ϕ on ∂ω. Moreover, the set of such mappings is dense
(in the L∞-norm) in the set {ψ := z + ϕ; z ∈ W 1,∞

0 (ω; R
n) , |∇ψ | ≤ 1 − ϑ a.e. in ω}.

Before proving Theorem 2.5, let us elaborate more on the connection of the envelope
Z∞v from (1.10) and the standard quasi-convex envelope. If v ∈ O(�) with � < ∞ it is
not clear whether Z∞v is quasiconvex. However, this holds in the case when ρ = +∞ as
the following proposition shows.

Proposition 4.2 Let v : R
n×n → R ∪ {+∞} be in O(+∞). Then Z∞v = Qv.

Proof Let us establish that Z∞v(A) < +∞ for all A ∈ R
n×n . This is clear if A ∈ R

n×n
inv ,

otherwise we use Lemma 4.1 to construct ψ ∈ W 1,∞
A (�; R

n) and ∇ψ ∈ (|A| + ε)O(n)
for some ε > 0. Thus, |�|Z∞v(A) ≤ ∫

�
v(∇ψ(A)) dx < +∞.

Due to the finiteness of Z∞v, we know by [31, Thm. 2.4] that Z∞v = Qv, i.e. Z∞v is
quasiconvex and continuous. �

4.1. Proof of Theorem 2.5 – necessity

Conditions (2.7) and (2.8) are standard we only need to prove (2.9).

Proposition 4.3 Let F ∈ R
n×n, uF (x) := Fx if x ∈ �, yk

∗
⇀ uF in W 1,∞(�; R

n) and
let for some α > 0 ∇ yk(x) ∈ Rn×n

α for all k > 0 and almost all x ∈ �. Then for every
ε > 0 there is {uk}k∈N ⊂ W 1,∞(�; R

n) such that ∇uk(x) ∈ Rn×n
α+ε for all k > 0 and almost

all x ∈ �, uk − uF ∈ W 1,∞
0 (�; R

n) and |∇ yk − ∇uk | → 0 in measure. In particular,
{∇ yk}k∈N and {∇uk}k∈N generate the same Young measure.

Proof Define for � > 0, sufficiently large, �� := {x ∈ �; dist(x, ∂�) ≥ 1/�}�∈N and
smooth cut-off functions η� : � → [0, 1]

η�(x) =
{

1 if x ∈ ��
0 if x ∈ ∂�
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Applicable Analysis 13

such that |∇η�| ≤ C� for some C > 0. Set zk� := η�yk + (1 − η�)uF . Then zk� ∈
W 1,∞(�; R

n) and zk� = yk in�� and zk� = uF on ∂�. We see that ∇zk� = η�∇ yk + (1 −
η�)F + (yk −uF )⊗∇η�. Hence, in view of the facts that |F | ≤ lim inf k→∞ ‖∇ yk‖L∞ ≤ α

and that yk → uF uniformly in �, we can extract for every ε > 0 a (not relabelled)
subsequence k = k(�) such that

‖∇zk(�)�‖L∞ < α + ε

2
.

Consequently, {zk(�)�}�∈N is uniformly bounded in W 1,∞(�; R
n). Moreover,

∣∣∣∣∇zk(�)�(x)

α + ε

∣∣∣∣ ≤ ‖∇zk(�)�‖L∞

α + ε
≤ 1 − ε

2(α + ε)
.

Let us denote ω� := �\��, thenwk(�)� := zk(�)� ω�/(α+ε) is such that |∇wk(�)�| ≤ 1−ϑ
for ϑ := ε/2(α + ε). We use Lemma 4.1 for ω := ω� and ϕ := wk(�)� to obtain φk(�)� ∈
W 1,∞(ω�; R

n) such that φk(�)� = wk(�)� on ∂ω� and ∇φk(�)� ∈ O(n). Define

uk(�)� :=
{

yk if x ∈ ��
(α + ε)φk(�)� if x ∈ � \��.

Notice that {uk(�)�}�∈N ⊂ W 1,∞(�; R
n) and that uk(�)�(x) = Fx for x ∈ ∂�. Further,

∇uk(�)�(x) ∈ Rn×n
α+ε . Moreover, the Lebesgue measure of {x ∈ �; ∇uk(�)�(x) 	= ∇ yk(x)}

vanishes if k → ∞ and � → ∞ sufficiently fast, therefore both sequences generate the
same Young measure by [30, Lemma 8.3]. �

Remark 4.4
(i) It follows from the above proof that if |F | < α then we can take ε = 0 in Proposition 4.3.
(ii) If {uk}k∈N defined in the proof of Proposition 4.3 are homeomorphic and n = 2 then
either det ∇uk > 0 or det ∇uk < 0 in � for all k. The reason is that homeomorphisms in
two dimensions are either orientation preserving or reversing.

Lemma 4.5 Let ν ∈ GY+∞,−∞
� (�; R

n×n). Then μ := {νa}x∈� ∈ GY+∞,−∞
� (�; R

n×n)

for a.e. a ∈ �.

Proof Note that the construction in the proof of [30, Th. 7.2] does not affect invertibility.
�

Proposition 4.6 Let ν ∈ GY+∞,−∞(�; R
n×n), supp ν ⊂ Rn×n

� be such that for almost
all x ∈ � ∇ y(x) = ∫

Rn×n
�

sνx (ds), where y ∈ W 1,∞(�; R
n). Then for all �̃ ∈ (�;+∞],

almost all x ∈ � and all v ∈ O(�̃) we have∫
R

n×n
inv

v(s)νx (ds) ≥ Z∞v(∇ y(x)). (4.1)

Proof We know from Lemma 4.5 that μ = {νa}x∈� ∈ GY+∞,−∞
� (�; R

n×n) for a.e.
a ∈ �, so there exits its generating sequence {∇uk}k∈N such that {uk}k∈N ⊂ W 1,∞(�; R

n)

and for almost all x ∈ � and all k ∈ N ∇uk(x) ∈ Rn×n
� . Moreover, {uk}k∈N weakly*

converges to the map x 
→ (∇ y(a))x .
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14 B. Benešová et al.

Using Proposition 4.3, we can, without loss of generality, suppose that ∇uk ∈ Rn×n
�̃

for
all k ∈ N and uk(x) = ∇ y(a)x if x ∈ ∂�. Therefore, we have

|�|
∫

R
n×n
inv

v(s)νa(ds) = lim
k→∞

∫
�

v(∇uk(x)) dx ≥ |�|Z∞v(∇ y(a)).

�

4.2. Proof of Theorem 2.5 – sufficiency

We need to show that conditions (2.7),(2.8), and (2.9) are also sufficient for ν ∈ rca(Rn×n
inv )

to be in GY+∞,−∞(�; R
n×n). Put

U�A := {y ∈ W 1,∞
A (�; R

n); ∇ y ∈ Rn×n
� }. (4.2)

Consider for A ∈ R
n×n the set

M�

A := {δ∇ y; y ∈ U�A} , (4.3)

where δ∇ y ∈ rca(Rn×n) is defined as
〈
δ∇ y, v

〉 := |�|−1
∫
�
v(∇ y(x)) dx ; M�

A will denote
its weak∗ closure.

We have the following lemma:

Lemma 4.7 Let A ∈ R
n×n If � > |A| then the set M�

A is nonempty and convex.

Proof First we show that M�

A is non-empty. This is clear when A is invertible. Otherwise,
note that |A|/� = 1 − (� − |A|)/�. Thus, we can apply Lemma 4.1 with ϕ(x) := Ax/�,
x ∈ � and ϑ := (� − |A|)/� to get u ∈ W 1,∞(�; R

n) such that ∇u ∈ O(n) a.e. in � and
u(x) = Ax/� if x ∈ ∂�. Therefore, y := �u ∈ U�A. Consequently, M�

A 	= ∅.
The rest of proof is analogous to the proof of [30, Lemma 8.5]. We take y1, y2 ∈ U�A

and, for a given λ ∈ (0, 1), we find a subset D ⊂ � such that |D| = λ|�|. There are two
countable families of subsets of D and � \ D of the form

{ai + εi�; ai ∈ D, εi > 0, ai + εi� ⊂ D}
and

{bi + εi�; bi ∈ � \ D, ρi > 0, bi + ρi� ⊂ � \ D}
such that

D = ∪i (ai + εi�) ∪ N0, � \ D = ∪i (bi + ρi�) ∪ N1,

where the Lebesgue measure of N0 and N1 is zero. We define

y(x) :=

⎧⎪⎪⎨
⎪⎪⎩
εi y1

(
x−ai
εi

)
+ Aai if x ∈ ai + εi�,

ρi y2

(
x−bi
ρi

)
+ Abi if x ∈ bi + ρi�,

Ax otherwise,
yielding

∇ y(x) =

⎧⎪⎪⎨
⎪⎪⎩

∇ y1

(
x−ai
εi

)
if x ∈ ai + εi�,

∇ y2

(
x−bi
ρi

)
if x ∈ bi + ρi�,

A otherwise.
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Applicable Analysis 15

In particular, y ∈ U�A and δ∇ y = λδ∇ y1 + (1 − λ)δ∇ y2 . �
The following homogenization lemma can be proved the same way as [30, Th. 7.1].

Lemma 4.8 Let {uk}k∈N ⊂ W 1,∞
A (�; R

n) be a bounded sequence such that {∇uk}k∈N are
invertible and {(∇uk)

−1}k∈N ⊂ L∞(�; R
n×n) bounded. Let ν ∈ GY+∞,−∞(�; R

n×n) be
generated by {∇uk}k∈N. Then there is a bounded sequence {wk}k∈N ⊂ W 1,∞

A (�; R
n) with

{∇wk}k∈N invertible and {(∇wk)
−1}k∈N ⊂ L∞(�; R

n×n) bounded such that {∇wk}k∈N

generates ν ∈ GY+∞,−∞(�; R
n×n) defined through∫

Rn×n
v(s)νx (ds) = 1

|�|
∫
�

∫
Rn×n

v(s)νx (ds) dx, (4.4)

for any v ∈ C0(R
n×n) and almost all x ∈ �.

Proposition 4.9 Let μ be a probability measure supported on a compact set K ⊂ R
n×n
α

for some α ≥ 1 and let A := ∫
K sμ(ds). Let � > α and let

Z∞v(A) ≤
∫

K
v(s)μ(ds), (4.5)

for all v ∈ O(�). Then μ ∈ GY+∞,−∞(�; R
n×n) and it is generated by gradients of

mappings from U�A.

Proof The proof standardly uses the Hahn–Banach theorem and Lemma 4.8 and it is
similar to [30, Proposition 8.17]. First, notice that |A| ≤ α < � < +∞. Then, since M�

A is
non-empty and convex due to Lemma 4.7, we can, by the Hahn–Banach theorem, assume
that there is ṽ ∈ C(Rn×n

� ) such that

0 ≤ 〈ν, ṽ〉 =
∫

Rn×n
�

ṽ(s)ν(ds) = |�|−1
∫
�

ṽ(∇ y(x)) dx,

for all ν ∈ M�

A, and hence all y ∈ U�A, and 0 > 〈ν̃, ṽ〉 if ν̃ ∈ rca(Rn×n) \ M�

A.
Now, the function

v̄(F) :=
{
ṽ(F) if F ∈ Rn×n

� ,

+∞ else,

is in O(�). Notice that it follows from (4.5) that Z∞v̄(A) is finite. Thus, Z∞v(A) =
inf U�

A
|�|−1

∫
�
v(∇ y(x)) dx and hence Z∞v(A) ≥ 0 and, by (4.5), 0 ≤ ∫

Rn×n
�

v(s)μ(ds).

Thus,μ ∈ M�

A.As C(Rn×n
� ) is separable, the weak* topology on bounded sets in rca(Rn×n

� )

is metrizable. Hence, there is a sequence {uk}k∈N ⊂ U�A such that for all v ∈ C(Rn×n
� ) (and

all v ∈ O(�))
lim

k→∞

∫
�

v(∇uk(x)) dx = |�|
∫

Rn×n
�

v(s)μ(ds),

and {uk}k∈N is bounded in W 1,∞(�; R
n×n) due to the Poincaré inequality. As uk(x) = Ax

for x ∈ ∂� we use the homogenization procedure from Lemma 4.8 to show that μ is the
homogeneous Young measure generated by {∇uk}k∈N. �

We will need the following auxiliary result.
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16 B. Benešová et al.

Lemma 4.10 (see [18, Lemma 6.1]) Let � ⊂ R
n be an open domain with |∂�| = 0

and let N ⊂ � be of the zero Lebesgue measure. For rk : � \ N → (0,+∞) and
{ f j } j∈N ⊂ L1(�) there exists a set of points {aik}i∈N ⊂ � \ N and positive numbers
{εik}i∈N, εik ≤ rk(aik) such that {aik + εik�̄}i∈N are pairwise disjoint for each k ∈ N,
�̄ = ∪i {aik + εik�̄} ∪ Nk with |Nk | = 0 and for any j ∈ N

lim
k→∞

∑
i

f j (aik)|εik�| =
∫
�

f j (x) dx .

Proof of Theorem 2.5 – sufficiency. Some parts of the proof follow [18, Proof of Th. 6.1].
We are looking for a sequence {uk}k∈N ⊂ W 1,∞(�; R

n) with {∇uk}k∈N invertible and
{(∇uk)

−1}k∈N ⊂ L∞(�; R
n×n) satisfying

lim
k→∞

∫
�

v(∇uk(x))g(x) dx =
∫
�

∫
Rn×n

v(s)νx (ds)g(x) dx

for all g ∈ � and any v ∈ S, where � and S are countable dense subsets of C(�̄) and
C0(R

n×n), respectively.
First of all notice that, as u ∈ W 1,∞(�; R

n) from (2.8) is differentiable in � outside a
set of measure zero called N , we may find for every a ∈ �\ N and every k > 0 a rk(a) > 0
such that for any 0 < ε < rk(a) we have

1

ε
|u(a + εy)− u(a)− ε∇u(a)y| ≤ 1

k
. (4.6)

Furthermore, as g is continuous, we choose rk(a) > 0 smaller if necessary to assure that
for any 0 < ε < rk(a) ∣∣∣∣

∫
a+ε�

g(x) dx − g(a)ε

∣∣∣∣ < 1

k
. (4.7)

From Lemma 4.10 we can find aik ∈ � \ N , εik ≤ rk(aik) such that for all v ∈ S and all
g ∈ �

lim
k→∞

∑
i

V̄ (aik)g(aik)|εik�| =
∫
�

V̄ (x)g(x) dx, (4.8)

where
V̄ (x) :=

∫
R

n×n
inv

v(s)νx (ds).

In view of Lemma 4.9, let us assume that {νaik }x∈� ∈ GY+∞,−∞(�; R
n×n) is a homoge-

neous gradient Young measure and call {∇uik
j } j∈N its generating sequence. We know that

we can consider {uik
j } j∈N ⊂ U �̃∇u(aik )

for arbitrary +∞ > �̃ > �. Hence

lim
j→∞

∫
�

v(∇uik
j (x))g(x) dx = V̄ (aik)

∫
�

g(x) dx (4.9)

and, in addition, uik
j weakly∗ converges to the map x 
→ ∇u(aik)x for j → ∞ in

W 1,∞(�; R
n).

Let �� := {x ∈ �; dist(x, ∂�) ≥ �−1}. We define a sequence of smooth cut-off
functions {η�}�∈N

η�(x) :=
{

0 in ��,
1 on ∂�
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Applicable Analysis 17

such that |∇η�| ≤ C� for some C > 0. Further, take a sequence {u�k}k,�∈N ⊂ W 1,∞(�; R
n)

defined by

u�k(x) :=

⎧⎪⎪⎨
⎪⎪⎩

[
u(aik)+ εikuik

j

(
x−aik
εik

)] (
1 − η�

(
x−aik
εik

))
+u(x)η�

(
x−aik
εik

)
if x ∈ aik + εik�,

u(x) otherwise,

where j = j (i, k, �) will be chosen later. Note that for every k we have u�k − u ∈
W 1,∞

0 (�,Rn).
We calculate for x ∈ aik + εik�

∇u�k(x) = ∇uik
j

(
x − aik

εik

)(
1 − η�

(
x − aik

εik

))

+ ∇u(x)η�

(
x − aik

εik

)

+ 1

εik

[
u(x)− u(aik)− εik∇u(aik)

(
x − aik

εik

)]
⊗ ∇η�

(
x − aik

εik

)

+
[
∇u(aik)

(
x − aik

εik

)
− uik

j

(
x − aik

εik

)]
⊗ ∇η�

(
x − aik

εik

)
. (4.10)

Notice that the moduli of all four terms can be made together uniformly bounded by �̃ > �.
Namely, notice that the sum of the first two terms is not greater then � and the other two
terms can be made arbitrarily small if k is sufficiently large compared to � by exploiting (4.6)
and the strong convergence in L∞(aik + εik�; R

n) of uik
j (x) to the map x 
→ ∇u(aik)x

for j → ∞.
Take the set (aik + εik�) \ (aik + εik��) and solve the inclusion ∇ũ�k ∈ O(n) with the

boundary conditions ũ�k = u�k/�̃ if x ∈ ∂((aik + εik�k) \ (aik + εik��)). This inclusion has
a solution due to Lemma 4.1. Set

z�k(x) :=
⎧⎨
⎩

u�k(x) if x ∈ aik + εik��,
ũ�k(x) if x ∈ (aik + εik�) \ (aik + εik��),
u(x) otherwise.

Observe, that the Lebesgue measure of the set {x ∈ �; ∇(u�k(x)− z�k(x)) 	= 0} vanishes as
� → ∞. Further, {z�k}k,�∈N ⊂ W 1,∞(�; R

n) is a bounded sequence as well as {∇z�k}−1
k,�∈N

⊂
L∞(�; R

n×n).
Let us fix k, i, � (with k sufficiently large such that |∇z�k | is uniformly bounded by �̃)

and consider the sets {Ek}k∈N, Ek ⊂ Ek+1 such that � × S = ⋃
k Ek . We can eventually

enlarge each j = j (i, k, �) so that additionally for any (g, v0) ∈ Ek∣∣∣∣εn
ik

∫
�

g(aik + εik y)v(∇uik
j (y)) dy − V̄ (aik)

∫
aik+εik�

g(x) dx

∣∣∣∣ ≤ 1

2i k
. (4.11)

We have, by the smallness of |� \��| and boundedness of g and v, that for some C > 0∫
�

g(x)v(∇u�k(x)) dx =
∑

i

εn
ik

∫
�

g(aik + εik y)v(∇uik
j (y)) dy + C

�
.
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18 B. Benešová et al.

Consequently, in view of (4.8), (4.7) and (4.11) for all (g, v) ∈ � × S

lim
�→∞ lim

k→∞

∫
�

g(x)v(∇u�k(x)) dx =
∫
�

∫
R×n

v(s)νx (ds)g(x) dx .

Hence, we can pick a subsequence {∇u�k(�)}�∈N generating ν. The measure ν is also generated
by {∇z�k(�)}�∈N because the difference of both sequences vanishes in measure. Finally, we
see from the construction that {z�k(�)}�∈N can be chosen to have the same boundary conditions
as u. �
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[7] Roubíček T. Relaxation in optimization theory and variational calculus. Berlin: W. de Gruyter;

1997.
[8] Kružík M, Luskin M. The computation of martensitic microstructure with piecewise laminates.

Journal of Scientific Computing. 2003;19:293–308.
[9] Anza Hafsa O, Mandallena J-P. Relaxation theorems in nonlinear elasticity. Annales de l’Institut

Henri Poincaré (C) Analyse Non Linéaire 2008;25:135–48.
[10] Ball JM. A version of the fundamental theorem for Young measures. In: Rascle M, Serre D,

Slemrod M, editors. PDEs and continuum models of phase transition. Lecture Notes in Physics
344. Springer: Berlin; 1989. pp. 207–15.

[11] Fonseca I, Leoni G. Modern Methods in the Calculus of Variations: L p spaces. Springer; New
York; 2007.

[12] Tartar L. Beyond Young measures. Meccanica. 1995;30:505–26.
[13] Tartar L. Mathematical tools for studying oscillations and concentrations: from Young measures

to H -measures and their variants. In: N. Antonič C.J. van Duijn, W. Jäger, A. Mikelič, editors.
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