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Abstract. This paper presents an unsupervised dynamic colour tex-
ture segmentation method with unknown and variable number of texture
classes. Single regions with dynamic textures can furthermore change
their location as well as their shape. Individual dynamic multispectral
texture mosaic frames are locally represented by Markovian features de-
rived from four directional multispectral Markovian models recursively
evaluated for each pixel site. Estimated frame-based Markovian paramet-
ric spaces are segmented using an unsupervised segmenter derived from
the Gaussian mixture model data representation which exploits contex-
tual information from previous video frames segmentation history. The
segmentation algorithm for every frame starts with an over segmented
initial estimation which is adaptively modified until the optimal number
of homogeneous texture segments is reached. The presented method is
objectively numerically evaluated on the dynamic textural test set from
the Prague Segmentation Benchmark.
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1 Introduction

Many automated static or dynamic visual data analysis systems build on the
segmentation as the fundamental process which affects the overall performance
of any analysis. Visual scene regions, homogeneous with respect to some usu-
ally textural or colour measure, which result from a segmentation algorithm are
analysed in subsequent interpretation steps. Dynamic texture-based (DT) im-
age segmentation is an area of novel research activity in recent years and several
algorithms were published in consequence of all this effort. Different published
methods are difficult to compare because of incompatible assumptions (gray-
scale, fixed or known number of regions, segmentation or retrieval, constant
shape and/or location of texture regions, etc.), lack of a comprehensive analysis
together with accessible experimental data. Gray scale dynamic texture seg-
mentation or retrieval was addressed in few papers [1–5], while colour texture
retrieval based on VLBP [6] or DT segmentation [7], based on the geodesic ac-
tive contour algorithm and partial shape matching to obtain partial match costs
between regions of subsequent frames, were addressed to even lesser extent. How-
ever all available published results indicate that the ill-defined dynamic texture
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segmentation problem is far from being satisfactorily solved. Spatial interac-
tion models and especially Markov random fields-based models are increasingly
popular for texture representation [8, 9], etc. Several researchers dealt with the
difficult problem of unsupervised segmentation using these models see for exam-
ple [10–13] or [14] which is also generalized to dynamic textures and addressed
in this paper.

The contribution of the paper is a novel unsupervised dynamic multispec-
tral texture segmentation method with unknown and variable number of texture
classes, and regions (with dynamic texture) which can in addition change their
location as well as their shape. Thus the method relaxes most of the alterna-
tive approaches [1–5] limitations (gray-scale textures, fixed or known number of
regions, fixed regions shape and locations) which prevent their practical appli-
cations.

The outline of this paper is as follows. Section 2 presents our Markovian mul-
tispectral texture representation. Section 3 outlines the unsupervised segmenter,
followed by the experimental verification in the subsequent Section 4 and con-
cluding Section 5.

2 Dynamic Texture Representation

Dynamic multispectral textures would require a four dimensional (4D) model
or some of its lower dimensional approximation such as a set of spectrally fac-
torized 3D models. However we assume to model each dynamic texture frame
separately and thus a 3D static smooth textural model is sufficient for its ad-
equate representation. We assume that single multispectral frame textures can
be locally modeled using a 3D simultaneous causal auto-regressive random field
model (AR3D). This model can be expressed as a stationary causal uncorrelated
noise driven 3D auto-regressive process [15]:

Yr = γXr + er , (1)

where Xr = [Y T
r−s : ∀s ∈ Icr ]

T is a vector of the contextual neighbours Yr−s,
Icr is a causal neighbourhood index set of the model with the cardinality η =
card(Icr ), γ = [A1, . . . , Aη] is the d×dη parameter matrix containing parametric
sub-matrices As for each contextual neighbour Yr−s, d is the number of
spectral bands, er is a white Gaussian noise vector with zero mean and a
constant but unknown covariance, and r, r − 1, . . . is a chosen direction of
movement on the image index lattice I. The selection of an appropriate model
support (Icr ) is important to obtain good texture representation for realistic
texture synthesis but less important for adequate texture segmentation which
works only with site specific parameters. Both, the optimal neighbourhood as
well as the Bayesian parameters estimation of the AR3D model can be found
analytically under few additional and acceptable assumptions using the Bayesian
approach (see details in [15]). The local model parameters can be advantageously
evaluated using the recursive Bayesian parameter estimator for every DT frame
as follows:
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where the data accumulation matrix is

Vx(r−1) =
r−1∑

k=1

XkX
T
k + Vx(0) . (3)

Thus the parameter matrix estimate can be easily upgraded after moving to
a new lattice location (r − 1 −→ r). The model is very fast, hence the local
texture for each pixel can be represented by four directional parametric vectors
corresponding to four distinct models. Each vector contains local estimations of
the AR3D model parameters. These models have identical contextual neighbour-
hood Icr but they differ in their major movement direction (top-down, bottom-up,
rightward, leftward), i.e.,

γ̃T
r,o = {γ̂t

r,o, γ̂
b
r,o, γ̂

r
r,o, γ̂

l
r,o}T , (4)

where o = 1, . . . , n is the DT frame number.

3 Gaussian Mixture Segmenter

Multispectral texture segmentation is done by clustering in the AR3D parameter
space Θo defined on the lattice I for every frame o where

Θr,o = γ̄T
r,o (5)

is the decorrelated parameter vector (4) computed for the lattice location r
(the frame index is further left out to simplify notation). We assume that this
parametric space can be represented using the Gaussian mixture model with
diagonal covariance matrices due to the previous CAR parametric space decor-
relation. The Gaussian mixture model for AR3D parametric representation is as
follows:

p(Θr) =

K∑

i=1

pi p(Θr | νi, Σi) , (6)

p(Θr | νi, Σi) =
|Σi|− 1

2

(2π)
d
2

e− (Θr−νi)
T Σ

−1
i

(Θr−νi)

2 . (7)

The mixture model equations (6),(7) are solved using a modified EM algorithm.
The algorithm is initialised, for the first DT frame, using νi, Σi statistics es-
timated from the corresponding rectangular subimages obtained by regular di-
vision of the input texture mosaic. An alternative initialisation can be random
choice of these statistics. For each possible couple of rectangles the Kullback
Leibler divergence

D (p(Θr | νi, Σi) || p(Θr | νj , Σj)) =∫

Ω

p(Θr | νi, Σi) log

(
p(Θr | νi, Σi)

p(Θr | νj , Σj)

)
dΘr (8)
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is evaluated and the most similar rectangles, i.e.,

{i, j} = argmin
k,l

D (p(Θr | νl, Σl) || p(Θr | νk, Σk)) (9)

are merged together in each step. This initialization results in Kini subimages
and recomputed statistics νi, Σi . Kini > K where K is the optimal number of
textured segments to be found by the algorithm. All the subsequent DT frames
are initialized either from the corrected statistics ν̂i,o−1, Σ̂i,o−1 for i = 1, . . . ,K
computed from the trimmed segmented regions in the previous frame o − 1 or
with random parameter values ν̂i,o−1, Σ̂i,o−1 i = K + 1, . . . ,Kini for possi-
bly newly (re)appearing regions. Two steps of the EM algorithm are repeating
after initialisation. The components with smaller weights than a fixed thresh-
old (pj <

0.1
Kini

) are eliminated. For every pair of components we estimate their
Kullback Leibler divergence (8). From the most similar couple, the component
with the weight smaller than the threshold is merged to its stronger partner and
all statistics are actualised using the EM algorithm. The algorithm stops when
either the likelihood function has negligible increase (Lt − Lt−1 < 0.05) or the
maximum iteration number threshold is reached.

The parametric vectors representing texture mosaic pixels are assigned to the
clusters according to the highest component probabilities, i.e., Yr is assigned to
the cluster ωj if

πr,j = maxj

∑

s∈Ir

ws p(Θr−s | νj , Σj) , (10)

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood
and πr,j > πthre (otherwise the pixel is unclassified). The area of single cluster
blobs is evaluated in the post-processing thematic map filtration step. Regions
with similar statistics are merged. Thematic map blobs with area smaller than a
given threshold are attached to its neighbour with the highest similarity value.
Finally, the resulting region classes are remapped to ensure their between frame
consistency.

4 Experimental Results

The algorithm was tested on the natural colour dynamic textural mosaics from
the Prague Texture Segmentation Data-Generator and Benchmark [16]. The
benchmark (http://mosaic.utia.cas.cz) test mosaics with varying layouts and
each cell texture membership are randomly generated and filled with dynamic
colour textures from the Dyntex database [17]. The benchmark ranks segmenta-
tion algorithms according to a chosen criterion. The benchmark has implemented
the majority of segmentation criteria used for both supervised or unsupervised
algorithms evaluation. Twenty seven evaluation criteria (see their definition in
[16]) are categorized into four groups: region-based (5+5), pixel-wise (12), consis-
tency measures (2), and clustering comparison criteria (3) and permit detailed
and objective study of any segmentation method properties. Tab.1 compares
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Table 1. Dynamic A benchmark results for DTAR3D+EM (e+pp), DTAR3D+EM
(pp), DTAR3D+EM; (Benchmark criteria [16]: CS = correct segmentation; OS =
over-segmentation; US = under-segmentation; ME = missed error; NE =
noise error; O = omission error; C = commission error; CA = class accu-
racy; CO = recall - correct assignment; CC = precision - object accuracy;
I. = type I error; II. = type II error; EA = mean class accuracy estimate;
MS = mapping score; RM = root mean square proportion estimation error;
CI = comparison index; GCE = Global Consistency Error; LCE = Local
Consistency Error; dD = Van Dongen metric; dM = Mirkin metric; dVI =
variation of information). Arrows directions denote the required criterion motion,
the criteria rank numbers are down-sized on the right with the average rank besides
the method label. The bold numbers are the best criterion values, while italic numbers
are the worst criterion values.

Benchmark – Dynamic A
DTAR3D+EM
e+pp (1.33)

DTAR3D+EM
pp (1.86)

DTAR3D+EM
(2.62)

↑CS 92.68 1 60.75 2 60 .12 3

↓OS 39 .47 3 20.37 2 14.78 1

↓US 0.00 1 0.00 1 0.00 1

↓ME 0.00 1 35 .77 2 35 .77 2

↓NE 0.00 1 36.52 2 36 .76 3

↓O 3.23 1 10.07 2 11 .08 3

↓C 13.25 2 12.45 1 14 .56 3

↑CA 87.03 1 81.26 2 80 .10 3

↑CO 92.68 1 84.42 2 83 .69 3

↑CC 94 .01 3 95.85 1 95.18 2

↓ I. 7.32 1 15.58 2 16 .31 3

↓ II. 1 .32 3 0.76 1 0.89 2

↑EA 92.80 1 89.01 2 88 .30 3

↑MS 89.07 1 82.41 2 81 .35 3

↓RM 2.56 1 5 .54 3 5.21 2

↑CI 93.07 1 89.56 2 88 .86 3

↓GCE 11.13 1 12.39 2 13 .51 3

↓LCE 7.02 1 11.03 2 12 .21 3

↓dD 7.27 1 11.68 2 12 .37 3

↓dM 4.95 1 6.36 2 6 .80 3

↓dVI 13.18 1 13.93 2 13 .99 3

the overall (average over all DT frames) benchmark performance of the pro-
posed algorithm (DTAR3D+EM(e+pp)) with postprocessing (pp) and robust
trimmed initialization (e) with its alternative versions. The results demonstrate
very good performance on all criteria with the exception of over-segmentation
tendency and slightly worse variation of information criterion. We could not
compare our results with few published alternative DT segmenters [1, 2, 4] be-
cause neither their code, nor their experimental segmentation data are publicly
available, however the static single-frame (AR3D+EM) version of the method
was extensively evaluated and compared with several alternative methods (22
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0 1 2 126 249

Fig. 1. Selected experimental dynamic texture mosaic frames (0, 1, 2, 126, 249), ground
truth from the benchmark (middle row), and the corresponding segmentation results
(DTAR3D+EM e+pp - bottom))

other leading unsupervised segmenters) in the segmentation benchmark. The
static method proved its very good performance and outperformed most of these
alternatives (see details in http://mosaic.utia.cas.cz). For example, the impor-
tant correct region segmentation criterion (CS) is 25% better than for the HGS
method [18], under-segmentation is low as well as missed and noise errors [19].

Fig.1 shows five selected (three from the beginning, one from the middle and
one from the end of the sequence) 720 × 576 frames from the experimental
benchmark mosaics created from five Dyntex dynamic colour textures (47fa110 -
curtain, 54aa110 - curly hair, 54ac210 - straw, 54pd110 - escalator, and 571b110

- water). While the first frame suffers with over-segmentation the contextual in-
formation propagated from previous frames significantly improves the segmen-
tation consistency. Hard natural Dyntex textures were chosen for comparison
rather than synthesised (for example using the generative AR3D model or some
other Markov random field model) ones because they are expected to be more
difficult for the underlying segmentation model. Resulting segmentation results
are promising even if we could not compare them with alternative DT segmen-
tation methods. The time for an unoptimized parameter estimation is 170 s and
segmentation time is 10 s per frame. Our results can be further improved by an
appropriate more elaborate postprocessing or frame model initialization.

5 Conclusions

We proposed novel method for fast unsupervised dynamic texture or video seg-
mentation with unknown variable number of classes based on the underlying
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three dimensional Markovian local image representation and the Gaussian mix-
ture parametric space models. Single homogeneous texture regions can not only
dynamically change their location but simultaneously also their shape. Textu-
ral regions can also disappear temporarily or permanently and new regions can
appear at any time. Although the algorithm uses the random field type data
model it is very fast because it uses efficient recursive parameter estimation
of the model and therefore is much faster than the usual Markov chain Monte
Carlo estimation approach needed for Markovian models. Segmentation methods
typically suffer with lot of application dependent parameters to be experimen-
tally estimated. Our method requires only a contextual neighbourhood selection
and two additional thresholds all of them having an intuitive meaning. The al-
gorithm’s performance is demonstrated on the extensive benchmark objective
tests on natural dynamic texture mosaics. The static version of our method out-
performs several alternative unsupervised segmentation algorithms and it is also
faster than most of them. These dynamic texture unsupervised segmentation test
results are encouraging and we proceed with more elaborate post-processing and
some modification of the texture representation model.
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texture regularity. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA
2005, Part II. LNCS, vol. 3523, pp. 223–230. Springer, Heidelberg (2005)

3. Chan, A.B., Vasconcelos, N.: Classifying video with kernel dynamic textures. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2007), pp. 1–6. IEEE Computer Society (2007)

4. Chan, A.B., Vasconcelos, N.: Layered dynamic textures. IEEE Transactions on
Pattern Analalysis and Machine Intelligence 31(10), 1862–1879 (2009)

5. Chen, J., Zhao, G., Salo, M., Rahtu, E., Pietikinen, M.: Automatic dynamic texture
segmentation using local descriptors and optical flow. IEEE Transactions on Image
Processing (2012)
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