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Abstract—This paper presents a Cramér-Rao lower bound
(CRLB) on the variance of unbiased estimates of factor matrices
in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP)
decompositions of a tensor from noisy observations, (i.e., the
tensor plus a random Gaussian i.i.d. tensor). A novel expression is
derived for a bound on the mean square angular error of factors
along a selected dimension of a tensor of an arbitrary dimen-
sion. The expression needs less operations for computing the
bound, , than the best existing state-of-the art algorithm,

operations, where and are the tensor order and the
tensor rank. Insightful expressions are derived for tensors of rank
1 and rank 2 of arbitrary dimension and for tensors of arbitrary
dimension and rank, where two factor matrices have orthogonal
columns.
The results can be used as a gauge of performance of different

approximate CP decomposition algorithms, prediction of their ac-
curacy, and for checking stability of a given decomposition of a
tensor (condition whether the CRLB is finite or not). A novel ex-
pression is derived for a Hessianmatrix needed in popular damped
Gauss-Newtonmethod for solving the CP decomposition of tensors
with missing elements. Beside computing the CRLB for these ten-
sors the expression may serve for design of damped Gauss-Newton
algorithm for the decomposition.

Index Terms—Canonical polyadic decomposition, Cramér-Rao
lower bound, multilinear models, stability, uniqueness.

I. INTRODUCTION

O RDER-3 and higher-order data arrays need to be an-
alyzed in diverse research areas such as chemistry,

astronomy, and psychology [1]–[3]. The analyses can be done
through finding multi-linear dependencies among elements
within the arrays. The most popular model is Parallel factor
analysis (PARAFAC), also called Canonical decomposition
(CANDECOMP) or CP, which is an extension of a low rank
decomposition of matrices to higher-way arrays, usually called
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tensors. In signal processing, the tensor decompositions have
become popular for their usefulness in blind source separation
[4].
Note that a best-fitting CP decomposition may not exist for

some tensors. In that case, trying to find a best-fitting CP de-
composition results in diverging factors [5], [6]. This paper is
focussed on studying CP decompositions of a noisy observa-
tions of tensors, which admit an exact CP decomposition. The
decomposition of the noiseless tensor is taken as a ground truth
for computing errors.
An important issue is the essential uniqueness of CP decom-

position as it entails identifiability of the model (the factor ma-
trices) from the tensor. The adjective “essential” means that the
model is unique up to a scale and permutation ambiguity, which
is inherent to the problem. Initial works in the field can be traced
back in 70’s in works of Harshman [7], [8]. A popular suffi-
cient condition for the uniqueness was derived by Kruskal in
[9]. Recently, the problem has been addressed again, namely by
Stegeman, Ten Berge, De Lathauwer, Jiang, Sidiropoulos et al.;
see [10]–[24].
This paper is focussed on stability of the CP decomposition

rather than on the uniqueness. By stability we mean existence of
a finite Cramér-Rao bound in a stochastic set-up, where tensor
elements are corrupted by additive Gaussian-distributed noise.
Relation of this kind of stability to a deterministic stability and
to the uniqueness was studied in [25]. It is not true, in gen-
eral, that stability of a solution of a nonlinear problem implies
uniqueness of the solution. For example, there might always be a
permutation or sign ambiguity. It is yet an open theoretical ques-
tion if stability of the CP tensor decomposition problem implies
its essential uniqueness. Regardless of the missing link to iden-
tifiability, the stability is an interesting concept which is worth
to be studied, because different kind of noise is very common.
In general, in order to evaluate performance of a tensor de-

composition, the approximation error between the data tensor
and its approximate is sometimes used. Unfortunately, such
measure does not imply quality of the estimated components.
In practice, in some difficult scenarios such as decomposition
of tensor with linear dependency among components of factor
matrices, or large difference in magnitude between components
[26], [27], most CP algorithms explained the data tensor at
almost identical fit, but only few algorithms can accurately
retrieve the hidden components from the tensor [26], [28]. In
order to verify theoretically the quality of the estimated compo-
nents and evaluate robustness of an algorithm, an appropriate
measure is an essential prerequisite. The squared angular error
between the estimated component and its original one is such
a measure [29], [30]. Working with angular errors is practical,
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because the scaling ambiguity does not play a role. Only the
permutation ambiguity has to be solved in practical examples,
because order of the factor can be quite arbitrary.
Cramér-Rao lower bound for CP decomposition was first

studied in [31], and later, a more compact asymptotic expres-
sion was derived in [32] for tensors of order 3 appearing in
wireless communications. A non-asymptotic (exact) CRLB-in-
duced bound (CRIB) on squared angular deviation of columns
of the factor matrices with respect to their nominal values has
been studied in [29]. Similar results for symmetric tensors
are derived in [33]. Nevertheless, the study is limited to the
case of three-way tensors. In the general case, CRIB can be,
indeed, calculated through the approximate Hessian which is
often huge, and is impractical to directly invert. Note that such
task normally costs where . Seeking a
cheaper method for CRIB is a challenge to made it applicable.
This paper presents new CRIB expressions for tensors of ar-

bitrary dimension and rank, and specialized expressions for rank
1 and rank 2 tensors. The results rely on compact expressions
for Hessian of the problem derived in [28]. Alternative expres-
sions for the Hessian exist in [39]. Note, however, that unlike
[28], this paper presents different expressions for inverse of the
Hessian, which have lower computational complexity. In par-
ticular, complexity of inversion of the Hessian is reduced from

operations to , where and are the tensor
order and the tensor rank, respectively.
On basis of new discovered properties of the CRIB, we es-

tablished connection between theoretical and practical results
in CP decomposition (CPD):
• Stability of CPD for rank-1 and rank-2 tensors of arbitrary
dimension.

• The work may serve as theoretical support for a novel CP
decomposition algorithm through tensor reshaping [34],
which was designed to decompose high-dimensional and
high-order tensors. In particular, it appears that higher-
order orthogonally constrained CPD [35]–[38] can be de-
composed efficiently through tensor unfolding.

• Stability when factor matrices occur linear dependence
problem and especially the rank-overlap problem [1],
[23], [36]. The problem is related to a variant of CPD
for linear dependent loadings which was investigated in
chemometric data and in flow injection analysis [1], [36].
A partial uniqueness condition of the related model is
discussed in [23].

• CP decomposition of tensors with missing entries, which
is quite frequent in practice, is addressed. An approximate
Hessian for this case is derived, which is the core for the
damped Gauss-Newton algorithm for the decomposition.

• A maximum tensor rank, given dimension of the tensor,
which admits a stable decomposition is discussed.

The paper is organized as follows. Section II presents the main
result, the Cramér-Rao induced bound on angular error of one
factor vector in full generality. In Section III, this result is
specialized for tensors of rank 1 and rank 2, and for the case
when two factor matrices have mutually orthogonal columns.
Section IV is devoted to a possible application of the bound:
investigation of loss of accuracy of the tensor decomposition

when the tensor is reshaped to a lower-dimensional form.
Section V deals with the bound for tensors with missing en-
tries, Section VI contains examples—CRIB computed for CP
decomposition of a fluorescence tensor, stability of the tensor
investigated by Brie et al., and a discussion of a maximum
stable rank given the tensor dimension. Section VII concludes
the paper.

II. PRESENTATION OF THE CRIB

A. Cramér-Rao Bound for CP Decomposition

Let be an way tensor of dimension .
The tensor is said to be of rank , if is the smallest number
of rank-one tensors which admit the decomposition of of the
form

(1)

where denotes the outer vector product, , ,
are vectors of the length called factors. The

tensor in (1) can be characterized by factor matrices
of the size for .

Sometimes (1) is referred to as a Kruskal form of a tensor [45].
In practice, CP decomposition of a given rank is used

as an approximation of a given tensor, which can be a noisy
observation of the tensor in (1). Owing to the symmetry
of (1), we can focus on estimating the first factor matrix ,
without any loss of generality, and we can assume that all other
factor matrices have columns of unit norm. Then the “energy”
of the parallel factors is determined by the squared Euclidean
norm of columns of .
It is common to assume that the noise has a zero mean

Gaussian distribution with variance , and is independently
added to each element of the tensor in (1).
Let a vector parameter containing all parameters of our

model be arranged as

(2)

The maximum likelihood solution for consists in minimizing
the least squares criterion

(3)

where stands for the Frobenius norm.
We wish to compute the Cramér-Rao lower bound for esti-

mating . In general, for this estimation problem, the CRLB is
given as the inverse of the Fisher information matrix, which is
equal to [29]

(4)

where is the Jacobi matrix (matrix of the first-order deriva-
tives) of with respect to . In other words, the Fisher infor-
mationmatrix is proportional to the approximate Hessian matrix
of the criterion, [39].
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Let denote the Hadamard (elementwise) product of ma-
trices ,

(5)

Theorem 1 [28]: The Hessian can be decomposed into low
rank matrices under the form as

(6)

where contains submatrices given by

(7)

is the permutation matrix of dimension defined in
[28] such that for any matrix ,
and is the Kronecker delta, and is a short-hand
notation for , i.e. a diagonal matrix containing
all elements of a matrix on its main diagonal. Next,

(8)

and

(9)

where denotes the Kronecker product, is an identity ma-
trix of the size , and is a block diagonal matrix
with the given blocks on its diagonal. Note that the Hessian in
(6) is rank deficient because of the scale ambiguity of columns
of factor matrices [27], [41]. It has dimension

but its rank is at most .
A regular (reduced) Hessian can be obtained from by

deleting rows and corresponding columns in ,
because the estimation of one element in the vectors ,

, can be skipped. The reduced
Hessian may have the form

(10)

where

(11)

and is an matrix of rank . For example,
one can put for . With
this definition of , is a Hessian for estimating the first
factor matrix and all other vectors , ,

without their first elements. In the sequel, however, we
use a different definition of . Note that each can be quite
arbitrary, together facilitate a regular transformation of nuisance
parameters, which does not influence CRLB of the parameter of
interest.
The CRLB for the first column of , denoted simply as ,

is defined as times the left-upper submatrix of of the
size ,

(12)

Substituting (6) in (10) gives

(13)

where and . Inverse of can be
written using a Woodbury matrix identity [40] as

(14)
provided that the involved inverses exist.
Next,

(15)

(16)

Put

(17)

(18)

and let be the upper-left submatrix of , symboli-
cally . Finally, let and be the upper-left
element and the first row of , respectively. Then

(19)

The CRLB represents a lower bound on the error covariance
matrix for any unbiased estimator of .
The bound is asymptotically tight in the case of Gaussian noise
and least squares estimator, which is equivalent to maximum
likelihood estimator, under the assumptions that the permutation
ambiguity has been solved out (order of the estimated factors
was selected to match the original factors) and scaling of the
estimator is in accord with the selection of the matrix .

B. Cramér-Rao-Induced Bound for Angular Error

considered in the previous subsection is a ma-
trix. In applications it is practical to characterize the error of the
factor in the decomposition by a scalar quantity. In [30] it was
proposed to characterize the error by an angle between the true
and the estimated vector, and compute a Cramér-Rao-induced
bound (CRIB) for the squared angle. The CRIB may serve a
gauge of achievable accuracy of estimation/CP decomposition.
Again, it is an asymptotically (in the sense of variance of the
noise going to zero) tight bound on the angular error between
an estimated and true factor.
The angle between the true factor and its estimate

obtained through the CP decomposition is defined through its
cosine

(20)
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The Cramér-Rao induced bound for the squared angular
error will be denoted in the
sequel. in decibels (dB) is then defined as

.
Before computing we present another interpreta-

tion of this quantity. Let the estimate be decomposed into a
sum of a scalar multiple of and a reminder, which is orthog-
onal to ,

(21)

where and . Then, the Distor-
tion-to-Signal Ratio (DSR) of the estimate can be defined as

(22)

A straightforward computation gives

(23)

The approximation in (23) is valid for small . We can see
that serves not only as a bound on the mean squared
angular estimation error, but also as a bound on the achievable
Distortion-to-Signal Ratio.
Theorem 2 [30]: Let be the Cramér-Rao bound

on covariance matrix of unbiased estimators of . Then the
Cramér-Rao-induced bound on the squared angular error be-
tween the true and estimated vector is

(24)

where

(25)

is the projection operator to the orthogonal complement of
and denotes trace of a matrix.

Proof: A sketch of a proof can be found in [30]. It is based
on analysis of a mean square angular error of a maximum
likelihood estimator, which is known to be asymptotically tight
(achieving the Cramér-Rao bound). Note that a conceptually
more straightforward but longer proof would be obtained
through the formula for CRLB on a transformed parameter, see
e.g., Theorem 3.4 in [44]. In particular,

(26)

where is the Jacobi matrix of the mapping representing
the angular error as a function of the estimate .
Theorem 3: The can be written in the form

(27)
where is the submatrix of in (18), ,

(28)

for , and denote the upper-right el-
ement and the first column of , respectively, and in the
definition of (18) takes, for a special choice of matrices ,
the form

(29)
Proof: Substituting (12) and (19) into (24) gives, after

some simplifications,

(30)

This is (27), because

(31)

Next, assume that is defined as in (11), but are arbitrary
full rank matrices of the dimension . Then, com-
bining (17), (9), (11) and (16) gives

(32)

where

(33)

for . Note that the expression
is an orthogonal projection operator to the columnspace of .
If is chosen as the first rows of

(34)

then and consequently

.

Note that the first row and the first column of are zero.
Theorem 4: Assume that all elements of the matrices

in (5) are nonzero. Then, the matrix in Theorem 3 can be
written in the form

(35)

where

(36)

(37)
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(38)

(39)

for . In (37) and (39), “ ” stands for the element-
wise division.

Proof: See Appendix B.
Note that in place of inverting the matrix of the size
, Theorem 4 reduces the complexity of the CRIB compu-

tation to inversions of the matrices of the size . The
Theorem can be extended to computing the inverse of the whole
Hessian in operations, see [48].
Finally, note that the assumption that elements of must

not be zero is not too restrictive. Basically, it means that no
pair of columns in the factor matrices must be orthogonal. The
Cramér-Rao bound does not exhibit any singularity in these
cases, and is continuous function of elements of . If some
element of is closer to zero than say , it is possible to
increase its distance from zero to that value, and the resultant
CRIB will differ from the true one only slightly.
Theorem 5: (Properties of the CRIB)
1) The CRIB in Theorems 3 and 4 depends on the factor ma-
trices only through the products .

2) The CRIB is inversely proportional to the signal-to-noise
ratio (SNR) of the factor of the interest (i.e. )
and independent of the SNR of the other factors,

, .
Proof: Property 1 follows directly from Theorem 3. Prop-

erty 2 is proven in Appendix C.

III. SPECIAL CASES

A. Rank 1 Tensors

In this case, the matrix is zero, and

(40)

In (40), due to the convention that the factor matrices
, , have columns of unit norm. The result (40) is in

accord with Harshman’s early results on uniqueness of rank-1
tensor decomposition [8].

B. Rank 2 Tensors

Consider the scaling convention that all factor vectors except
the first factor have unit norm. Let , , be defined as

for

for .
(41)

It follows from Theorem 5 that the CRIB on is a function
of multiplied by . It is symmetric function
in and possibly nonsymmetric in . A closed form

expression for the CRIB in the special case is subject of the
following theorem.
Theorem 6: It holds for rank 2 tensors

(42)

where

(43)

(44)

(45)

Proof: See Appendix D.
Note that the expressions (44), (45) contain, in their denomi-

nators, terms . If any of these terms goes to zero, then
quantities and go to infinity. In despite of this, the whole
CRIB remain finite, because and appear both in the numer-
ator and denominator in (42).
For example, for order-3 tensors we get (using e.g.,

Symbolic Matlab or Mathematica)

(46)
The above result coincides with the one derived in [29]. As far
as the stability is concerned, the CRIB is finite unless either the
second or third factor have co-linear columns. Note that the fact
that the CRIB for does not depend on can be linked to the
uni-mode uniqueness conditions presented in [23].
For , the similar result is hardly tractable. Unlike the

case , the result depends on . A closer inspection of
the result shows that the CRIB, as a function of , achieves its
maximum at , and minimum at . Therefore we
shall treat these two limit cases separately. We get [(47)-(48) at
the bottom of the next page]. As far as the stability is concerned,
we can see that the CRIB is always finite unless two of the factor
matrices have co-linear columns.
Similarly, for a general , we have for

(49)

C. A Case With Two Factor Matrices Having Orthogonal
Columns

This subsection presents a closed-form CRIB for a tensor of
a general order and rank, provided that two of its factor matrices
havemutually orthogonal columns. The result cannot be derived
from Theorem 5, because assumptions of the theorem are not
fulfilled.
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Theorem 7: When the factor matrices and both have
mutually orthogonal columns, it holds

(50)

where for .
Proof: See Appendix E.

Theorem 7 represents an important example when a tensor
reshaping (see Section V-A. and [34] for more details) enables
very efficient (fast) CP decomposition without compromising
accuracy. It has close connection with orthogonally constrained
CPD [36], [37], [38].

IV. CRIB FOR TENSORS WITH MISSING OBSERVATIONS

It happens in some applications, that tensors to be decom-
posed via CP have missing entries (some observations are
simply missing). In this case, it is possible to treat stability of
the decomposition through the CRIB as well. The only problem
is that it is not possible to use expressions in Theorems 3–8 in
such cases.
Assume that the tensor to be studied is given by its factor ma-

trices and a 0–1 “indicator” tensor of the same
dimension as , which determines which tensor elements are
available (observed). The task is to compute CRIB for columns
of the factor matrices, like in the previous sections. The CRIB
is computed through the Hessian matrix as in (12) and (20),
but its fast inversion is no longer possible. The Hessian itself
can be computed as in its earlier definition

(51)

where is the parameter of the model (2). More specific ex-
pressions for the Hessian can be derived in a straightforward
manner.

Theorem 8: Consider the Hessian for tensor with missing
data as an partitioned matrix

where . Then [see
(52) at the bottom of the page], denotes the mode-
tensor-vector product between and [4], and

(53)
Proof: See Appendix F.

Theorem 8 can be used either to compute the CRIB for ten-
sors withmissing elements, or for implementing dampedGauss-
Newton method for finding the decomposition in difficult cases,
where ALS converges poorly.

V. APPLICATION AND EXAMPLES

A. Tensor Decomposition Through Reshape

Assume that the tensor to-be decomposed is of dimension
. The tensor can be reshaped to a lower dimensional

tensor, which is computationally easier to decompose, so that
the first factor matrix remains unchanged. The topic will be
better elaborated in our next paper [34], in this paper we present
only the main idea on two examples, to demonstrate usefulness
of the CRIB.
In the first example, consider . The tensor in (1) can

be reshaped to an order-3 tensor

(54)

Both the original and the re-shaped tensors have the same
number of elements ( ) and the same noise added to
them.
The question is, what is the accuracy of the factor matrix of

the reshaped tensor compared to the original one. The former
accuracy should be worse, because a decomposition of the re-
shaped tensor ignores structure of the third factor matrix. The

(47)

(48)

for

for
(52)
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TABLE I
ESTIMATED CRIBS [dB] ON BEST FIT CP COMPONENTS OF FLUORESCENCE TENSOR COMPUTED FOR ASSUMED RANK , 2, 3, 4

question is, by how much worse. If the difference were neg-
ligible, then it is advised to decompose the simpler tensor (of
lower dimension).
If the tensor has rank one, accuracy of both decompositions

is the same. It is obvious from (40).
Let us examine tensors of rank 2. If the original tensor has

scalar products of columns of the factor matrices , , and
, the reshaped tensor has scalar products , , and ,

respectively. of the reshaped tensor is independent
of , while CRIB of the original tensor is dependent on ,
so there is a difference, in general. The difference will be
smallest for (orthogonal factors) and largest for close
to 1 (nearly or completely co-linear factors along the first
dimension).
The smallest difference between for the reshaped

tensor and for the original one is

and the largest difference is

We can see that the difference may be large if the second or
third factor matrix of the reshaped tensor has nearly co-linear
columns ( or ). For example, for a tensor with

, , , the loss of accuracy
in decomposing reshaped tensor in place of the original one is
11.22 dB. If is changed to 1, the loss is only slightly higher,
11.23 dB. If , the loss is 0 dB for any (com-
pare Theorem 7). If , and , the
loss is 8.5 dB.
Another example is a tensor of an arbitrary order and rank

considered in Theorem 7. Let this tensor be reshaped to the
order-3 tensor of the size . Comparing
the of the original tensor and of the reshaped tensor
shows that these two coincide. It follows that the decomposition
based on reshaping is lossless in terms of accuracy.

B. Amino Acids Tensor

A data set consisting of five simple laboratory-made samples
of fluorescence excitation-emission (5 samples 201 emission
wavelengths 61 excitation wavelengths) is considered. Each
sample contains different amounts of tryptophan, tyrosine, and
phenylalanine dissolved in phosphate buffered water. The sam-
ples were measured by fluorescence on a spectrofluorometer

Fig. 1. Illustration for emission components from best-fit decompositions over
100 Monte Carlo runs for example VI-A. (a) Estimated components as .
(b) Estimated components as . (c) Estimated components as .
(d) Estimated components as .

[43]. Hence, a CP model with is appropriate to the fluo-
rescence data.
The tensor was factorized for several possible ranks using

the fLM algorithm [28]. CRIBs on the extracted components
were then computed with the noise levels deduced from the error
tensor

(55)

The resultant CRIB’s are computed for all columns of all factor
matrices and are summarized in Table I.
Note that due to the “ ” definition, high CRIB in dB

means high accuracy, and vice versa. A CRIB of 50 dB means
that the standard angular deviation (square root of mean square
angular error) of the factor is cca 0.18 ; a CRIB of 20 dB cor-
responds to the standard deviation 5.7 .
The second mode to the decomposition, which represents in-

tensity of the data versus the emission wavelength, for ,
3, 4 and 8 is shown in Fig. 1. We can see that the CRIB allows to
distinguish between strong/significant modes of the decomposi-
tion and possibly artificial modes due to over-fitting the model.
The criterion is different in general than the plain “energy” of
the factor; if a factor has a low energy, it will probably have
high CRIB, but it might not hold true vice versa. A high energy
component might have a high CRIB.
In the next experiment, we have studied how much the ac-

curacy of the decomposition is affected in case that some data
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Fig. 2. CRIB for the second-mode components of CP decomposition of tensor in section VI.A with missing elements and mean square angular error obtained in
simulations versus percentage of the missing elements.

are missing (not available). The decomposition with the correct
rank and estimated as in (55) was taken as a ground
truth; the 0-1 indicator tensor of the same size was randomly
generated with a given percentage of missing values. The CRIB
of the second mode factors was plotted in Fig. 2 as a function
of this missing value rate. The figure also contains mean square
angular error of the components obtained in simulations. Here
an artificial Gaussian noise with zero mean and variance was
added to the “ground truth” tensor. The decomposition was ob-
tained by a Levenberg-Marquardt algorithm [28] modified for
tensors with missing entries.
A few observations can be made here.
• CRIB coincides with MSAE for the percentage of the
missing entries smaller than 70%. If the percentage ex-
ceeds the threshold, CRIB becomes overly optimistic.

• In general, accuracy of the decomposition declines slowly
with the number of missing entries. If the number of
missing entries is about 20%, loss of accuracy of the
decomposition is only about 1–2 dB.

C. Stability of the Decomposition of Brie’s Tensor

Brie et al. [20] presented an example of a four-way tensor
of rank 3, which arises while studying the response of bacterial
bio-sensors to different environmental agents. The tensor has
co-linear columns in three of four modes and the main message
of the paper is that its CP decomposition is still unique. In this
subsection we verify stability of the decomposition.
The factor matrices of the tensor have the form

Assume for simplicity that all factors have unit norm, ,
. Due to Theorem 5 it holds that CRIB on is a

function of scalars , , ,
, , and , which is the

dimension of . Then, the matrices , ,
3, 4, have the form

A straightforward usage of Theorem 4 is not possible, because
some of the involved matrices become singular. The CRIB it-
self, however, is finite and can be computed using an artificial
parameter as a limit. The limit CRIB is computed for modified
matrices at ,

If any of the correlations is zero, it is also augmented
by .
The limit CRIB can be shown to be independent of off-diag-

onal elements of , unless is singular. Assume that is
regular. The result, obtained by Symbolic Matlab, is

(56)

It follows that the decomposition is stable, unless all three fac-
tors in some mode are collinear.

D. Maximum Stable Rank

A theoretically interesting question is, what is the maximum
rank of a tensor of a given dimension which has a stable CP
decomposition (with finite CRIB). For easy reference, we shall
call it maximum stable rank and denote it .
An upper bound for the maximum stable rank can be de-

duced from the requirement that the number of free parameters
in the model, which is in CP decompo-
sition, cannot exceed dimension of the available data, which is

. It follows that

(57)
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where denotes the lower integer part of . It can be verified
numerically that for many (and maybe all1) tensor dimensions,
an equality in (57) holds. In other words, it means that the CRIB
computed, e.g., via Theorem 4 for a CP decompositionwith rank

and some (e.g. random) factormatrices is finite. For
example, the maximum stable rank is for
tensors, and for tensors. For order-8 tensors
of dimension , (8 ), it holds .
It might be interesting to compare the maximum stable rank

with the maximum rank and the maximum typical rank (to be
explained below) for given tensor dimension, if they are known
[46]. If the elements of a tensor are chosen randomly according
to a continuous probability distribution, there is not a rankwhich
occurs with probability 1 in general. Such rank, if exists, is
called generic. Ranks which occur with strictly positive prob-
abilities are called typical ranks. For example it was computed
in [10] that probability for a real random Gaussian tensor of the
size to be 2 and 3 is , and , respectively.
We can see that no tensor of the rank 3 and the dimension has
a stable decomposition. For tensors of the dimension
the typical rank is 5 [10], it is a generic rank—but no decompo-
sition of these rank-5 tensors is stable, as .
Next, it might be interesting to compare the maximum stable

rank with the maximum rank for unique tensor decomposition,
or prove that these two coincide. Liu and Sidiropoulos [11], [31]
derived a necessary condition for uniqueness of the CP decom-
position, which, according to a formulation in [45] reads

(58)

where means the Khatri-Rao product. The condition (58) is
equivalent to the condition that the matrices

have all full column rank,
, which is further equivalent to the condition that the

product are regular for . Finally note that

where was defined in (5) and appears in computation of the
CRIB.
Unfortunately, it appears that the condition (58) is only nec-

essary, but not sufficient for uniqueness. It is often fulfilled for
higher than . Thus a relation between the stability and

uniqueness of the CP decomposition remains open question for
now.

VI. CONCLUSIONS

Cramér-Rao bounds for CP tensor decomposition represent
an important tool for studying accuracy and stability of the
decomposition. The bounds derived in this manuscript serve
as a theoretical support for a method of the decomposition
through tensor reshaping [34]. As a side result, a novel method
of inverting Hessian matrix, which is more computationally
efficient, is derived for the problem. It enables a further im-
provement of speed of the fast Gauss-Newton for the problem

1We do not have yet a formal proof that the equality in (57) holds for all tensor
dimensions and orders.

[28], [48]. A novel expression for Hessian for CP decompo-
sition of tensor with missing entries has been derived. It can
serve for assessing accuracy of CP decomposition of these
tensors without need of long Monte Carlo simulations, and
for implementing a damped Gauss-Newton algorithm for CP
decomposition of these tensors.
A direct link between stability and essential uniqueness re-

mains to be an open theoretical question. In particular, it is not
known yet for sure if stability implies the essential uniqueness.
CRB expressions similar to the ones derived in this paper can

be also derived for other important special tensor decomposition
models such as INDSCAL (where two or more factor matrices
coincide) [16], [39], or for the PARALIND model, where the
factor matrices have certain structure [23], and for block factor-
ization methods.

APPENDIX A

Matrix Inversion Lemma (Woodbury identity): Let , , ,
and are matrices of compatible dimensions such that the fol-
lowing products and inverses exist. Then

(59)
APPENDIX B

Proof of Theorem 4: Let the matrices and in (18) be
partitioned as

(60)

where the left-upper blocks have the size . Then, using a
formula for inverse of partitioned matrices, the left-upper block
of in (18) can be written as

(61)

A key observation which enables a fast inversion of the term
is that

(62)

where

(63)

(64)

(65)

Similarly,

(66)

where

(67)

(68)
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Then the matrix in (61) can be written as

(69)

where

(70)

(71)

Now, can be easily inverted using the matrix inversion
lemma (59),

(72)

Inserting (72) in (61) gives, after some simplifications, the result
(35).

APPENDIX C

Proof of Theorem 5: Consider the change of scale of
columns of factor matrices up to their first columns. As in
Section II assume that the scale change is realized in ,
while the other factor matrices have columns of unit norm. The
theorem claims that the substitution into (27)
where , , has no influence on

.
The substitution leads to and

while and , , remain the
same. Consequently, , , remain unchanged
while for . Now, we can sub-
stitute into (35) assuming that the condition of Theorem 4 is
satisfied.
Let denote the matrix in (39) after the substitution

. It can be shown that
using the rules

(73)

(74)

(75)

and the fact that diagonal matrices commute. Using the same
rules in further substitutions, after some computations, the in-
dependence of on follows.

APPENDIX D

Proof of Theorem 6: Again, assume for simplicity that all
factors have unit norms. It holds

and

(76)

(77)

The matrix in (32) can be decomposed as where

(78)

(79)

Then the matrix in (18) can be rewritten using the Woodbury
identity (59) as

(80)

Now, put and write it in the block form as

(81)

where has the size 4 4. The bottom-right block of
dimension is easy to be inverted using
the Woodbury identity again, because it can be written as

(82)

where

(83)

(84)

(85)

(86)

After some computations, we receive the result (42).

APPENDIX E

Proof of Theorem 7: Under the assumption of the Theorem,
it holds that the matrix is diagonal and
(identity matrix). Thanks to Theorem 5 we can assume, without
any loss of generality, that as well. It can be shown
for in (5) that for all pairs

. Only and are possibly different.
Note that the first row of is .
It follows from these observations that all non-diagonal
blocks of in (6) with are

identical, diagonal, having 1 at positions ,
and 0 elsewhere. In other words, these

can be written as , where is a 0-1 matrix of the
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size , the -th column of has the value 1 at position
and 0 elsewhere.

Computation of the CRIB can proceed from equation (61) by
inserting the special form of the blocks of and and using
the Woodbury identity (59).

APPENDIX F

Proof of Theorem 8: The following identities are used in this
proof

(87)

(88)

(89)

Here, dimensions of , , and are assumed to match
accordingly.
The approximate Hessian in (51) is given by

(90)

where is the Jacobian for the complete data.
We have

(91)

where unit vector for is the -th column of
the identity matrix of size .
An entry of a sub matrix for ,

and is given by

(92)

(93)

where is the Kronecker delta, , for
. This leads to that a diagonal sub-matrix is a

diagonal matrix as in Theorem IV.
For off-diagonal sub matrices of size

, we have

(94)

(95)

This leads to the compact form in Theorem 8.
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