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Abstract

We concentrate on the linear spatially distributed time-invariant two-dimensional systems with multiple
inputs and multiple outputs and with control action based on an array of sensors and actuators connected
to the system. The system is described by the bivariate matrix polynomial fraction. Stabilisation of such
systems is based on the relationship between stability of a bivariate polynomial and positiveness of a related
polynomial matrix on the unit circle. Such matrices are not linear in the controller parameters, however, in
simple cases, a linearising factorisation exists. It allows to describe the control design in the form of a linear
matrix inequality. In more complicated cases, linear sufficient conditions are given. This concept is applied
to a system with multiple outputs—a heat conduction in a long thin metal rod equipped with an array of
temperature sensors and heaters, where heaters are placed in larger distances than sensors.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Control of spatially distributed systems has always been a very active research topic with
engineering applications in many areas. Such systems can be mathematically described by
partial differential equations (PDEs). Control action can be based on a dense and regular array of
sensors and actuators. Each sensor and actuator are connected to the system and each sensor and
actuator or cells made from them are connected to a controller. There is an array of controllers
interconnected by a complex network. Each controller collects data from that sensors and computes
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the control action for that actuators which are connected to it. This configuration is called
distributed control.
Applications of distributed control can be found in various fields of the industry, see, e.g.,

[4,23,14,6,13,37]. Concerning two-dimensional (2-D) systems, one of the examples is a multi-
zone crystal growth furnace, described in [1,7]. The furnace is depicted in Fig. 1(a). Block
diagram of the closed-loop system is in Fig. 1(b). The problem consists in control of N zone
temperatures by N energy inputs. The aim is to produce the temperature profile within the
furnace, prescribed by N command signals r1; r2;…; rN .
In the process control, the approach to stabilisation presented in this paper can potentially be

used if the process is described by a linear PDE and it is possible to obtain measurements by
point sensors and to base the control action on point actuators. For instance, this is the case of the
control of spatially distributed profiles. A particular example is the control of the temperature
profile in the furnace or across the wafer in the rapid thermal chemical vapour deposition
process. A heat conduction, diffusion, chemical reactions and other irreversible processes can be
considered.
All systems and processes mentioned in the two last paragraphs are described by a parabolic

PDE, which in the case of one temporal and one spatial variables has the form

d
∂vðt; xÞ
∂t

−c
∂2vðt; xÞ
∂x2

−b
∂vðt; xÞ
∂x

−avðt; xÞ ¼ f ðt; xÞ; ð1Þ

where a; b; c; d are the positive constants, v is a solution and f is the right-hand side. A particular
example of Eq. (1) is a heat equation:

∂vðt; xÞ
∂t

−κ
∂2vðt; xÞ
∂x2

¼ f ðt; xÞ; ð2Þ

where v denotes temperature (1C), f the input heat (1C s−1), t and x denote time (s) and a spatial
coordinate (m), respectively, and κ is a constant (m2 s−1).
Assuming the parameters of the system do not depend on location, the shift invariant

mathematical model can be derived. Then we talk about so-called spatially invariant systems.
In such case, all controllers are identical, so, one can perform a design method once and obtain
all the array of designed controllers. Shift invariance assumes the domain is infinite, i.e., the
boundaries are at infinite distance, what is not realistic. However, this assumption is a reasonable
simplification for the design. Simulations and verification of controllers should follow their
design procedure.

zone zone zone zone zone

controller controller controller controller controller

. . .1 2 3 N − 1 N

r1 r2 r2 rN−1 rN

Fig. 1. (a) A sketch of a multizone crystal growth furnace. (b) Block diagram of the closed-loop system.

P. Augusta, P. Augustová / Journal of the Franklin Institute 350 (2013) 2949–29662950



Author's personal copy

With the above assumption, Eq. (1) can be transformed to the description more suitable for the
control design—the transfer function, whose coefficients are elements of a ring. It turned out
in 1960s and 1970s that this type of systems can be studied within a class of systems whose
coefficients are functions of parameters. The so-called concept of linear systems over rings can
be used. Among the pioneer papers in this area were [34,19,36,20,22,5].

For stability analysis and stabilisation of shift-invariant systems with multiple inputs and
multiple outputs (MIMO systems), the theory elaborated by Lin [25–29] and others [41,42,30]
can also be adopted. A concept of so-called generating polynomials is established there and
problems of stability analysis and stabilisation of multidimensional (n-D) systems are solved.

In the paper we shall concentrate on the linear spatially invariant time-invariant 2-D systems
described by constant coefficient parabolic PDEs. They are modelled by a bivariate spatio-
temporal transfer function in the form of the matrix polynomial fraction. Their stabilisation is
based on the relationship between stability of a bivariate (matrix) polynomial and positiveness of
a related polynomial matrix (e.g., Schur–Cohn matrix) on the unit circle. However, these
conditions are not suitable for control system synthesis, since these matrices are usually bilinear
in coefficients of original matrix polynomials (as well as in parameters of a controller). In the
paper, this is fixed by linearising factorisation or deriving a new, linear, but no longer necessary
condition. Conditions given in the paper lead to use the theory of and computation with positive
polynomials, well described in [8,16].

The developed methods are demonstrated by means of a numerical example. A heat conduc-
tion in a long thin metal rod equipped with an array of temperature sensors and heaters is
considered. It is supposed that heaters are placed in larger distances than sensors, in other words,
there are some nodes without control action. The system is described by matrix polynomial
fraction and a distributed stabilising controller is designed. Numerical simulations are given.

Let Z denote the set of integers, R the set of real numbers, Rðz;wÞ the set of rational functions
in z;w over R, R½z;w� the set of bivariate polynomials in z;w over R, R½w� the ring of
polynomials in w over R, Rm�lðz;wÞ the set of m� l matrices with entries in Rðz;wÞ, Rm�l½z;w�
the set of m� l matrices with entries in R½z;w� and Rm�l½w� the set of m� l matrices with entries
in R½w�. Let an denote the complex conjugate of a and An denote the complex conjugate
transpose of A.

2. Description of a system

A system description suitable for the control design will be proposed. As it was said, the aim is
to base the control on action performed by an array of actuators and sensors. The presence of
such an array naturally implies the discretisation of the original PDE in the spatial variables. Due
to the digital implementation of control, the discretisation with respect to time is also performed.
An explicit difference scheme [38,32] is considered for the discretisation of PDE. We obtain a
discrete shift-invariant 2-D scalar input–output system with both the temporal and the spatial
variables. It can be generally described by a convolution equation [15,21]

y½k1; k2� ¼ ∑
k1

i1 ¼ −∞
∑
∞

i2 ¼ −∞
h½k1−i1; k2−i2�u½i1; i2�; ð3Þ

where k1 is the discrete time variable, k2 is the discrete spatial variable, u and y are doubly
indexed input and output sequences with values in R, respectively, and h is the impulse response
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of the system—a real-valued function defined on the Cartesian product Z� Z, h½k1; k2� ¼ 0 for
all k1o0.
Since we assumed the infinite spatial domain, to obtain a transfer function we can perform

a sequence of two z-transforms: one unilateral, corresponding to the temporal variable and the
other bilateral, corresponding to the spatial variable. The same procedure was also done in [3].
The z-transform of each side of Eq. (3) gives Yðz;wÞ ¼Hðz;wÞUðz;wÞ, where Hðz;wÞ is the
system transfer function defined as [15,21]

Hðz;wÞ ¼ ∑
∞

k1 ¼ 0
∑
∞

k2 ¼ −∞
h½k1; k2�w−k2z−k1 :

From a practical point of view, it is desirable to approximate Hðz;wÞ by a rational function, i.e.,
by the fraction of two polynomials in the variables z and w, w−1. Let

Hðz;wÞ ¼ bðz;wÞ
aðz;wÞ ; a; b∈R½z;w�: ð4Þ

A MIMO system is described by a matrix, P∈Rm�lðz;wÞ,

Pðz;wÞ ¼
H1;1ðz;wÞ ⋯ H1;lðz;wÞ

⋮ ⋯ ⋮
Hm;1ðz;wÞ ⋯ Hm;lðz;wÞ

2
64

3
75; ð5Þ

whose every entry is the rational function of the form (4).
The bivariate rational matrix (5) can be written in the form of the (not necessarily minor

coprime) left and right matrix fraction description (MFD), see, e.g., [25,42]. The left MFD is
defined as

Pðz;wÞ ¼ A−1
L ðz;wÞBLðz;wÞ; ð6Þ

where AL∈Rm�m½z;w� and BL∈Rm�l½z;w�. Similarly, the right MFD is defined as

Pðz;wÞ ¼ BRðz;wÞA−1
R ðz;wÞ: ð7Þ

Following the concept of systems over rings [36,20], the denominator matrix polynomial can be
written in the form

AL½w�ðzÞ ¼ AnðwÞzn þ An−1ðwÞzn−1 þ⋯þ A0ðwÞ; ð8Þ
where

Ak ¼ ∑
q

i ¼ 0
Ak;iw

i þ Ak;−iw
−i; k¼ 0; 1;…; n; ð9Þ

with Ak;i;Ak;−i∈Rm�m. Furthermore, since we considered an explicit difference scheme for the
discretisation, the matrix An;0 is regular and all entries of matrices An;i; i¼ 1;…; q, are equal to
zero. Without loss of generality we consider An;0 ¼ Im and (8) in the form

AL½w�ðzÞ ¼ Imz
n þ An−1ðwÞzn−1 þ⋯þ A0ðwÞ; ð10Þ

where Im denotes the identity matrix of the dimension m. Similarly for AR.
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3. Stability

This section discusses the stability of systems described in the previous section. The classical
definition of the bounded-input bounded-output (BIBO) stability follows, see, e.g., [15].

Definition 1 (BIBO stability). A system (3) is said to be BIBO stable if for all r140 there exists
r240 such that any input sequence u satisfying ju½k1; k2�jor1 for all ½k1; k2�, the corresponding
output satisfies jy½k1; k2�jor2 for all ½k1; k2�. A MIMO system is said to be BIBO stable if its
every sub-component is BIBO stable.

In the n-D systems theory, it is convenient to define so-called structural stability, see, e.g,
[15,25,42].

Definition 2 (Structural stability). A system described by Eq. (4), where a and b are relatively
prime polynomials, is said to be structurally stable if aðz;wÞ≠0 for all fjzj≥1g∩fjwj ¼ 1g. A
MIMO system is said to be structurally stable if every entry of Eq. (5) is structurally stable.

It is well known that the numerator of the transfer function of an n-D system can cause the
BIBO stability in the case the relatively prime numerator and denominator share a common zero
on the stability region boundary, i.e., the transfer function contains a non-essential singularity of
the second kind, see [12,17] for the details. It follows from the above definitions and discussions
in [18,12,17,15], that if a system is structurally stable, it is also BIBO stable.

Stability analysis can be based on so-called generating polynomials [25]. Let F ¼ ½AL BL�,
η¼ ðmþl

l Þ and α1; α2;…; αη denote the η maximal order minors of F, with α1 ¼ detðALÞ. Similarly,
the maximal order minors of a matrix ½AR

BR
� can be defined for the right MFD. The generating

polynomials are defined as follows [25,42].

Definition 3 (Generating polynomials). Extracting the greatest common divisor g(z) of α1;
α2;…; αη gives αiðz;wÞ ¼ gðz;wÞβiðz;wÞ; i¼ 1;…; η. Then β1ðz;wÞ;…; βηðz;wÞ are called
generating polynomials of Fðz;wÞ, and also Pðz;wÞ.

Note that an MFD is minor coprime if αi's have no common factor, see [25] for the details. The
following lemma expresses the stability in the manner of generating polynomials.

Lemma 1 (Lin [25]). A system described by Eq. (6) or (7) is structurally stable if and only if
β1ðz;wÞ≠0 for all fjzj≥1g∩fjwj ¼ 1g.

The condition of Lemma 1 can be checked using a relationship between the stability of a 2-D
polynomial and positiveness of Schur–Cohn matrix on the unit circle, see [35,3]. Due to the
assumption (10), the polynomial β1ðz;wÞ has the form

β1ðz;wÞ ¼ β1nðwÞzn þ β1n−1ðwÞzn−1 þ⋯þ β10ðwÞ; ð11Þ
where β1k ¼∑q

i ¼ 0β1k;iw
i þ β1k;−iw

−i, k ¼ 0; 1;…; n. The Schur–Cohn matrix corresponding to
(11) reads

Sβ1ðwÞ ¼ Sn1S1−S2S
n

2 ; ð12Þ
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where

S1 ¼

β1nðwÞ β1n−1ðwÞ ⋯ β11ðwÞ
0 β1nðwÞ ⋱ β12ðwÞ
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 β1nðwÞ

0
BBBB@

1
CCCCA;

S2 ¼

β10ðwÞ 0 ⋯ 0

β11ðwÞ β10ðwÞ ⋱ 0

⋮ ⋱ ⋱ ⋮
β1n−1ðwÞ β1n−2 ⋯ β10ðwÞ

0
BBBB@

1
CCCCA:

See, e.g., [9,43] for the details. We now propose the following theorem.

Theorem 1. A system described by Eq. (6) or (7) is structurally stable if and only if the Schur–
Cohn matrix corresponding to β1ðz;wÞ is positive definite on the unit circle, i.e.,
Sβ1ðwÞ ≻ 0 ∀jwj ¼ 1.

Proof. It follows from Lemma 1 and [35]. □

Test of positiveness of Sβ1ðwÞ on the unit circle can be performed using the advanced toolset
of linear matrix inequalities (LMI), see, e.g., [40,10,11,8]. The matrix Sβ1 ðwÞ is a pseudo-
polynomial matrix with symmetric expansion in the form

Sβ1 ðwÞ ¼ ∑
2q

i ¼ −2q
Siw

i; S−i ¼ Sni :

Hence, the result stated in [40,10] can be used: The matrix Sβ1ðwÞ is positive definite for all
jwj ¼ 1 if and only if there exists a symmetric matrix M of appropriate dimension such that

ð13Þ

An implementation of this test is easy with the available numerical solvers for LMIs, for instance,
[39,31].
A disadvantage of the method based on Theorem 1 is that it requires computing the deter-

minant of a matrix polynomial, which can be lengthy and numerically ill behaved. In what
follows we show another method which is based on manipulating with coefficients of Eqs. (6)
and (7) and does not require computing the determinant. The rest of this section holds for both
left and right MFDs, therefore, the subscripts L and R are omitted.

P. Augusta, P. Augustová / Journal of the Franklin Institute 350 (2013) 2949–29662954
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Let SAðwÞ ¼ ðsi;jÞ be a matrix of the dimension nm� nm defined as

si;j ¼ ∑
i

k ¼ 1
An

nþk−iAnþk−j−An

j−kAi−k ð14Þ

for i; j¼ 1; 2;…; n, where Ak;i 's are given by Eq. (9). We can formulate the following lemma
based on [2, Theorem 1].

Lemma 2. If SAðwÞ≻0 for all jwj ¼ 1 then detðAÞ≠0 for all fjwj ¼ 1g∪fjzj≥1g.

Proof. This lemma was proven for real matrix polynomials in [2]. Here, the situation is similar.
Let

∑
n

i;j ¼ 1
zn

j−1
si;jz

i−1 ¼ ðjzj2−1Þ−1ðAn½w�ðzÞA½w�ðzÞ−An

I ½w�ðzÞAI½w�ðzÞÞ;

where si;j 's are given by Eq. (14) and AI½w�ðzÞ ¼ A0ðwÞzn þ A1zn−1 þ⋯þ Im. Let ẑ be a root of
detðA½w�ðzÞÞ, i.e., detðA½w�ðẑÞÞ ¼ 0, and let a non-zero m� 1 complex vector x½w�ðẑÞ be such that
A½w�ðẑÞx½w�ðẑÞ ¼ 0. By hypothesis,

−xn½w�ðẑÞðjẑj2−1Þ−1ðAn

I ½w�ðẑÞAI½w�ðẑÞÞx½w�ðẑÞ40:

Hence, ðjẑj2−1Þo0. This implies that all the roots of detðA½w�ðzÞÞ lie in fjzjo1g. □
Now, we can complete the following theorem.

Theorem 2. A system described by (not necessarily coprime) Eq. (6) or (7) is (structurally)
stable if SAðwÞ≻0 for all jwj ¼ 1.

Proof. It follows from Definition 2 and Lemma 2. □
Like in Theorem 1, the positiveness of SA(w) on the unit circle can be checked using (13). In

contrast to Theorem 1, the above condition is sufficient, not necessary, however, does not require
to compute the determinant. A simple example follows.

Example 1. Consider a 2-D matrix polynomial

A¼
zþ 0:1ðwþ w−1Þ þ 0:3 0:2ðwþ w−1Þ

0:2ðwþ w−1Þ zþ 0:3ðwþ w−1Þ

 !
: ð15Þ

The matrix SðwÞ ¼ si;j is

s1;1 ¼−0:05ðw2 þ w−2Þ−0:06ðwþ w−1Þ þ 0:81

s1;2 ¼ s2;1 ¼ −0:08ðw2 þ w−2Þ−0:06ðwþ w−1Þ−0:16
s2;2 ¼−0:13ðw2 þ w−2Þ þ 0:74

P. Augusta, P. Augustová / Journal of the Franklin Institute 350 (2013) 2949–2966 2955
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and Eq. (13) has the form

One can make sure that there exists a matrix M such that the above LMI holds. Hence, detðAÞ≠0
for all fjwj ¼ 1g∪fjzj≥1g and the system with the denominator (15) is structurally stable.

The sufficient and necessary condition which does not require to compute the determinant is
more complicated. It could be formulated as an extension of [9, Theorem 1.1] to 2-D matrix
polynomials. However, constructing of a reflection of a matrix polynomial, which is required
there, is not simple in 1-D case more to 2-D case.

4. Stabilisation

The classical control scheme of Fig. 2 is considered. A system P¼ A−1
L BL∈Rm�lðz;wÞ is

feedback stabilisable if and only if there exists a controller R¼ YRX−1
R ∈Rl�mðz;wÞ such that

ALXR þ BLYR ¼ CL ð16Þ
is a stable matrix polynomial. A system P¼ BRA

−1
R ∈Rm�lðz;wÞ is feedback stabilisable if and

only if there exists a controller R¼ X−1
L YL∈Rl�mðz;wÞ such that

XLAR þ YLBR ¼ CR ð17Þ
is a stable matrix polynomial. In the manner of generating polynomials, the stabilisation of P can
be expressed by the following lemma, see [26, p. 158].

Lemma 3. A system P¼ A−1
L BL is feedback stabilisable if and only if there exists a controller R

such that

∑
η

i ¼ 1
β1iβ2i ¼ c ð18Þ

is stable polynomial, where β21;…; β2η denote the generating polynomials of ½XR
YR
�.

An analogous lemma holds for P¼ BRA
−1
R . One make sure that all the polynomials β1i are of

the form (11). Without loss of generality, we can consider polynomials β2i in the form (11) too.

uv +

−

y
R P

Fig. 2. Standard feedback configuration.
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Then cðz;wÞ is also in the form (11), i.e.,

cðz;wÞ ¼ ∑
n̂

k ¼ 0
∑
q̂

i ¼ 0
ðck;iwi þ ck;−iw

−iÞzk: ð19Þ

Since an explicit difference scheme was considered for discretisation, we further assume cn̂;0≠0
and cn̂ ;i ¼ 0; i¼ 1;…; q̂. Without loss of generality we consider cn̂;0 ¼ 1 and Eq. (19) in the form

cðz;wÞ ¼ zn̂ þ cn̂−1ðwÞzn̂−1 þ⋯þ c0ðwÞ: ð20Þ
Now, we can formulate the following theorem.

Theorem 3. A system P is feedback stabilisable if and only if there exists a controller R such
that the Schur–Cohn matrix (12) corresponding to Eq. (18) is positive definite on the unit circle,
i.e., ScðwÞ≻0 ∀jwj ¼ 1.

Proof. It follows from Lemma 3 and Theorem 1.

Since Sc(w) is a pseudo-polynomial matrix with symmetric expansion, its positiveness can be
checked using Eq. (13).

A condition of stabilisability can also be based on Theorem 2. In what follows, the subscripts
L and R are omitted in the case no matter whether the left or right fraction is used. We consider C
in the form Cðz;wÞ ¼ C ~nz ~n þ C ~n−1ðwÞz ~n−1 þ⋯þ C0ðwÞ with

Ck ¼ ∑
~q

l ¼ 0
Ck;iw

i þ Ck;−iw
−i; k¼ 0; 1;…; ~n−1; ð21Þ

where Ck;i;Ck;−i∈R ~q� ~q . Since an explicit difference scheme was considered, we assume that C ~n;0

is regular and all entries of C ~n;i; i¼ 1;…; ~m, are equal to zero. Without loss of generality we
consider C ~n;0 ¼ I ~m and

Cðz;wÞ ¼ I ~mz
~n þ C ~n−1ðwÞz ~n−1 þ⋯þ C0ðwÞ; ð22Þ

where I ~m denotes the identity matrix of the dimension ~m. Let SCðwÞ ¼ ðsi;jÞ be a matrix defined as

si;j ¼ ∑
i

k ¼ 1
Cn

~nþk−iC ~nþk−j−Cn

j−kCi−k; i; j¼ 1; 2;…; ~n; ð23Þ

where Ck;i's are given by Eq. (21). The following theorem holds.

Theorem 4. A system (6) is feedback stabilisable if there exists such a controller R that the
matrix (23) corresponding to Eq. (16) is positive definite, i.e., SCLðwÞ≻0 ∀jwj ¼ 1. A system (7) is
feedback stabilisable if there exists such a controller R that the matrix (23) corresponding to
Eq. (17) is positive definite, i.e., SCR ðwÞ≻0, for all jwj ¼ 1.

Proof. It follows immediately from Theorem 2. □

Since SCL ðwÞ and SCRðwÞ are the pseudo-polynomial matrices with symmetric expansion,
Eq. (13) can be used to check their positiveness.

5. Controller design

The controller design consists in finding such parameters that the condition given in Theorem 3
or Theorem 4 is satisfied. The coefficients of a (matrix) polynomials are unknown and are subject
of design. Since neither the matrix Sc(w) in Theorem 3 nor the matrices SCL ðwÞ and SCR ðwÞ in
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Theorem 4 is linear in parameters of a controller, methods based on LMIs as presented in the
previous sections cannot be used to design directly. We have to establish an equivalence of stability
of a 2-D matrix polynomial and positiveness of a symmetric polynomial matrix whose all entries
depend linearly on the coefficients of a polynomial matrix. We concentrate on scalar and matrix
case separately.

5.1. Scalar case

The condition given in Theorem 3 is scalar. We will show latter that linearisation of Sc(w) does
not suffice to obtain a linear criterion in the controller parameters, because coefficients of the
polynomial c(w) are non-linear by themselves. However, what follows can be useful in the
case when a controller has a special structure (which leads to c(w) with linear coefficients).
For systems of first order in the variable z (order in w can be arbitrary), the following condition
was shown in [3].

Lemma 4 (Augusta and Hurák [3, Theorem 3]). A polynomial (20) with n̂ ¼ 1 is stable if and
only if

1 c0

cn0 1

 !
≻0: ð24Þ

The sufficient and necessary conditions for stabilisation of systems of a general order n̂ cannot
be derived in the form of an LMI due to a non-convexity of the set of parameters of stabilising
controllers. One can deal with this by use of a non-convex optimisation or relaxation. Another
possibility is to derive a condition in the form of an LMI, which is, however, no longer necessary.
We do this, based on the famous Schur conditions, see, e.g., [43]. Let

ΦkðwÞ ¼

c ~nðwÞ c ~n−1ðwÞ ⋯ c ~n−kþ1ðwÞ
0 c ~nðwÞ ⋱ c ~n−kþ2ðwÞ
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 c ~nðwÞ

0
BBBB@

1
CCCCA;

Ψ kðwÞ ¼

c0ðwÞ 0 ⋯ 0

c1ðwÞ c0ðwÞ ⋱ 0

⋮ ⋱ ⋱ ⋮
ck−1ðwÞ ck−2 ⋯ c0ðwÞ

0
BBBB@

1
CCCCA;

for k ¼ 1;…; ~n. Let δkðwÞ ¼ ðΦk
Ψn

k

Ψ k
Φn

k
Þ. The Schur conditions state that a polynomial c of the form

(20) is stable if and only if det δk40, k¼ 1;…; ~n, ∀jwj ¼ 1. More strict and not necessary, but
linear in the coefficients of c, conditions are given in the following lemma.

Lemma 5. A polynomial (20) is stable if δkðwÞ≻0 ∀jwj ¼ 1, k ¼ 1;…; ~n.

Proof. It follows from the Schur conditions and the fact that the determinant of a positive
definite matrix is always positive. □

Note that Lemma 4 is a special case of Lemma 5 for ~n ¼ 1. The matrices δk are generally non-
symmetric, so, we can use to check their positiveness the condition that δk≻0 if and only if its
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Hermitian part 1
2 ðδk þ δnk Þ≻0. Their direct sum

ΔðwÞ ¼ ⊕
~n

k ¼ 1

1
2
ðδk þ δnk Þ ð25Þ

is the pseudo-polynomial matrix with symmetric expansion, hence, results of [40,10] can be used
to control design as follows.

Theorem 5. A system P is feedback stabilisable by a controller R if there exists a matrix M of an
appropriate dimension that

ð26Þ

holds, where Δ corresponds to Eq. (18) and is given by Eq. (25). For structure stabilisation with
~n ¼ 1 is the above condition sufficient and necessary.

Proof. It follows from Theorem 3 and Lemmata 4 and 5. □

5.2. Matrix case

The condition in Theorem 4 is in the form of a matrix inequality. Consider the case ~n ¼ 1. The
matrix polynomial C has the form Cðz;wÞ ¼ I ~qzþ C0ðwÞ. The corresponding matrix SC can be
written as

SCðwÞ ¼ I ~q−Cn

0C0: ð27Þ
The following lemma holds.

Lemma 6. The matrix polynomial (27) is positive definite for all jwj ¼ 1 if and only if

~SðwÞ ¼
I ~q C0

Cn
0 I ~q

 !
ð28Þ

is positive definite for all jwj ¼ 1.

Proof. S(w) is the Schur complement of ~SðwÞ. Since I ~q≻0, ~SðwÞ≻0 if and only if SðwÞ≻0. See,
e.g., [43, Theorem 1.12] for the details. □

We obtained the condition as an LMI. The matrix (28) is a pseudo-polynomial matrix with
symmetric expansion

~SðwÞ ¼ ∑
2 ~m

i ¼ −2 ~m
~Siw

i; ~S−i ¼ ~S
n

i : ð29Þ
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So, the result of [40,10] can be used to control design as follows. Let

ð30Þ

where ~SðwÞ is given by Eqs. (28) and (29). The following theorem holds.

Theorem 6. A plant of first order in the time variable described by Pðz;wÞ ¼ A−1
L BL is

stabilisable by a controller RRðz;wÞ ¼ YRX−1
R if ALXR þ BLYR ¼ CL is such a matrix polynomial

that there exists a symmetric matrix M of an appropriate dimension such that Eq. (30) holds.
A plant of first order in the time variable described by Pðz;wÞ ¼ BRA

−1
R is stabilisable by a

controller RLðz;wÞ ¼ X−1
L YL if XLAR þ YLBR ¼ CR is such a matrix polynomial that there exists

a symmetric matrix M of an appropriate dimension such that Eq. (30) holds.

Proof. It follows from Lemma 6 and [40,10]. □

For ~n41, it is possible to impose conditions of stability on the ∞�norm of a matrix
constructed from the coefficient matrices. This technique was proposed for 1-D systems in [33].
One can make sure that it is not difficult to rewrite the below criterion to the form of an LMI.

Lemma 7 (Ngo and Erickson [33, Theorem 2]). For the matrix polynomial (22) we define a
matrix V as

VðwÞ ¼ ðC0 C1 ⋯ C ~n−1Þ: ð31Þ

If ∥V∥∞o1 for all jwj ¼ 1, then detðCÞ≠0 for all fjwj ¼ 1g∪fjzj≥1g.

Proof. It follows from [33, Theorem 2]. □

5.3. An example

We consider four methods mentioned in the above text and plot the corresponding stability
regions in terms of coefficients of matrix polynomials. It is the best way to see that some criteria
presented in this paper are sufficient only.
Let a system be described by the left MFD (6) with

AL ¼
zþ 2 1

1 zþ 3

 !
; BL ¼

1 0

0 1

� �
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and a controller by R¼ YRX−1
R , with

XR ¼ 1 0

0 1

� �
; YR ¼

y1ðwÞ y2ðwÞ
y2ðwÞ y1ðwÞ þ y2ðwÞ

 !
;

where y1ðwÞ and y2ðwÞ are scalar polynomials of w and yn2ðwÞ ¼ y2ðwÞ. The question is which
values y1ðwÞ and y2ðwÞ can reach (for all jwj ¼ 1) so that closed-loop system is stable. We find
these values by four different methods. The closed-loop matrix polynomial C(w) is

CðwÞ ¼
zþ y1ðwÞ þ 2 y2ðwÞ þ 1

y2ðwÞ þ 1 zþ y1ðwÞ þ y2ðwÞ þ 3

 !
:

1. Computing determinant of C and its roots gets stability criterion in the form of two non-linear
inequalities—absolute values of the root has to be smaller than 1 for all jwj ¼ 1 for a system to
be stable. The values of y1ðwÞ and y2ðwÞ satisfying this are depicted in Fig. 3a.

2. Using Theorem 3 and Lemma 5 gets conditions

1 ξ

ξ 1

 !
≻0;

1 2y1 þ y2 þ 5 ξ 0

0 1 2y1 þ y2 þ 5 ξ

ξ 2y1 þ y2 þ 5 1 0

0 ξ 2y1 þ y2 þ 5 1

0
BBBB@

1
CCCCA≻0;

where ξ¼ y21 þ y1y2 þ 5y1−y22 þ 5. The above conditions are bilinear, because coefficients of
corresponding generating polynomials are also bilinear, in particular, β24 ¼ y21 þ y1y2−y22.
Values of y1ðwÞ and y2ðwÞ satisfying this are depicted in Fig. 3a.

3. Using Theorem 4 and Lemma 6 gives the matrix (28) in the form

1 0 y1 þ 2 y2 þ 1

0 1 y2 þ 1 y1 þ y2 þ 3

y1 þ 2 y2 þ 1 1 0

y2 þ 1 y1 þ y2 þ 3 0 1

0
BBBB@

1
CCCCA:

It is positive definite for values depicted in Fig. 3a. We obtained the same result as with the
previous methods, however, this one is sufficient only and, in general, gives more strict
conditions than previous ones.

y1(w) y1(w)

y2(w) y2(w)
−1−2−3

−1

−2

−1−2−3

−1

−2

Fig. 3. An example: Real area of stability, given by methods 1—3 (a), stability area using the method 4 (b).
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4. Using Theorem 4 and Lemma 7 gives the matrix (31) in the form

V ¼
y1 þ 2 y2 þ 1

y2 þ 1 y1 þ y2 þ 3

 !

and leads to inequality maxðjy1 þ 2j þ jy2 þ 1j; jy2 þ 1j þ jy1 þ y2 þ 3jÞo1. It is satisfied
for values depicted in Fig. 3b. Now, the result is different from the previous cases. Obtained
conditions are more strict than previous ones.

6. An example: A heat conduction in a rod

In this section, the above described concept will be demonstrated by means of a numerical
example. A distributed controller for a heat conduction in a long thin metal rod will be designed.
The system is equipped with an array of temperature sensors and heaters and is sketched
in Fig. 4.

6.1. Model of the system

The model was derived in [3]. The system is described by the heat equation (2). Using finite
difference methods [38], partial derivatives are approximated by differences and Eq. (2) is trans-
formed to the partial recurrence equation

vkþ1;i ¼
Tκ

h2
vk;i−1 þ 1−2

Tκ

h2

� �
vk;i þ

Tκ

h2
vk;iþ1 þ qk;i; ð32Þ

where T40 is the sampling (time) period and h40 denotes the distance between the nodes along
the rod, k corresponds to discrete time and i to the coordinate of the node and, for simplicity,
qk;i ¼ Tf k;i.
The model (32) must give a sufficiently accurate approximation to the original model. A

standard tool to analyse this is the von Neumann's analysis of the numerical stability [38], which
gives a relation between T and h to guarantee the convergence, and which was performed on (32)
in [3]. The two z-transforms of Eq. (32) give the transfer function

Gðz;wÞ ¼ 1

zþ 2Tκ
h2
−1

� �
−Tκ

h2
ðwþ w−1Þ

with input heat as the input and temperature as the output. The variable z corresponds to time
delay and the variable w corresponds to a shift along the spatial coordinate axes, κ ¼ ϰ=ρcp,

Fig. 4. Distributed control of a distributed parameter system: a rod with an array of heaters and temperature sensors and a
distributed controller (an array of controllers) [3].
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where ϰ is the thermal conductivity (W m−1 K−1), ρ is the density (kg m−3) and cp is the heat
capacity per unit mass (J K−1 kg−1). Reasonable values are ϰ¼ 230, ρ¼ 2700 and cp¼900.

In contrast to [3], we suppose that heaters are placed in larger distances than sensors, i.e., there
are some nodes without control action. Let the distance between heaters be three nodes, while
sensors be placed at all nodes. In other words, let sensors and heaters make cells. Every cell
contains three (neighbouring) sensors and one heater placed at the same node as the middle
sensor. The system is then built from many cells placed side by side. Such the system can be
described by Eq. (6) or (7) of size m¼3. In particular, let Pðz;wÞ ¼ A−1B, where

A¼
zþ 2 Tκ

h2
−1 − Tκ

h2
− Tκ

h2
w−1

− Tκ
h2

zþ 2 Tκ
h2
−1 − Tκ

h2

− Tκ
h2
w − Tκ

h2
zþ 2 Tκ

h2
−1

0
BB@

1
CCA; B¼

0

1

0

0
B@

1
CA:

The temperature (1C) and the input heat (1C s−1) are considered to be the output and the input,
respectively. For the numerical example we consider h¼ 1=59 m and T¼10 ms.

6.2. A controller design

Let a controller be described by Rðz;wÞ ¼ YX−1. The closed-loop characteristic matrix
polynomial is then Cðz;wÞ ¼ AX þ BY . The plant is of order n¼1. Extending the well-known
results on solvability of a Diophantine equation in the 1-D setting [24], the closed-loop polynomial
has to be of degree 2n−1 or greater in the variable z to guarantee that a controller will be physically
realisable. Hence, we put ~n ¼ 1. Let the order of a controller be zero and

Rðz;wÞ ¼ YX−1; X ¼
1 0 0

0 1 0

0 0 1

0
B@

1
CA; Y ¼ ðy1 y2 y1Þ; ð33Þ

where y1 and y2 are considered to be real constants for simplicity.

6.2.1. Generating polynomials approach
With Eq. (33) we get Eq. (18) in the form cðwÞ ¼ z3 þ ðy2−3Þz2þð3þ 0:0066y1−2y2Þzþ

1� 10−5ðwþ w−1Þy1−3:6� 10−8ðwþ w−1Þ þ y2−0:0065y1−1, where all coefficients are linear
in controller parameters. Hence, it is possible to use Theorem 5. One can make sure that a matrix
M in Eq. (26) exists, so, a stabilising controller (33) exists too. An algorithm implemented in
Yalmip/SeDuMi returns Y ¼ ð170 2 170Þ.

6.2.2. Positive polynomials approach
With Eq. (33) we get closed-loop polynomial in the form

C¼
zþ 2 Tκ

h2
−1 − Tκ

h2
− Tκ

h2
w−1

− Tκ
h2
þ y1 zþ 2 Tκ

h2
−1þ y2 − Tκ

h2
þ y1

− Tκ
h2
w − Tκ

h2
zþ 2 Tκ

h2
−1

0
BB@

1
CCA:

Since its leading coefficient is equal to identity matrix, it is possible to use Theorem 6 directly.
We make sure that a matrix M in Eq. (30) exists, so, a stabilising controller (33) exists too. An
algorithm implemented in Yalmip/SeDuMi returns Y ¼ ð0:06 0:93 0:06Þ.
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6.3. Simulations

The aim of simulations is to make sure that closed-loop systems with controllers designed in
the previous subsection are stable. We consider a rod of length 1 m with 59 nodes with zero
boundary conditions and initial conditions given by Fig. 5a. Fig. 5b shows the response of the
system with no controller. The responses of the closed-loop systems with controllers are shown
in Fig. 6a, b. Both closed-loop systems are stable and the temperature goes to the origin. In
Fig. 6b, one can see that temperature at nodes with control goes rapidly down, while the response
is slower at nodes without control, but it is faster than response of the uncontrolled system.

7. Conclusions

The paper presented new results in the stability analysis and stabilisation of spatially invariant
systems with multiple inputs and multiple outputs. Proposed methods are based on an LMI
condition on positiveness of a polynomial matrix on the unit circle. The main restriction of this
technique comes from a non-convexity of the set of matrix polynomial coefficients. In the paper
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Fig. 5. Initial conditions (a), response to the initial conditions of the uncontrolled system (b).
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Fig. 6. Output of the closed-loop system with the controller obtained via generating polynomials (a), and via positive
polynomials approach (b).
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it was shown that there exists a linearising factorisation, which can remove this restriction, but it
is available for systems of order one in the time variable only. However, the numerical example
shows that a physically motivated problem can be solved realistically. For systems of higher
order, other, linear in controller parameters, but more conservative, conditions were given.
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