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Abstract

The application of the functional derivatives to the mathematical modeling of complex systems is studied
here. The connection of functional derivatives with total differentials in Banach spaces is shown. Local and
global existence theorems for the linear equations in total differentials are proved. Consequently, a total
integrability conditions are derived for the case of linear equations with the functional derivatives. Some
illustrative examples are included.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The theory of the equations in total differentials in Banach spaces has a long history and this
theory occupies a visible place in nearly any textbook devoted to the theory of differential
equations (see, e.g., [1–4]). On the contrary, the theory of the equations with functional
derivatives is greatly deficient though the application area of that kind of equations is quite
broad. Let us mention the area of quantum field theory (e.g., [5–7]), the statistical theory of
turbulence (e.g., [8–11]), the area of chemical kinetics (e.g., [12,13]), last but not least, the area
of mechanical engineering and numerical mathematics, see, e.g., [14].
Very likely, the reason of the above-mentioned contradiction is that the theory of the equations

in total differentials takes independent variables mainly from the n-dimensional Euclidean vector
space while the theory of the equations with functional derivatives takes independent variables
from functional spaces, making a subsequent analysis incredibly difficult. In fact, only few
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general results were published for the case of rather narrow classes of equations with functional
derivatives (see, e.g., [15–18]). The rest of results deals with entirely individualistic types of the
equations. The solutions of equations with functional derivatives are sought very often by “trial-
and-error” method or some procedures, like the separation of variables or the theory of
characteristics. These procedures stem from the theory of ODEs or PDEs.

The functional derivatives have their own remarkable significance relevant to various areas of
science and engineering. Let us mention just two of them.

First, the sensitivity theory deals usually with a response of the system solutions to
local changes of some parameter(s). The functional derivatives approach allows one to
study the sensitivity of the system with respect to whole classes of functions. An application to
the reliability analysis can be found in, e.g., [14,19], and the literature cited within
there.

Second, the functional derivatives approach lies in the background of a very useful
area, namely, in the background of the so-called density functional theory (DFT). DFT has its
origin already in, e.g., [10,11], and the literature quoted within there. It is worth to mention also
the following classical source that covers different topics in the statistical mechanics
of non-uniform, classical fluids [20]. Today, the DFT has a very broad applications in particle
theory, chemical kinetics, quantum chemistry, etc. In the DFT, the functional derivatives
form a base when using a variational approach to evaluate the ground state density in multi-
particles quantum systems and molecular dynamics. One of the common approaches uses the
Kohn–Sham equations facilitating directly the practical calculations. During the recent decades,
several DFT theories were developed and adapted to different problems of the multi-particles'
theories, see, e.g., [21,22]. The application area is very broad today, see, e.g., [23–28]. The DFT
has been also expanded from the stationary case to the time-dependent DFT, as one can found in,
e.g., [29,30].

We concentrate ourself to the case of the linear equations with total differentials because the
subsequent applications of this linear case is sufficient for our applications. Local and global
existence results for the equations in total differentials defined on general Banach spaces will be
derived thereby implying the results for the case of the equations with functional derivatives.
Finally, the procedure and conditions of derivation of the functional derivatives will be described
based on the concept of total differentials.

The rest of the paper is organized as follows. Basic definitions are summarized in Section 2,
while Section 3 contains the main results of the paper being the existence results for the
equations in total differentials defined on general Banach spaces. Section 4 demonstrates the
above-mentioned procedure and conditions for the case of equations with functional derivatives
and conditions are shown under which that equations are equivalent to the equations in total
differentials. Section 5 gives illustrative examples, while the final section draws some
conclusions and gives some outlooks for the future research.
2. Preliminaries

Let us first recall some necessary definitions and facts [31–33]. We suppose that all
Banach spaces introduced later on are separable when needed. Let E be a real Banach space and
F be a real or complex Banach space. Further, LðE;FÞ stands for the Banach space of
linear bounded mappings with the norm ∥A∥¼ sup∥x∥ ¼ 1∥Ax∥ and suppose that U⊂E is an
open set.
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Definition 1. A mapping f : U-F is called Frèchet differentiable at the point x∈U if there
exists a linear bounded operator Ax∈LðE;FÞ such that

lim
Δx-0

∥f ðxþ ΔxÞ−f ðxÞ−AxΔx∥
∥Δx∥

¼ 0:

The operator Ax is called as the total differential or Frèchet differential at the point x∈U. We will
denote it as f ′ðxÞ.
Let the function f be differentiable at all points of the set U, then the mapping f ′ : U-LðE;FÞ
is defined. Let the mapping f ′ be continuous, then the function f is called as continuously
differentiable on U, or, as of class C1. Further, assume that the mapping f ′ is differentiable
on U, then there exists a mapping (the second differential) f ″¼ ðf ′Þ′ : U-LðE; LðE;FÞÞ. The
space LðE; LðE;FÞÞ is naturally identified with the space L2ðE;FÞ of bilinear mappings
E � E-F.
Consider a pair of Banach spaces E1 and E2 and a mapping f : E1 � E2-F. The partial

differentials are defined as the differentials of the mappings x1-f ðx1; x2Þ and x2-f ðx1; x2Þ.
Further consider a functional F : CðDÞ-R, where C(D) is the space of continuous functions,
D⊂R being the domain of their definition. Suppose this functional is Gateaux differentiable at
some point x0∈CðDÞ along h∈CðDÞ, i.e., its Gateaux derivative

δF ðx0; hÞ ¼ lim
ϵ-0

F ðx0 þ ϵhÞ−F ðx0Þ
ϵ

exists and it is a continuous linear functional on C(D). Moreover, as a consequence of the Riesz
representation theorem there exists a regular countably additive measure μf ;x0 defined on the
algebra of closed subsets of D such that

δF ðx0; hÞ ¼
Z
D
hðtÞ dμf ;x0 ;

where 0oϵ∈R.

Definition 2. Suppose

δF ðx0; hÞ ¼
Z
D
ψF ðx0; tÞhðtÞ dt;

where the function t-ψF ðx0; tÞ is at least integrable on D. The function ψF ðx0; tÞ is called as the
functional derivative of functional F at the point x0∈CðDÞ and it is denoted as

δF ðx0Þ
δxðtÞ :

Definition 3. Suppose U ¼U � V⊂E � F is an open set in E � F and g : U-LðE;FÞ is a
continuous mapping. Differential equation

y′¼ gðx; yÞ ð1Þ
defines the equation in total differentials for a Frèchet differentiable function y with respect to the
independent variable x.

As already noted, let us further restrict ourselves to the case of linear equations, i.e., the
function y-gðx; yÞ is affine for all x∈U. This means that Eq. (1) becomes

y′¼ BðxÞyþ f ðxÞ; ð2Þ
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where B : U-LðF; LðE;FÞÞ is continuous function, the function f maps U into LðE;FÞ. We
suppose that V¼F. The spaces LðF; LðE;FÞÞ and LðE; LðF;FÞÞ can be mutually identified and
each operator B∈LðF; LðE;FÞÞ can be identified with an operator A∈LðE; LðF;FÞÞ by the rule
Byh¼Ahy for every h∈E and y∈F. Then, the mapping B-A defines an isomorphism between
Banach spaces LðF; LðE;FÞÞ and LðE; LðF;FÞÞ, moreover, Eq. (2) can be re-written as follows:

y′h¼ AðxÞhyþ f ðxÞh ∀h∈E: ð3Þ

Definition 4. A solution of Eq. (3) is any single-valued function y : Q-F of the class C1, which
is defined on the open set Q⊂U and satisfies the equation y′ðxÞh¼ AðxÞhyðxÞ þ f ðxÞh; h∈E for
every x∈Q.

Definition 5. Eq. (3) is said to be totally integrable or totally solvable on the open set U⊂E, if
for arbitrary point ðx0; y0Þ∈U � F there exists a unique solution y of Eq. (3) which is defined in
some neighborhood Q of the point x0 and satisfies the initial condition

yðx0Þ ¼ y0: ð4Þ
Definition 6. Let C∈L2ðE;FÞ be an arbitrary bilinear operator. The operation of taking the
skewed symmetric part of the bilinear operator C is defined as follows:

⋀Chk ¼ 1
2ðChk−CkhÞ ∀h; k∈E: ð5Þ

Definition 7. Let L be an arbitrary two-dimensional space in E and let Sðx0; δh; δkÞ be the
triangle in ðx0 þ LÞ∩U with vertices x0; x0 þ δh; x0 þ δk, where h; k∈L, and with the boundary

Γ ¼ x0 ðx0 þ δhÞ ðx0 þ δhÞ ðx0 þ δkÞ ðx0 þ δkÞ x0 :
The curl of a function A at the point x0∈U is a bilinear operator curl Aðx0Þ : E2-LðE;FÞ such
that

curl Aðx0Þhk¼ lim
δ-þ0

1

δ2

Z
Γ
AðsÞ ds ð6Þ

uniformly for arbitrary h; k∈bð0; 1Þ∩L, where bð0; 1Þ is the unit ball in E.

Note that if the curl exists, then it is uniquely defined and the operator curl Aðx0Þ is skew
symmetric.

In the next section, we will need two lemmas (see [31, pp. 170–174]). To formulate these
lemmas, let us first introduce some notation. On an oriented closed curve Γ consider the ordering
determined by the orientation of p points x1;…; xp. Further, connect these points to a point x0
outside Γ or on Γ by means of curves li ¼ x0xi ∀ i¼ 1;…; p. The expression l−1i ¼ xix0 stands for
the curve reciprocal to li. The curves li; liþ1; i¼ 0; 1; 2;…;modðpÞ and the arc xi; xiþ1 of Γ form
a closed curve Γi, which can be described as the sequence x0xixiþ1x0 from x0 to x0. Then (setting
TΓi ¼ Ti;PΓi ¼ Pi and Tli ¼ Ti)

TΓ ¼ TlTp…TlTl−1 :

When Ti ¼ I þ Pi is introduced, then for PΓ ¼ TΓ−I one obtains the expansion

PΓ ¼ Tl ∑
p

i ¼ 1
Si

� �
Tl−1 ;
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where Si ¼∑Pj1…Pji is taken over all combinations p≥j1≥⋯≥ji≥1. As the products of the
transformations P are in general not commutative the factors in the individual terms of this sum
must be taken in the indicated order.

Lemma 1. Suppose the operator A(x) is continuous in domain U and for each point x0∈U and
for each fixed plane L⊂E such that x0∈L it holds

lim
Sðx;h;kÞ-x0

PΓ

Δðx; h; kÞ ¼ 0:

Here, the triangle Sðx; h; kÞ ¼ Sðx1; x2; x3Þ with boundary Γ in L is meant to converge regularly to
x0∈S while Δ¼Dhk; h¼ x2−x1; k¼ x3−x1 denotes the real fundamental form of the plane S⊂L
so that Δ represents the oriented area of the triangle. Then the integrability condition PΓ ¼ 0
holds for every closed, piecewise regular curve in the region U.

Lemma 2. Suppose the operator A(x) is differentiable at the point x0. Further suppose
S¼ Sðx1; x2; x3Þ is a triangle with a boundary Γ in a neighborhood containing the point x0, δ is
the greatest side length. Then

PΓ ¼ Rðx0Þhk þ oðδ2Þ ¼⋀ A′ðx0Þhk−Aðx0ÞhAðx0Þkð Þ þ oðδ2Þ:
Here, for the sake of brevity we put h¼ x2−x1; k¼ x3−x1.

3. Linear equations in total differentials

In this section, we prove the local existence theory for the homogenous equation (3), i.e., when
function f ðxÞ ¼ 0. The non-homogenous case will follow as its consequence. After that, we will
prove the global existence theorem. First, we formulate the following local existence theorem:

Theorem 1. Let U⊂E be an open set and suppose the function A is differentiable in U. Then the
equation

y′h¼ AðxÞhy; h∈E ð7Þ
is totally integrable in U if and only if the function A(x) has the curl at each point x∈U and the
equality

curl AðxÞhk−⋀AðxÞhAðxÞk¼ 0 ∀h; k∈E ð8Þ
holds at each point x∈U.

Proof. ð⟹). Let x0∈U, let L be an arbitrary two-dimensional set in E and h; k∈bð0; 1Þ∩L. Then,
obviously, for δ40 small enough, the triangle Sðx0; δh; δkÞ lies inside ðx0 þ LÞ∩U and the
function A is (due to its continuity) bounded in some closed ball bðx0; ρx0 Þ⊂U, which contains the
triangle Sðx0; δh; δkÞ. Let on the boundary

Γ0 ¼ x0ðx0 þ δhÞðx0 þ δkÞx0
of the triangle S0ðx0; δh; δkÞ it holds

PΓ0y0 ¼
Z
Γ0

AðvÞ dv z½v�;

where z is the solution of Eq. (7) along the curve Γ0 with the initial condition z½x0� ¼ y0; y0∈F.
As the function A(x) is differentiable at the point x0∈U, one can write AðxÞ ¼
Aðx0Þ þ A′ðx0Þðx−x0Þ þ oð∥x−x0∥Þ. Moreover, as z½v� ¼ y0 þ Aðx0Þðv−x0Þy0 þ oðδÞy0 with
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arbitrary y0,

PΓ0 ¼
Z
Γ0

AðvÞ dvþ
Z
Γ0

Aðx0Þ dv Aðx0Þðv−x0Þ þ
Z
Γ0

½AðvÞ−Aðx0Þ� dv Aðx0Þðv−x0Þ þ oðδ2Þ

¼
Z
Γ0

AðvÞ dv−⋀Aðx0ÞhAðx0Þkδ2 þ oðδ2Þ: ð9Þ

where δ¼ ∥x−x0∥. Now, using Lemma 1, we have

0¼ lim
δ-þ0

PΓ0

Δðx0; δh; δkÞ
¼ lim

δ-þ0

PΓ0

δ2
¼ lim

δ-þ0

1

δ2

Z
Γ0

AðvÞ dv−⋀Aðx0ÞhAðx0Þk
� �

;

which implies that the function A has the curl at the point x0 and Eq. (8) is granted.
ð⇐). Let x0∈U be an arbitrary point and let ρx040 be a real number such that the ball bðx0; ρx0 Þ

lies entirely inside U including its closure bðx0; ρx0Þ and let the function A is bounded on
bðx0; ρx0 Þ (A is differentiable thus continuous on a closed set). Let L⊂E be an arbitrary two-
dimensional space and let the set of triangles Sðx; h; kÞ converges to the point x0 in ðx0 þ
LÞ∩bðx0; ρx0Þ assuming that the point x0 lies inside each triangle of the set Sðx; h; kÞ. As

PΓ ¼
Z
Γ
AðvÞ dv−⋀Aðx0ÞhAðx0Þk þ oðδ2Þ;

where Γ ¼ xðxþ hÞðxþ kÞx, then using of Eq. (8) and of Lemma 2, one gets

lim
Sðx;h;kÞ-x0

PΓ

δ2
¼ lim

Sðx;h;kÞ-x0

1

δ2

Z
Γ
AðvÞ dv−curl Aðx0Þhk

� �
¼ 0;

which, due to Lemma 1, implies the total integrability of Eq. (7). □

The non-homogenous case is solved in the following theorem.

Theorem 2. Let U⊂E be an open set and suppose the functions AðxÞ; BðxÞ∈C1ðUÞ. Then the
equation

y′h¼ AðxÞhyþ BðxÞh; h∈E ð10Þ
is totally integrable in U if and only if

⋀fA′ðxÞhk−AðxÞhAðxÞkg ¼ 0 ∀h; k∈E ð11Þ

⋀fAðxÞhBðxÞk−B′ðxÞhkg ¼ 0 ∀h; k∈E ð12Þ
hold at each point x∈U.

Proof. The presumptions on the functions AðxÞ;BðxÞ imply that y∈C2ðUÞ. When differentiating
Eq. (10), one gets

y″ðxÞhk¼ A′ðxÞkhyðxÞ þ AðxÞhAðxÞkyðxÞ þ AðxÞkBðxÞhþ B′ðxÞkh:
As the mapping y″ðxÞ : E2-F is symmetric for each x∈U, it follows that the skewed symmetric
part

⋀fA′ðxÞkhyþ AðxÞhAðxÞkyþ AðxÞkAðxÞhþ B′ðxÞkhg ¼ 0

for each h; k∈E. The above equation is obviously equivalent to the two following equations:

⋀fA′ðxÞhk−AðxÞhAðxÞkg ¼ 0 ∀h; k∈E ð13Þ
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⋀fAðxÞhBðxÞk−B′ðxÞhkg ¼ 0 ∀h; k∈E ð14Þ
for each point x∈U. The theorem has been proven. □

Prior to formulate the global existence theorem we introduce the environment we will work in.
Let S be a set of connected subsets of the set U. We introduce, as usual, the ordering on that set
by inclusion, i.e., we introduce in S a structure of the partial ordering according to the rule S1≤S2
iff S1DS2. Consider any linearly ordered subset S′⊂S, such that the union ⋃S∈S′S⊂S.
Let us have totally integrable equation

y′h¼ AðxÞhyþ f ðxÞh ∀h∈E ð15Þ
in an open set U⊂E, let the functions A : U-LðE; LðE;FÞÞ and f : U-LðE;FÞ be continuous.
For arbitrary pair ðx0; y0Þ∈U � F there exists (due to Theorem 1) a solution y, which is defined
inside the ball bðx0; ρx0 Þ and satisfies the initial condition yðx0Þ ¼ y0. We would like to extend the
solution y from the ball bðx0; ρx0Þ onto a larger set. As the larger set has to be also the set where,
at the same time, the solution is defined, we introduce a pair (y,S), S⊂U, defining the solution of
Eq. (15). Actually, this solution is given by the open set S⊂U being the definition domain of the
solution and of the differentiable function y : S-F solving Eq. (15).

Definition 8. Let (y,S) be a solution of Eq. (15). An extension of that solution is the solution
ðy1; S1Þ for which S⊂S1 and yðxÞ ¼ y1ðxÞ for all x∈S.

Definition 9. The solution (y,S) of Eq. (15) is said to be non-extendable one in the class S if for
arbitrary extension ðy1; S1Þ of that solution with S1∈S it holds that S1 ¼ S.

We formulate now the global existence theorem:
Theorem 3. Let ðx0; y0Þ∈U � F be an arbitrary point, then there exists a non-extendable
solution ðy; Sx0y0 Þ of Eq. (15) in the class S and x0∈Sx0y0 ; yðx0Þ ¼ y0.

Proof. Let us define the set

Sx0y0 ¼ fS∈Sjx0∈S;∃ yS : S-F; ðyS; SÞ solves ð15Þ with ySðx0Þ ¼ y0g:
On Sx0y0 we introduce a partial ordering, which is induced from S, and we will show that each
linearly ordered set S′⊂Sx0y0 has a majorant. Let

S0 ¼ ⋃
S∈S′

S: ð16Þ

One can see that x0∈S0 and S0∈S. We define a function yS0 : S0-F as follows: for arbitrary
x∈S0 we set yS0 ðxÞ ¼ ySðxÞ when x∈S. As the set S′ is linearly ordered and the sets S∈S are
connected, the definition of the function yS0 is well posed. Moreover, yS0 satisfies Eq. (15) with
the initial condition yS0 ðx0Þ ¼ y0. Due to Eq. (16) the set S0 is a majorant for S′. According to the
Zorn lemma in the partially ordered set Sx0y0 there exists a maximal element, i.e., there exists
such Sx0y0∈Sx0y0 that the inclusion Sx0y0⊂S, S∈Sx0y0 implies that S¼ Sx0y0 . It means that the
solution ðy; Sx0y0Þ with the definition domain Sx0y0 is non-extendable in the class Sx0y0 and, thus, it
is neither extendable in the class S. The proof is completed. □
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4. Equations with functional derivatives

The equation with functional derivatives with respect to an unknown functional y is the
following relation:

δyðxÞ
δxðtÞ ¼ gðx; t; yðxÞÞ: ð17Þ

The right-hand side of Eq. (17) represents a function, which is defined on U � D� R, where U
is an open set in C(D). We suppose that this function is continuous on U � D� R.

By a solution of Eq. (17) we mean every functional y : S-R, which is defined on an open set
S⊂U and satisfies on that set the relation (17) for every t∈D. Eq. (17) is said to be totally
integrable if for each pair ðx0; y0Þ∈U � R there exists a unique solution of that equation with the
initial condition yðx0Þ ¼ y0.

As the function g is continuous (see the definition of functional derivative), Eq. (17) is
equivalent to the following equation in total differentials:

y′h¼ Pðx; yÞh; h∈CðDÞ; ð18Þ
where y′ is the Frèchet differential of the functional y and

Pðx; yÞh¼
Z
D
gðx; t; yÞhðtÞ dt

for each h∈CðDÞ.
As a result, we can formulate the following theorem:

Theorem 4. Suppose we have the following equation in functional derivatives

δyðxÞ
δxðtÞ ¼ gðx; t; yðxÞÞ; ð19Þ

where the function gðx; t; yðxÞÞ is supposed continuous on U � D� R, D is supposed to be
compact and y(x) is a functional. Then Eq. (19) is equivalent to the equation in total differential

y′h¼ Pðx; yÞh; h∈CðDÞ; ð20Þ
where y′ is the Frèchet differential of the functional y and

Pðx; yÞh¼
Z
D
gðx; t; yÞhðtÞ dt

for every h∈CðDÞ. The equivalence is meant in the sense that every solution of Eq. (19) is the
solution of Eq. (20) and vice versa.

Proof. We take the functional derivative as a function of two variables x; t. As that function is
continuous in both variables, then, due to compactness of the set D, the continuity of the
mapping

x-
δyðxÞ
δxðtÞ

is uniform with respect to t∈D. That means that for all ϵ40 there exists δ40 such that when
∥x1−x2∥oδ then��� δyðx1Þ

δxðtÞ −
δyðx2Þ
δxðtÞ

���oϵ
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for each t∈D. It immediately implies that the mapping

h-

Z
D

δyðxÞ
δxðtÞ hðtÞ dt¼ δyðx; hÞ∈R; h∈CðDÞ ð21Þ

defines the Frèchet differential y′ of the functional y. As the function G is continuous, then due to
Eq. (21), Eq. (19) is equivalent to Eq. (20) where Pðx; yÞh¼ R

Dgðx; t; yÞhðtÞ dt for every h∈CðDÞ.
The theorem is proven. □

Thus, the problem of the analysis of the equations with functional derivatives is transformed
into the problem for the equations in total differentials. As we mentioned already, we target the
linear equations with functional derivatives. So, we will analyze the linear equation in functional
derivatives

δyðxÞ
δxðtÞ ¼ aðx; tÞyðxÞ þ bðx; tÞ ð22Þ

and we suppose that the functions a : U � D-R; b : U � D-R are continuous. Denote

AðxÞh¼
Z
D
aðx; tÞhðtÞ dt; BðxÞh¼

Z
D
bðx; tÞhðtÞ dt; h∈CðDÞ: ð23Þ

Using Eq. (23), Eq. (22) can be re-written as the following equation in total differentials:

y′h¼ AðxÞhyþ BðxÞh; h∈E¼ CðDÞ ð24Þ
with continuous functions A : U-CðDÞ; B : U-CðDÞ.
Now, we can apply the results of the previous section to Eq. (24) to obtain the following:

Theorem 5. Suppose the functions a; b have continuous functional derivatives in U � D with
respect to x. Then Eq. (22) is totally integrable if and only if the following relations are satisfied:

δaðx; tÞ
δxðsÞ ¼ δaðx; sÞ

δxðtÞ ; ð25Þ

δbðx; tÞ
δxðsÞ þ aðx; sÞbðx; tÞ ¼ δbðx; sÞ

δxðtÞ þ aðx; tÞbðx; sÞ ð26Þ

for each x∈U and each s; t∈D.

Proof. Theorem 2 implies that Eq. (24) and thus the equivalent equation (22) are totally
integrable if and only if the following relations are valid:

A′ðxÞhk¼ A′ðxÞkh; ð27Þ

⋀fAðxÞhBðxÞk−B′ðxÞhkg ¼ 0 ð28Þ
for arbitrary h; k∈CðDÞ. Since

A′ðxÞhk¼
Z
D

Z
D

δaðx; tÞ
δxðsÞ hðsÞkðtÞ ds dt;

it follows that Eq. (27) is equivalent to the relation (25). Similarly, Eq. (28) is equivalent to the
relation (26). The theorem has been proven. □
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5. Examples

In this section, the following examples to illustrate the previous results are given.

Example 1. The Schrödinger equation in functional derivatives [5] is often used in the quantum
field theory. It has the following form:

i
δyðxÞ
δxðtÞ ¼Hðt; xÞ; ð29Þ

where yðxÞ ¼ SðxÞΦ, Φ is a constant, S(x) is the scattering matrix of interaction with an intensity
x; y(x) is the amplitude of the system state. The operator Hðt; xÞ is a generalized Hamiltonian and
it is calculated via scattering matrix. The conditions of total integrability are expressed by

δHðt; xÞ
δxðsÞ ¼ δHðs; xÞ

δxðtÞ :

The solutions of that equation are expressed in the form

yðxÞ ¼ y0 þ
Z x

x0

Hðt; vÞ δv; yðx0Þ ¼ y0:

Example 2. Next example, see [34], follows from the Schwinger equation, when the Fourier
transformation is applied

δGðx; ξÞ
δxðtÞ ¼ δ ln ΦðxÞ

δxðtÞ −
i

a2
ð− ξj2 þ a2Þ

�� �
Gðx; ξÞ;

�
ð30Þ

where Φ is known characteristic functional of a random quantity, a is a positive constant,
ξ¼ ðξ1; ξ2; ξ3Þ∈R3; ξ2 ¼ ξ21 þ ξ22 þ ξ23, x∈CðDÞ is an element of the space CðDÞ; D⊂R3; of real
continuous functions, and G : CðDÞ � R3-ðRÞ is the unknown function. Eq. (30) plays an
important role in the theoretical physics, see [34].

Supposing that the function Φ is sufficiently smooth, we can apply Theorem 5. As a result, Eq.
(30) is totally integrable and the solution set is done by

Gðx; ξÞ ¼ exp −
Z x

0

δ ln ΦðvÞ
δvðtÞ −

i

a2
ð ξj2−a2Þ
�� �

δv

� �
qðξÞ;

�
ð31Þ

where qðξÞ ¼Gð0; ξÞ is the initial function. The functional integral (31) can be easily evaluated.
As a result, the function G takes the form

Gðx; ξÞ ¼ 1
ΦðxÞ exp

i

a2
ð ξj2−a2Þ

Z
D
xðtÞ dt

����
�
qðξÞ:

�

6. Conclusion and outlooks

The connection between total differentials and functional derivatives has been used to analyze
the linear equations with first-order functional derivatives, very often used in different areas of
physics, chemistry and engineering. Conditions when the solution of such equations exists were
derived.

The area of equations with functional derivatives is still open and the results are mostly based
on some amount of erudition. The general theory of solutions of differential equations with
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functional derivatives is still missing though some primary results can be found mostly in the
area of quantum field theory models. Nevertheless, the problems are generally processed on the
case-by-case basis.
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