
A Novel Method for Identifying Exact Sensor Using Multiplicative Noise Component

Babak Mahdian and Stanislav Saic

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic

Prague, Czech Republic
{mahdian,ssaic}@utia.cas.cz

Abstract—In this paper, we analyze and analytically describe
the multiplicative deterministic noise component of imaging
sensors in a novel way. Specifically, we show how to use the
multiplicative nature of this component to derive a method
enabling its estimation. Since this noise component is unique
per sensor, consequently, the derived method is applied on
digital image ballistics tasks in order to pinpoint the exact
device that created a specific digital photo. Moreover, we
enhance the method to be resistent to optical zoom and JPEG
compression.
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I. INTRODUCTION

Generally, there are two essential tasks in forensics anal-

ysis of digital images: integrity verification (genuineness

analysis) and image ballistics. In image ballistics we address

the problem of linking digital images under investigation to

either a group of possible source imaging devices or to one

particular source imaging device which has been used to

capture these photos. The latter one is the main topic of this

paper.

Since image ballistics makes possible to differentiate

between source cameras of the same make and model,

it became especially useful in the forensic, law enforce-

ment, insurance, and media industries. Insurance companies,

for example, often need to know whether or not claim-

substantiating photos were taken by the person looking for

compensation. Law enforcement agencies are also tasked

with finding the source camera when criminal activity is

discovered in digital images (e.g. child pornography, etc).

Although past research were mainly focused on data

hiding and digital watermarking approaches [1], [2], [3]

to carry out digital image integrity verification and image

ballistics, today there is a relatively new approach called

passive one which does not need embedding any secondary

data into the image. So, in contrast to active methods,

the passive approach does not need any prior information

about the image being analyzed. There have been methods

developed to detect image splicing [4], [5], traces of non-

consistencies in color filter array interpolation [6], traces

of geometric transformations, [7], cloning [8], computer

graphics generated photos [9], JPEG compression inconsis-

tencies [10], etc. Typically, pointed out methods are based on

the fact that digital image editing brings specific detectable

statistical changes into the image.

Our aim in this paper is to uncover some important

drawbacks of existing source identification methods and

analytically develop a novel way to identify particular source

cameras by employing their sensor properties [11], [12],

[13]. Specifically, we will use the multiplicative nature of

PRNU noise component present in digital images. Moreover,

we also will deal with artifacts brought into the image by

vignetting and JPEG. Effectiveness of proposed analytical

concept will be experimentally measured and compared to

state-of-the-art.

II. FINGERPRINTS OF DIFFERENT CAMERA

COMPONENTS

A typical camera consists of several different components

(see Fig. 1). As pointed out in [14], the core of every

digital camera is the imaging sensor. The sensor (typically,

CCD or CMOS) is consisted on small elements called pixels

that collect photons and covert them into voltages that are

subsequently sampled to a digital signal in an A/D converter.

Generally, before the light from the scene which is being

photographed reaches the sensor it also passes through the

camera lenses, an antialiasing (blurring) filter, and then

through a color filter array (CFA).

The CFA is a mosaic of tiny color filters placed over the

pixel of an image sensor to capture color information. Color

filters are needed because typical consumer cameras only

have one sensor which cannot separate color information.

The color filters filter the light by wavelength range, such

that the separate filtered intensities include information about

the color of light. Most commonly, Bayer color filter is used.

Here, each pixel captures intensity of one of the red, green,

or blue color information. This output is further interpolated

(demosaicked) using color interpolation algorithms to obtain

all three basic color channels for each pixel.

The resulting signal is then further processed using color

correction and white balance adjustment. Additional pro-

cessing includes gamma correction to adjust for the linear

response of the imaging sensor, noise reduction, and filtering

operations to visually enhance the final image. Finally, the

digital image might be compressed stored and stored in a

specific image format like JPEG.
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Figure 1. A typical digital camera system.

What is important in sense of forensic analyzes of digital

images is that different components of camera leave different

kind of artifacts or fingerprints useful for integrity verifica-

tion of photos or ballistic analysis. Typically, fingerprints

left by CFA, post processing, and compression parts are in

common for cameras of same make and model. In other

words, assuming that we know their value and behavior for

a particular camera make and model and based on the fact

that digital image editing (e.g., photoshopping) change these

values (fingerprints), they can be employed for verification

of the originality of digital images .

On the other hand, each camera has its own unique

sensor which consists of millions of pixels each of unique

properties. Thus, if we are able to find such an information

brought into image by the sensor and which will remain

stable and present in all images captured by that sensor and

cannot be fount in no image captured by any other sensor,

then we can call it fingerprint of that sensor or camera.

Such a fingerprint can be employed to link digital images

to particular digital cameras which captured them.

A. Sensor as a Camera Fingerprint

Image sensors suffer from several fundamental and tech-

nology related imperfections resulting in their performance

limitations and noise. As pointed out in [14], if we take a

picture of an absolutely evenly lit scene, the resulting digital

image will still exhibit small changes in intensity among

individual pixels which is partly because of pattern noise,

readout noise or shot noise.

While readout noise or shot noise are random components,

the pattern noise is deterministic and remain approximately

the same if multiple pictures of the same scene are taken.

As a result, pattern noise can be the fingerprint of sensors

which we are searching for.

Pattern Noise (PN) is consisted of two components called

Fixed Pattern Noise (FPN) and photo response nonunifor-

mity (PRNU). FPN is independent of pixel signal, it is

an additive noise, and some high-end consumer cameras

can suppress it. The FPN also depends on exposure and

temperature.

PRNU is formed by varying pixel dimensions and inho-

mogeneities in silicon resulting in pixel output variations. It

is a multiplicative noise. Moreover, it is not dependent on

temperature and seems to be stable over time.

The values of PRNU noise increases with the signal

level (it is more visible in pixels showing light scenes). In

other words, in very dark areas PRNU noise is suppressed.

Moreover, PRNU is not present in completely saturated areas

of an image. Thus, such images should be ignored when

searching for PRNU noise.

Despite the fact that there are not a lot of studies analyzing

the PRNU noise in deeper details (probably due to physical

limitations and no significant demand for it so far), it can

be shown that it has dominant presence in the pattern noise

component. This made possible for Fridrich et al. [15], [11]

to employ PRNU noise to identify source cameras. In other

words, PRNU noise is employed as the fingerprint of camera

sensors.

III. MOTIVATION

Generally, it can be claimed that state-of-the-art source

identification methods are mostly based on methods pro-

posed by Jessica Fridrich et al. (e.g., [15], [11], [16], [17]).

There have been published some additional papers by others

(e.g., [18], [19], [20], [21], [22]) aiming to improve accuracy

of results. Generally, they brought modifications to the

original paper of Jessica Fridrich et al. [15], [11] based

on theoretical or empirical findings. Nonetheless, the key

concept of how to measure sensor’s fingerprint remained

unchanged.

Having available a larger set of cameras of same and

different models and a large set of ground-truth digital

images captured by these devices, one can simply run an

experiment to analyze the effectiveness and fragileness of

existing methods. By performing such an experiment, it is

quite easy to notice that state-of-the-art source identification

methods suffer from a number of essential non–perfections.

Below we discuss two important drawbacks specifically

caused by optical zoom and JPEG.

1) Impact of optical zoom: When applying typical

PRNU-based camera identification methods (e.g., [15], [11])

on digital images acquired by cameras enabling rich optical

zoom operations, then they typically fail. Let us demon-

strate the problem by carrying out a simple experiment by

employing Fujifilm FinePix S100fs camera. The focal length

of this camera can be changed from 28 mm to 400 mm. We

captured 50 images of blue skye for each of the following

focal lengths Z ∈ {28, 50, 100, 200, 400} and used them
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to calculate camera sensor’s fingerprint using the algorithm

pointed out in [11]. In other words, 5 different fingerprints

of the same camera have been obtained. Moreover, we took

5 images of a natural scene for each of mentioned focal

lengths to carry a basic source identification task.

Figure 2 demonstrates results of 25 test images and 5

fingerprints. First image shown in Figure 2 demonstrates

results of analyzing test images with sensor fingerprint of

Fujifilm FinePix S100fs obtained by photos captured with

focal length of 28 mm. Five test images captured by the

same focal length exhibit high correlations (in other words,

source camera has been found correctly). Nonetheless, all

other test images captured by the same camera but different

focal lengths exhibited very low correlations (in other words,

source camera has not been identified). Second image shown

in Figure 2 shows result of testing test images with sensor

fingerprint obtained by photos captured with focal length of

50 mm. Five test images captured by the same the focal

length exhibit high correlation. Again, all other test images

failed. Other images shown in Figure 2 uncovers the same

problem under scenarios of using other focal lengths in Z.

We also carried out the same experiment with other

cameras such as Nikon Coolpix L23, Canon PowerShot

A495, Pentax Optio P80, etc. with very similar results.

Apparently, this is a serious drawback as it is very difficult

to create a stable fingerprint for a cameras having rich focal

length. To cover all focal lengths, one should create one

fingerprint per each available focal length which is very time

consuming and almost impossible in real-life applications.

The question is why this problem happens? The reason

behind this is, so called, vignetting which causes change of

PRNU values at different zoom levels. There are several

types of vignetting such as mechanical, optical, natural

or pixel vignetting [23]. Some types of vignetting can be

completely covered by lens settings (using special filters),

but most digital cameras use built-in image processing to

compensate with vignetting when converting raw sensor data

to standard image formats such as JPEG or TIFF. Typically,

vignetting is stronger at the non-central parts of the photo.

2) Impact of JPEG: Assume we have a digital camera

producing heavily compressed JPEG images (or digital im-

ages on Internet). As it is known, highly JPEG compressed

images exhibit blocking artifacts. Figure 3 provides a simple

example of blocking artifact. Here, first 8 rows and 9

columns of a same photo compressed with different JPEG

qualities is shown. As apparent, absolute difference between

boundary pixels (pixels at 8th and 9th column) of (a) is 0.

Same for (b) is 6. and for (c) is 14. These JPEG blocking

artifacts can be in common within various digital images

captured by different devices. In other words, this is a

dangerous source of false positive results when linking a

photo to a set of possible source cameras (existing source

identification results are based on measuring correlation

between tested image and camera). Moreover, this is a

quite common problem occurred in real-life applications

(for example, when inspecting Facebook photos or Youtube

videos).

To understand why blocking artifacts occur, we need to

understand how JPEG algorithm does work. Although JPEG

file can be encoded in various ways, the most common

algorithm is the following one.

Typically, the image is first converted from RGB to

YCbCr, consisting of one luminance component (Y), and

two chrominance components (Cb and Cr). Mostly, the

resolution of the chroma components are reduced, usually by

a factor of two. Then each component is split into adjacent

blocks of 8×8 pixels. Block values are shifted from unsigned

to signed integers. Each block of each of the Y, Cb, and Cr

components undergoes a discrete cosine transform (DCT).

Let f(x, y) denote a pixel (x, y) of an 8×8 block. Its DCT

is:

F (u, v) =
1

4
C(u)C(v)

7∑

x=0

7∑

y=0

f(x, y)cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16
,

(1)

where

u, v ∈ {0 · · · 7};
C(u), C(v) = 1/

√
2 for u, v = 0;

C(u), C(v) = 1 otherwise.

(2)

In the next step, all 64 F (u, v) coefficients are quantized.

This is done by simply dividing each component in the

frequency domain by a constant for that component, and

then rounding to the nearest integer.

Thus, it is apparent that it is the quantization step in

conjunction with splitting the image into block 8 × 8 that

bring into the decoded photo shown blocking artifacts.

IV. MODELING AND EXTRACTING PRNU

Let us model the image acquisition process in the follow-

ing way:

Ii,j = Ioi,j + Ioi,j · Γi,j +Υi,j (3)

Here, Ii,j denotes the image pixel at position (i, j)
produced by the camera, Ioi,j denotes the noise-free image

(perfect image of the scene), Γi,j denotes PRNU noise and

Υi,j stands for all additive or negligible noise components.

Following the approach proposed by [15], [11], the PRNU

component is estimated in the following way. For a given

camera, PRNU noise is estimated by averaging multiple

images Ik, k = 1, · · · , N captured by this camera. This

process is sped up by suppressing the scene content from
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Figure 2. Problem of camera source identification caused by optical zoom. Fujifilm FinePix S100fs is a camera having different possibilities of focal
lengths. Shown results demonstrate that correctness of source identification test is dependent on particular sensor reference images and corresponding focal
length.

Figure 3. JPEG blocking artifact. (a) shows pixels of rows 1 to 8 and columns 1 to 9 of a RAW digital image. In (b) its JPEG 95% version is shown.
In (c) JPEG 65% version of (a) is shown.

the image prior to averaging. This is achieved by using a de-

noising filter F and averaging the noise residuals Idk instead.

In other words, PRNU of the camera C is computed by:

CPRNU =
1

N

N∑

k=1

Ik − Idk (4)

Alternatively, maximum likelihood estimation (MLE) in-

stead of simple averaging is employed.

In our work, we focus on multiplicative nature of PRNU

component and analytically derive its estimation. Specifi-

cally, denoting the digital image captured by the camera

by I , and the corresponding noise-free perfect image of

the scene by I0, then the fingerprint of the camera can be

calculated in the following way.

Given Eq. 3, let us divide both sides of this equation by

Io and introduce a natural logarithm operator:

Ii,j
Ioi,j

=
Ioi,j + Ioi,j · Γi,j +Υi,j

Ioi,j

ln(Ii,j)− ln(Ioi,j) = ln(1 + Γi,j +
Υi,j

Ioi,j
) (5)

Having derived Eq. 5 and knowing that Taylor series

expansions of the logarithmic function ln(1 + x) is

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
· · ·

we can simply derive the following:

ln(Ii,j)− ln(Ioi,j) = Γi,j +
Υi,j

Ioi,j
+ · · ·

For the sake of simplicity, in the rest of this paper we

omit pixel indexes (i, j) in our denotations. Now, having

available N digital images captured by the same camera

and considering the deterministic behavior of the PRNU

noise component of its sensor, Γsensor, we can derive the

following:

1

N

N∑

k=1

ln(Ik)− ln(Iok) = Γsensor +
1

N

N∑

k=1

Υk

Iok
+ · · ·

Assuming that Υ is a zero-mean noise component, we can

conclude that

lim
n→∞

1

N

N∑

k=1

Υk

Iok
= 0

Ignoring higher order terms of Taylor expansion we can state

that PRNU noise component of the sensor under analysis,

Γsensor, can be estimated in the following way:

Γsensor =
1

N

N∑

k=1

ln(Ik)− ln(Iok) (6)

So, considering Γsensor as fingerprint of the camera’s sen-

sor based on PRNU noise, using Eq. 6 we can extract it from
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a set of image or even from one image. But, it is apparent

that as N → ∞ the more accurate estimate of Γsensor we

get. As stated before, Eq. 6 we use the multiplication nature

of PRNU component (recall that ln(a)− ln(b) = ln(ab )).
Now, using simple a correlation we can measure similarity

of different fingerprints. For example, having available two

different sensor fingerprints Γs1 and Γs1 , we measure their

similarity by employing a normalized correlation:

corr(Γs1 ,Γs2) =
(Γs1 − Γs1)� (Γs2 − Γs2)

(‖Γs1 − Γs1‖) · (‖Γs2 − Γs2‖)
(7)

where X denotes mean of the vector X , � stands for dot

product of vectors defined as X�Y =
∑N

k=1 X(k)X(k) and

‖X‖ denotes L2 norm of X defined as ‖X‖ = √X �X .

It has been shown in [15] that a good way of approximat-

ing I0 is by de-noising I and compute the residual of these

two images:

I0 ≈ I − Id (8)

Here, Id denotes the de-noised digital image. While some

studies were carried out about the specific choice and effec-

tiveness of de-noising filters (e.g., [18]), our experiments

uncovered that although a proper de-noising filter improves

results of source identification, this part usually does not play

the most critical part in receiving accurate results. It might

happen that in some cases (e.g., based on spatial distribution

of the image) some filters work better and some worse.

As mentioned previously, digital images suffer from dif-

ferent kind of noise and imperfections brought into them by

different components of digital camera. Some of them such

as optical zoom and JPEG can cause serious problems in

terms of higher false positive or lower true positive rates.

3) Resistence to optical zoom: Non-central parts of the

digital image are effected the most by vignetting. In order to

minimize this problem, we only consider the central part of

the image. All other pixels are omitted. In our experiments,

only the central part of size 320× 320 pixels is considered.

Cropping operation always has been carried out with respect

to JPEG lattice so there was no corrupted JPEG block

resulting from this operation.

4) Resistence to JPEG: There have been attempts to use

different type of state-of-the-art wavelet de-noising algo-

rithms with a good edge-preserving behavior. As obvious,

the spatial distribution of the image can have a strong impact

on final de-noising result so employment of a specific de-

nosing filter must be in accordance with digital image’s

distribution. It is not possible to use 1 general filter for

all types of contents. When digital images are corrupted

by JPEG significantly, most of de-noising algorithms either

leave traces of JPEG blocking artifacts in I0 or they bring

their own artifact into the image. Thus, one effective way

how to overcome this problem is to run the denoising

method separately in each block depending on particular

compression blocking size (e.g., 8 × 8 pixels for most of

JPEG files). Apparently, when following this approach, there

is a need to employ a de-nosing filter (kernel) with smaller

support. In our experiments we used a simple median filter

of size 2× 2.

Working with each compression block separately gives us

a better resistence to blocking artifacts which. Also Equation

7 is applied separately on each compression block. In other

words, instead of obtaining one correlation value, we obtain

1600 correlation values for a digital image of size 320×320
pixels and compression blocks of 8×8 pixels (typical JPEG).

Resulting correlation value is obtained by computing the

median.

V. EXPERIMENTS

When applying the proposed method to photos captured

by a cameras enabling rich optical zoom options the benefits

of the proposed method becomes apparent. In most cases

where [11] fails to correctly identify the source camera,

the proposed method enables that. Moreover, when digital

images effected by a stronger JPEG are analyzed, the method

proposed in [11] produces a higher amount of false positives.

In other cases, results of both methods are very comparable.

For the sake of completeness, we point out that false

positive states for mistakenly pinpointing the source camera.

By true positive we mean correctly pinpointing the source

camera.

To visualize the benefit of the proposed method, we

selected 3 particular cameras. One Fujifilm FinePix S100FS

having available lens focal lengths of 28-400mm. This

camera has been chosen in order to demonstrate impact

of rich optical zoom. Also, two different pieces of Canon

PowerShot G12 have been employed. Two different pieces

of a same camera are helpful in analyzing false-positives as

they are equipped by a same embedded software and de-

mosaicking and JPEG algorithm.

In Figure 4 experimental results are shown. Figure 4(a) is

based on a camera fingerprint created by using 30 digital im-

ages captured by Fujifilm FinePix S100FS with focal length

50mm. Camera fingerprints used in Figures 4(b),(c), and

(d) are created by 30 photos captured by Fujifilm FinePix

S100FS with focal lengths 100mm, 200mm, and 400mm,

respectively. Camera fingerprints used in Figures 4(e), (f) are

created by using photos captured by two different cameras

Canon PowerShot G12 (each fingerprint is based on 30

photos captured by one of these cameras).

All Figures 4(a)..4(f) show two plots. Plots shown in first

row are obtained by employing the method pointed out in

[11]. Plots in seconds row demonstrate results obtained by

the method proposed in this paper. Always, y-axes shows the

resulting correlation value and x-axes denotes index of the

digital image being tested. In all figures, indexes 1-20 belong

to photos captured by Fujifilm FinePix S100FS with the

focal length 50mm, indexes 21-40 belong different to photos

captured by Fujifilm FinePix S100FS with the focal length
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100mm, indexes 41-60 belong to photos captured by same

camera but with focal length 200mm, and indexes 61-80

belong to photos captured by Fujifilm FinePix S100FS, but

focal length 400mm has been used. Indexes 81-100 belong to

photos captured by first Canon PowerShot G12. Indexes 81-

100 belong to photos captured by second Canon PowerShot

G12.

For example, as it is apparent from Figures 4(a), the

proposed method has much higher true-positive rate and is

invariant in respect to focal length. It correctly differentiates

all photos captured by Fujifilm FinePix S100FS from those

others captured by two devices of Canon PowerShot G12.

VI. CONCLUSIONS

In this paper, we have shown how to employ the multi-

plicative nature of the PRNU component to derive a novel

method to estimate it. The derived method also has been

successfully applied on a digital image ballistics experiment

in order to pinpoint the exact device that created a specific

digital photo. Moreover, the method has been enhanced to

be resistent to optical zoom and JPEG compression
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