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(a) blurred input

(b) our reconstruction

(c) close-ups

Fig. 1. Space-variant deconvolution of photos blurred by real camera shake: (a) one input blurry image; (b) reconstruction
using the proposed method with parametric blur interpolation; (c) close-ups: (left) input blurry image, (middle) reconstruction
with naive intensity interpolation shows strong artifacts, (right) proposed method.

ABSTRACT

We propose a method for removal of space-variant blur from
images predominantly degraded by camera shake without any
knowledge of camera trajectory. Blurs are first estimated in a
small number of image patches. We derive a novel parametric
blur interpolation method and discuss conditions under which
it can be used to exactly calculate blurs for every pixel posi-
tion. Having this information, we restore the sharp image by
a standard regularization technique. Performance of the pro-
posed method is experimentally validated.

Index Terms— blind deconvolution, space-variant con-
volution, interpolation

1. INTRODUCTION

Blur induced by camera motion is a frequent problem in pho-
tography occurring mainly in poor light conditions, when the
exposure time increases. Image stabilization devices help to
reduce motion blur of limited extent. For larger blur, deblur-
ring the image offline using mathematical algorithms remains
the only way to obtain a sharp image.

Homogenous blurring can be described by convolution
with a point spread function (PSF). Unfortunately this is not
the case for motion blur due to camera shake, especially if
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the focal length of the lens is short. The blur is typically dif-
ferent in different parts of the image [1]; see an example in
Fig. 1(a). The cause of its spatial variance (SV) is not only
camera motion but also other factors such as optical aberra-
tions. In practice deblurring is even more complicated, since
we usually have no or limited information about the blur. We
face an extremely ill-posed blind deconvolution (BD) prob-
lem.

For certain types of camera motion, such as rotation, we
can express the degradation operator as a linear combination
of basis blurs (or images) and solve the blind problem in the
space of the basis, which has much lower dimension than the
original problem. Whyte et al. [2] considered rotations about
three axes up to several degrees and described blurring using
three basis vectors. For blind deconvolution, they used an al-
gorithm analogous to [3] based on marginalization over the la-
tent sharp image. Gupta et al. [4] adopted a similar approach,
replacing rotations about z and y axes by translations. Such
projections to a low-dimension subspace look promising but
they are disguised parametric methods with their main limi-
tation that they only work for a specific class of blurs (in this
case constrained camera motion) and they completely ignore
any additional blurs, such as optical aberrations, that typically
appear in real cases.

Here we adopt a different approach, used e.g. in [5, 6], in
which the blur operator is assumed to be locally space invari-



ant and thus can be locally approximated by standard convo-
lution. This way we can deal with more general SV blurs. A
good approximation of the SV blur operator is achieved by
estimating PSFs in a neighbourhood of every pixel, which is
computationally demanding. To avoid computation in each
pixel, methods [5—7] estimate PSFs in a subset of pixels and
use linear interpolation to express the PSF in the rest of the
image. Linear interpolation however does not describe well
how the PSF changes with position. The PSFs must be there-
fore estimated quite densely.

In this paper, we propose a parametric interpolation
method that accurately and quickly calculates PSFs in ev-
ery pixel of the image from PSFs estimated in just a small
number of image locations.

2. SPACE-VARIANT BLIND DECONVOLUTION

The blurred image g is modeled by a general linear operator
H applied to the latent image u:

9(z,y) = [Hul(z,y)

:/u(m—s,y—t)h(s,t,x—s,y—t)dsdt. €))

The operator H is a generalization of standard convolution
where h is now a function of four variables. We can think of
this operation as a convolution with a SV PSF h(s, ¢, x, y) that
depends on the position (z,y) in the image. Standard convo-
lution is a special case of (1), where h(s,t,z,y) = h(s,t) for
any (z,y).

We assume that SV PSF changes relatively slowly in the
image space, which is typically the case for camera motion
and optical aberrations. Then the blur can be considered lo-
cally constant and we can approximate it by convolution in
every image patch. Let us divide the image g into overlap-
ping patches denoted as g”, where p is the patch index. The
SV convolution model in (1) transforms into a set of convolu-
tions

g = kP xuP | 2)

where kP is a convolution kernel that approximates h(s, t, z, y)
for (x,y) in the p-th patch. In every patch, we thus have a
classical BD problem. We have several ways how to solve
such problem. If multiple blurred images of the same scene
are available we can apply stable multichannel methods pro-
posed for example in [8]. A special case is dual exposure
problem when we combine a long exposure blurry image
with a short exposure noisy one [5,6]. If only a single blurred
image is used, we can apply single-channel BD methods pro-
posed recently in [3,9]. Solving BD in every patch would be
extremely time consuming. Instead we propose to solve the
SV BD problem in a more efficient way:

e Use BD methods on (2) to estimate PSFs in few patches
distributed on a coarse grid.

e Apply our novel interpolation method (see Sec. 3) to
generate PSFs on a dense grid.

e Generate SV blurring operator H from the interpolated
PSFs and find the sharp image u by solving (1) using
non-blind SV deconvolution method [10].

3. PARAMETRIC INTERPOLATION

A simple approach to interpolation as proposed in [5] is to
take the estimated PSFs on a coarse grid and perform inter-
polation of PSF intensity values, i.e. for each pixel location
we consider four closest PSFs on the coarse grid and run bi-
linear interpolation of their intensity values. This technique
is illustrated in Fig. 2(a). The circled PSFs were estimated
and the intermediate PSFs were interpolated. an advantage
of intensity interpolation is that it can be efficiently imple-
mented inside SV deconvolution [11]. However, the inter-
polated PSFs are often very different from the correct ones.
Refer to the experiment in Fig. 4 and notice that intensity in-
terpolation generates false PSFs that are not motion blurs. To
solve this problem, we derive below a method (parametric in-
terpolation), which interpolates camera motion SV PSFs very
accurately.

Let us consider the image a camera captures during
its exposure window. Light from a scene point X,, =
[Tw, Yuw, 20]T projects on the image plane at a location
X = [x,y]*. Using homogeneous coordinates in the im-
age plane X = [dX T, d], the relation to X, is given by

X = K[RX,, +1T], 3)

where R (3 x 3) and T" (3 x 1) are the camera rotation matrix
and translation vector, respectively. Upper triangular matrix
K (3 x 3) is the camera intrinsic matrix. The third element d
of the homogeneous coordinates corresponds to distance.
During the exposure window the camera position and ori-
entation may change and therefore the extrinsic parameters R
and T are function of time ¢. The projected point X moves
along a curve parametrized by ¢, which we denote as 7 (X)
and call it a point trace. It is important to draw a relation be-
tween this curve and the SV PSF h. The SV PSF h(s,t, X)
corresponds precisely to the rendered trace 7 (X). The trace

T(X) is given by

_ = 1
X(t) = K[R()K " Xo+ —-T(1)], “)
0
where Xo = [XT,1]7 = [z,y,1] is the initial location of

the point in the image plane using normalized homogenous
coordinates and dj is the third element of the corresponding
X.

The following proposition expresses a trace as a combina-
tion of two other traces.



Proposition 3.1 Let the distance d of all points from the cam-
era be constant. Given traces T (A) and T (B) at positions A
and B, a trace T(C) at a position C = kA + (1 — k)B,
k € (0,1) is expressed as T(C) = kT (A) + (1 — k)T (B).
The proof is direct application of (4). This proposition shows
that a linear interpolation of two traces in homogenous coor-
dinates generates any trace at a position lying on a line con-
necting these two traces. Unlike simple intensity interpola-
tion, which performs linear interpolation in the space of in-
tensity values, we interpolate here in the space of coordinates.
However, the drawback is that we must know the homogenous
coordinates of the projected points and thus the distance of
the point from the camera at every time ¢. The next corollary
alleviates this shortcoming.

Corollary 3.2 Let the camera motion be constrained to rota-
tion along optical z axis and translation in x-y plane. Propo-
sition 3.1 simplifies to T(C) = kT (A) + (1 — k)T (B).

The proof is done by expressing the third element of homoge-
nous coordinates and determining conditions under which it
is equal to one. Using (4), the third element of X is

4= R(t)K ™ Ko + = T5(t), )
0

where Rg3 is the third row of R and 73 is the third element
of T'. If the constrained camera motion of the corollary is as-
sumed then d = 1. The above corollary shows that in the con-
strained camera motion the trace interpolation is independent
of the scene distance and we can generate traces by working
only with the projected points. Connecting pixels of a pair
of traces (PSFs) that correspond to the same time ¢ gener-
ates any PSF on the connected lines as illustrated in Fig. 2(b).
Compare to intensity interpolation in Fig. 2(a), the PSFs are
interpolated precisely.

If we lift the camera motion constraints given in Corollary
3.2 and assume an arbitrary camera motion, the parametric in-
terpolation 7(C) = kT (A) + (1 — k)T (B) is inexact but the
error is very small in most of the practical cases. Examining
(5) reveals that the second term is negligible since scene dis-
tance from the camera (d) is typically much larger than the
camera shift in the z optical direction (73). The interpolation
error is thus predominantly produced by the first term, which
is a function of rotation about x and ¥ axes.

Fig. 3 plots the maximum interpolation error as a func-
tion of the number of known PSFs per row for rotation of
up to 2° in x and y axes (10 Mpx camera, full-frame sen-
sor 36 x 24mm, resolution 3600 x 2400 pixels). We assume
that PSFs are correctly estimated at several locations equally
spaced over the image plane and vary the density of estima-
tion positions from 3 to 19 estimated PSFs per row. Then we
calculate the maximum interpolation error among all neigh-
bouring pairs of PSFs, which occurs close to image corners,
where the rotational blur is the largest. Three curves corre-
spond to three different focal lengths: f = 20mm (wide-angle

(a) intensity interpolation

(b) parametric interpolation

Fig. 2. PSFs at nine different positions for a combination of
camera motion in the x-y plane and rotation around z axis:
(a) illustrates five PSFs interpolated using simple linear in-
tensity interpolation of four circled PSFs; (b) demonstrates
parametric interpolation. For every time instance of the cam-
era exposition we know the position in all four traces. By
interpolating these corresponding positions we can generate
any PSF in the image plane.

lens), f = 50mm (normal lens), and f = 200mm (telephoto
lens). Note that the PSF length for these three lenses gener-
ated by the camera rotation of 2° is roughly 200, 300, and
900 pixels, respectively, which can be regarded as extremely
heavy blur.

Interpolation error (pixels)

I Y

Fig. 3. Interpolation error for three different focal lengths
(f = 20,50,200mm) as a function of estimated PSF density
(from 3 to 19 PSFs per row) for the case of 2° rotation around
the x and y axes.

Fig. 3 demonstrated that parametric interpolation easily
achieves sub-pixel precision. The tricky part is how to derive
the analytical form from the matrix representation we get as
an output of BD methods. In other words, we need to track
the curve and find a mapping between any two PSFs. The
mapping matches pixels of the same time instance. This is
possible, when the curve does not cross itself and has one pre-
vailing orientation, which are assumptions satisfied in many
practical cases, when the time of exposure is not too long.
Let a(z,y) and b(z,y), [z,y] € [0...M,0...N], denote
two PSFs estimated by BD in patches located in A and B,
respectively. For the parametric interpolation of two PSFs,
the procedure we used can be outlined as follows:



e Bring both PSFs into normalized positions and de-
note them a’(x,y) and ¥’ (x, y). We use principal axes
normalization based on constraining second-order mo-
ments (see [12] for details). Hence, PSFs are oriented
such that their principal axes coincide with the y-axis.

e Find mapping of TOWS Y4 ina'(z,y) to yp m b (z, y)

such that Z”A ¥ >l % Y, a = ZZi_ﬁ Z
For each pair of mapped rows find mapping of zina
similar way, but in 1D. This way we get a mapping for

every point [xp,yp] = m(za,ya).

e Bring the PSFs into their original position. Connect the
matching points given by mapping m and find the pixel
position of the interpolated PSF according to Corol-
lary 3.2. The pixel intensity of the interpolated PSF
is given by linear interpolation of intensities in a(x, y)
and b(z,y).

In practice we need to interpolate in two dimensions (from
four PSFs). This is solved by first interpolating in one di-
mension using two pairs of PSFs and finally interpolating two
PSFs from the previous step in the other dimension.

4. EXPERIMENTS
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(c) intensity, SSIM=0.897  (d) parametric, SSIM=0.974

Fig. 4. Synthetic experiment of space-variant deconvolution

Fig. 4 illustrates advantages of parametric interpolation
in SV deconvolution. A blurred image (a) was synthetically
generated by modeling camera motion, which results in SV
PSFs visualized on the 11 x 11 grid in (b). Using only four

(b)

(@)

Fig. 5. Parametric interpolation of PSFs (a) and (b) with
crossovers generates false lines (c) compared to the correct
PSF (d).

PSFs in the corners, we interpolated the remaining ones on the
11 x 11 grid using simple intensity interpolation (c) and pro-
posed parametric interpolation (d). The similarity between
the interpolated and true PSFs was assessed by the SSIM
method [13] and is provided below figures. Intensity inter-
polation clearly generates PSFs that are incorrect and thus the
reconstructed image exhibits strong artifacts as shown in the
close-up in (c). Proposed interpolation generates PSFs similar
to the true ones and the reconstructed image is almost perfect.
If the PSFs have crossovers and/or no prevailing orientation,
our implementation of the parametric interpolation often fails
as illustrated in Fig. 5. This fault is not because of viola-
tion of theoretical assumptions but because our implementa-
tion works without the knowledge of trace parametrization.

(c) SSIM=0.967

(a) (b) SSIM=0.992

Fig. 6. Comparison of interpolation methods on space-variant
deconvolution in Fig. 1. SSIM compares to (a).

Fig. 1 shows an example of deblurring real photos. We
took two pictures in a dark room blurred due to long expo-
sure time. One of them is shown in Fig. 1(a). Next, we esti-
mated 25 PSFs on the 5 x 5 grid (patch size 150 x 150) us-
ing the BD method in [8]. Each PSF took about 19s, adding
up to 25 x 19 = 475s. The PSFs are plotted in Fig. 6(a).
We also generated PSFs using just four estimated PSFs in the
corners by simple intensity interpolation (Fig. 6(b)) and pro-
posed parametric interpolation (Fig. 6(c)). Both interpolation
methods consume negligible time and the entire process took
in this case about 4 x 19 = 76s. This is 6-times less than
the full estimation of 25 PSFs and the computational time de-
creases even more if a denser grid is used. Intensity interpo-
lation generates incorrect PSFs whereas the proposed method
returns PSFs similar to the estimated ones by BD. Finally,
we deblurred the images, which took about 7s, using the SV
method [10] and compare results achieved by both interpo-
lation methods. Close-ups are shown in Fig. 1(c), linear in-
terpolation in the middle and parametric interpolation on the
right. The complete reconstructed image using parametric in-
terpolation is in Fig. 1(b).
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