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Abstract

We concentrate on paradigmm question how much stochasticity and how much chaos is present in
the methane emission model. In particular we analyze the residua from the process of methane
emissions from wetlands in the sedge-grass marsh, in South Bohemia, Czech Republic. Relation to
entropy and a specific version of Kullback-Leibler divergence will be given. Graphical tool to assess
the amount of entropy in the system is developed and illustrated on real data from the sedge-grass
marsh methane emission.
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1. Introduction

According to [2] life in general can be characterized as a stream of order. Biogeochemical
processes on the different time scales are not moving towards the direction from disorder to order
and change of entropy has thermodynamic meaning ([2], [3]). Highly organized structures are
gradually decomposed up to individual organic and inorganic compounds (disorder) at the end of life
of individual organisms (or ecosystem as the super organism). Real life proceeds in many different
cycles. These include important cycles of biogenic compounds/elements such as carbon, nitrogen,
phosphorus and water. Other necessary elements and microelements are also (re)cycled [4]. Cycling
and continuous re-cycling of elementary compounds does occur due to often sharp limitation by
nutrients {macro elements) and microelements [4]. Most ecosystems must be very efficient to manage
them. Methane is a product of anaerobic decomposition processes of the organic matter cycles
mainly in water-saturated soils. These processes require the synergy or syntrophic cooperation
between anaerobic bacteria and methanogenic archaea, Organic matter is firstly hydrolysed and
fermented, and the products that are formed are the compounds used for methanogenesis [5].
Methane production can be described as dissipative process of entropy in which highly organized
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organic structures are decomposed to basic simple compounds. The process of releasing the methane
from soil and plant stand is highly determined by its production. Methane production depends on
the occurrence of methanogenic bacteria, the amount of decomposed organic matter and suitable
anaerobic conditions. Methane releasing from deeper soil layers is influenced by many processes,
including methane oxidation by the methanetrophic bacteria [6] and also by its means of being
released from the soil environment.

Methane erissions are typically modelled via trend process fitting, which makes the amount of
stochasticity and chaos present in the system questionable. In [1] we have modelled this dependence
by a time series model. The trend component is estimated by the Ordinary Least Squares technique.
The noise component is represented by sum of an infinite moving average model with Pareto-
like positive and negative parts of the innovations and independent identically distributed (i.i.d.)
innovations with similar tail behaviour. Pareto tails have been also justified by robust tests for
normality against Pareto tails (see [7]). Such moving average time series could be considered as
born by a point process, which is not homogeneous (see [8]). The process of methane release from soil
is both chaotic and stochastic. In [1] we outlined the relation between stochastic and chaotic model:
The parameters typically associated with chaos (both deterministic and stochastic) are measures
of dimension, rate of information generated (entropy), and the Lyapunov spectrum. Entropies, as
a measure of self-organization (or level of chaos of the system) in our case correspond to heavy
tail parameters (in our stochastic model these are Pareto tails of lower and upper exceedances over
thresholds, respectively). In [1] we have observed large tail parameters of the underlying stochastic
process for both upper and lower exceedances. This confirms that the amount of chaos measured
through correlation dimension or entropy is not large.

The behaviour of methane-producing hacteria is highly self-organized. Nevertheless, there is a
vast amount of randomness in the process of methane flux from bacteria’s point of view, as they
produce the methane into an external space through a biological process. We tried to model the
methane exchange process between the soil covered by plants and the surrounding atmosphere.
The emission of methane or other gases from bare soils and plant stands is a result of many
partial processes that continuously happen inside soils ([9]). These processes are often classified
as deterministic or stochastic in an appropriate scale (see [3]). From the point of view of the
methanogenic bacteria the occurrence of methane in the soil is a dissipative process determined by
their metabolisms. Bacteria are also a highly self-organized system and the amount of chaos in
the soil system is not too large. Biological processes in soil are strictly determined by physical and
environmental parameters with stochastic behaviour (see [10]).

As we have already mentioned the Pareto tails are proved to be suitable for modelling the
release of methane by bacteria. To measure the amount of unpredictability or chaos involved in
such system we exploit the information entropy (2). If we assume strict parametric assumption of
the Pareto distribution Pareto(x,,,a) with scale parameter x,, and shape parameter a having the
probability density function (pdf)
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then we can derive the theoretical relationship between the tail parameter and its entropy (see [11]):

Hx=In (“:)+$+1. (1)



This is always decreasing function for increasing o independent of the value of x,,:

OHx 1 1
T <0 (a>0).

In [1] we have observed large values of tail parameters o confirming moderate level of chaos in the
system, justifying underlying biochemical intuition.

If only semiparametric/nonparametric approach to tails is available, we shall rely on extreme
value theory or dynamical systems, or their interplays (see [12]). From biochemical point of view
we can define three main ways in which the methane moves from below ground soil layers to the
atmosphere: 1) Methane emissions from the bare soil surface, 2) Methane emissions through plant
tissue (plant growing on the methane source surfaces), 3) Ebullition from methane source surfaces
(Spontaneous releasing of methane mainly from the flooded sediments). The competition between
three above-mentioned possible means introduces naturally dynamic system which can have chaotic
behavior.

A chemormetrician having this data will need some tool to measure the amount of chaos vs.
stochasticity in his model, therefore the I-divergence construction shall be of great help. I-
divergence is based on KL-divergence, called also cross-entropy, which already includes the amount
of chaos, for detailed description see [13], [14]. It also reflects the amount of dissimilarity from one
distribution to another, which is useful for testing in such cases as, for example, when the expert’s
opinion and hypothesis about the unknown model are available.

The methodological novelty of the current paper is that we provide convenient analytical ap-
proach to empirically assess the amount of chaos in methane releasing measured via tail entropy.
We construct a graphical tool to check for fit of the models based on I-divergence deconvolution,
The relationship using the KL-divergence has been studied in [15], from a Bayesian point of view,
A Jeffrey’s prior is used to obtain posterior predictive distribution of data. Then the I-divergence
is plotted. In this paper we develop testing tool based on I-divergence and tool measuring the
dissimilarity for different scenarios in different parameter setups. Having an exact Pareto model
and knowing its threshold it is possible to simply transform the Pareto variable into exponential
one and therefore the natural start of this exposition is the exponential distribution setup. In [16]
the exact distributions have been derived for the setup. In the Appendix we provide relations to
other approaches via I-divergence and give the formulas used in text.

2. Empirical testing of entropy for the exponential case

Let us assume that ohservations {y; }{*  are distributed according to the exponential distribution
Ezp(vi) with pdf h(yi|y) = ve ", yi = 0.

For testing the hypothesis about the unknown parameter v = (v1,...,vn)
Ho:y=70 (Hi:v# %)
based on available observations y = (y1,...,yn) we exploit the /-divergence introduced in [16]:

IN(,v0) =N yi—> Inyi+7»_ yi—Nn(yo > y) - N
i i i i

The KL-divergence forming Iy (y, o) measures the divergence of the exponential distribution pdf
with vector of MLE estimates (%1, ..., 9~ ) from the pdf of the exponential with vector of hypotheses
(v0,---,70)-



2.1, Graphical method for testing Hy : v = ~o in the exponential distribution

For testing the hypothesis Hg : v = ¢ we introduce a graphical method based on the cumulative
distribution function (cdf). We generate M random samples from Exp(vo) each of sample size N
and compute the Ix(y,v0). We plot the quantiles for the cdf of In(y, 7o) against the quantiles for
cdf of uniform distribution U(0, 1). If {y;})¥, is distributed according to Ezp(~s), the result should
form a diagonal in this plot. Thus we do not reject the hypothesis when the points lie on or nearby
the diagonal. The more the results differ from a diagonal, the more likely we are going to reject
Hy.

For the exponential case, the exact form of edf for Iy, N <4 is derived in [17]. For N = 1 and
y ~ Eaxp(y) the cdf of I1(%,7v) is equal to

Fr(e) — {1 ol exp{—1 = )} —exp{ YW s (-exp(-1-a}} fora >0
Y : ; :
1 0 for x <0,

where Wy, W_, are the two real-valued branches of Lambert-W function. Quantile plot of Fy(I;)
under Hy : v = 1 against quantiles of uniform distribution U(0,1) is displayed in Fig. 1. In this
example we generated M = 1000 random samples each consisting of 1 random variable from the
distribution Exp(1). The plotted points form the diagonal in the plot, thus we do not reject the
hypothesis.
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Figure 1: Simulations for exponential case with exact F1, number of samples 1000 and v = 1

As formulas for N > 2 are rather complicated, we exploit the deconvolution of In to two
independent parts Ry and Sy as follows:

In(y,7%) = Ry + Sn
Rv=2Y %-Nln(yw) 5)-N+NhN
Sy = Nlnz yi— NInN — Zlny-;.

To construct the cdf of Iy and thus the quantile plot we use asymptotic distribution of Ry and
Sy. According to [16], Ry is asymptotically y?-distributed. Asymptotic distribution of Sy was

derived in [18] and is equal to
1 T} s
§ (1 + 6 i ) X?V—l'
Quantile plots of I:‘N(I ~) for Ey being the asymptotic edf of Iy for M = 1000 samples of

size N = 50 from Fxp(1) against quantiles of uniform distribution U(0,1) for different hypotheses
Hg : v = 7 can be found in Fig. 2a, 2b and 2c.
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Figure 2: Simulations for exponential case for 1000 samples with N = 50.

In case when the data were drawn from Exp(1) and the hypothetical value for the unknown
parameter v was set to 1, the plotted points form a diagonal in the quantile plot for asymptotic cdf
of Iy against cdf of uniform distribution /(0. 1). When testing the hypothesis that the unknown
parameter v equals 2 or 1/2 (see Fig. 2b and 2c¢), the results in the plots differ significantly from
the straight line forming diagonal. Thus we reject hypotheses in both cases.

In this section the basics of graphical method for testing hypotheses about unknown parameters
based on I-divergence were introduced. Since no real data was available in the case of exponential
distribution (tails in methane emission were heavier, see [1]) we generated the data samples from
exponential distribution with various choices of parameter ~.

3. Empirical testing for the Pareto case

Based on results in previous sections, we will now propose a graphical procedure for testing
the hypothesis about the parameter o in Pareto distribution. For real data assumed to he Pareto
distributed the pdf does not depend not only on this unknown parameter v, but also on the value
of &,. Thus we first focus on the case where the value of z,, is known. Later on we proceed to
more sophisticated method for unknown value of z,.

3.1. Graphical procedure for known value of x,,

Let us now have N independent observations {y;}¥  from Pareto distribution with shape and
scale parameters x,, and o; = —v; — 1,1 = 1,..., N, where &,,, is known. The I-divergence then
looks as follows:

N A4 :
E i _ 1 (~tmitn:)
In(y,70) = E (ln Zm — 0y 1) In(ys) + ; I { ( Inz, —In yi) "

i=1
—0 Y In() = 3 {(=r0 - a1}

With the use of the ahove I-divergence we now introduce the hypothesis testing for Pareto dis-
tributed data based on data y. Here, the monotonicity of this 7-divergence depends on the value
of vy, For the fixed value of hypothesis vp in testing hyvpothesis

HO : (,}'1!' = 7’}”) = (FYU: i !F}"U)



against alternative
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we can compute the exact value of the [-divergence and conclude whether we accept or reject the
hypothesis.

To help the chemometrician to distinguish between these two results we introduce a graphical
method for testing the above hypothesis. We exploit the uniform transform of cumulative distri-
bution function. Then we can compare the cumulative distribution function of the /-divergence
against the cumulative distribution function of the continuous uniform distribution U/(0,1). If the
plotted values form a diagonal in quadrat [0, 1] x [0, 1] thus the data are likely to origin in the distri-
bution Pareto(x,,,ap) and we accept the hypothesis. If the plotted values differ from the diagonal,
the I-divergence reaches more often higher values, then the Pareto(x,,, ag) do not describe our
data well. Thus we reject the hypothesis Hy.

To illustrate the method we generate a random sample z1,. .., zx of size N from Pareto distribu-
tion with known &, and hypothetical vo representing a desired or expected value of the parameter
chosen by experimentator. We compute the [-divergence for zi,...,zny and define the "empirical
distribution function” of In(z1,...,2n;70) as

1 N
Fry(2) = 5 > Iz < 2.

For given data 3, ..., yx one should compute F;N (y:),i=1,..., N and construct a quantile plot of
these values against uniform distribution U(0, 1). Under the null hypothesis the points are supposed
to form a straight line connecting points (0,0) and (1, 1), see Fig. 3 (for general discussion on QQ
Plots see e.g. [19]). Under alternative hypothesis the points decline from the straight line towards
axis x or y, see Fig. 4 and Fig. 5.
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Figure 3: Simulations for Pareto case: under Hp
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Figure 4: Simulations for Pareto case: Hyp, real value of o is less than agp

gamma = 4, gamma_0 =2 gamma =8, gamma_0 =2 gamma = 16, gamma_0 = 2
: Z
£ & &
B 8 24 334
=1 Eh By ol
T T T —T —T — T T T
o0 02 08 06 08 10 o0 02 04 06 08 10 0 04 06 08 0
edyi] oy eyl

Figure 5: Simulations for Pareto case: H1, real value of « is greater than ap

3.2, Graphical procedure for unknown value of xy,

For real data on methane emissions the value of threshold z,, is usually not provided explicitly.
We shall treat z,, as a nuisance parameter, which is however substantial for interpretation since
it distinguishes between normal diffusion and anomalous diffusion (chaos). Our conjecture for the
source of the chaos are various interactions (e.g. way of escaping of methane). The process of
diffusion and other non-specific ways of methane releasing (e.g. ebullition) occur simultaneously,
Normal diffusion relates to stochasticity, non-specific ways of releasing of methane relate to chaotical
behavior of the system,

Both parts, stochastic and chaotic are hardly separable. Therefore the simulated process com-
pared via [-divergence to real data process can be taken only in upper tails of real data. Thus
peaks of methane emissions can correspond to various spontaneous releases of methane which we
understand to be chaotic in its nature.

3.2.1. Real methane data

We will analyze the residuals Z, Z—, Z+ of methane emissions taken from infinite moving average
model (8), see [1], where only time is taken as a regressor. We trimmed the original data sets with
sample sizes Mz, = 998, Mz_ = 971 by 30%, thus we obtained Pareto distributed samples of
sample sizes M, M_.

Before we proceed to test the null hypothesis about the parameter v = (v1,...,yx) it is necessary
to deal with the unknown nuisance parameter x,,,. To obtain the desired value of x,, we exploit
a maximum entropy principle [20], [21]. This principle states that from the set of all possible
distributions, now represented by a set of Pareto distributions with fixed a and unknown z,,, we
should choose the distribution with the highest entropy. For fixed v, {(y = —a — 1), and z,, on the



interval (0, ¥min), Where ymi, is the minimal value from the sample y1,...,yy, the entropy is an
increasing function of ,, see (1). Thus, the value of x,, chosen for the proposed graphical method
should be close to the minimal value of the sample y1,...,yny. Since data are Pareto distributed,
Ty < Yi Vi, we set Ty = 0.99 X Ymin-

Let us still assume the shape parameter « is known. Thus the uncertainty of the current
system, represented by entropy (1), now depends on the value of the scale parameter x,,. If the
chemometrician is expecting the system to be more deterministic, one should choose the value of
Ty close to zero. This coincides with the fact that then the exceedances over threshold z,, are
assigned with lower probability. On the other hand, if the system can be more chaotic, that is the
exceedances over the threshold x,,, occur with high probability, the value of z,, should be close to
the minimal value of the sample y1, ..., yn. For our Pareto data Z+ with a = 1.3 and the minimal
value of the sample 2.05 x 107% the relation between entropy and value of z,, is described by (1).
For lower values of entropy the value of &, is really close to zero, the maximuimn achievable entropy
is obtained for x,, close to Ymin-

For chosen hypotheses Hp : v = ~g we generated hypothetical Paretian sample {:,}f‘zj with
parameters Pareto(z,,,ag), where ag = —y5 — 1. We also computed corresponding /-divergences
I (zi,v0), based on which we estimated the empirical cumulative distribution function I3 7, Then
we plotted the quantiles of ecdf }7}1 evaluated in points [y (yi,70), ¢ = 1...., M. or M_ against
quantiles of uniform distribution U(0,1).

Previous data analyses suggested value ap = 1.3 for trimmed data set Z+ and ag = 1.2 for
trimmed data set Z—. Proposed graphical method confirms these hypotheses as we can see in Fig.
6a and Fig. 6b.

4. Saddlepoint approximations for the density of MLE

Apart from testing hypotheses about unknown parameter -, another area of interest is the dis-
tribution of maximum likelihood estimator of the tail parameter for Pareto distribution. As it is
usually not possible to derive analytical formula for the density of an estimator, various approxi-
mations might be used. One of the widely used approaches is central limit theorem and asymptotic
theory for maximum likelihood estimators based on CLT. Unfortunately, approximations for the
density based on CLT tend to be inaccurate in the tails of the distribution. As saddlepoint tech-
niques proved to be very useful in this area, we will now concentrate on this approach. In this
gection we will present saddlepoint approximation for the density of MLE based on I-divergence
and accompany theoretical results with plots for two-dimensional case using real data from previous
section.

In order to derive a saddlepoint approximation it is first necessary to compute density of a
sufficient statistic ¢, that for Pareto distribution has the form ¢ = logy. Using results from [22] we
get the saddlepoint approximation for the density of ¢

N _“"f_l-'_n_myl;-T 1
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Saddlepoint aproximation for the density of MLE is based on the density of the sufficient statistic



2+, alphat = 1.3, trimmed 30 % Z-, alpha0 = 1.2, trimmed 30 %

L, e i
&4 :
T T T T T T T T T T T T
oo 02 n4a 0E ca 10 oo 02 04 06 na 10
ECDF_{lav|HD[ data) ECDF_{idniHO M data)
(a) Pareto methane data - Z+ (b} Pareto methane data - Z-

Figure 6: Pareto real data case: vy = 1.3 for Z+, v = 1.2 for Z-.

(see [22])

and its formula reads
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4.1. Application to real data - Pareto

In order to illustrate the applicability of the above derived formulas we exploit the trimmed
data Z+ and Z— used in Subsection 3.2.1.

Firstly, we concentrate on the density of MLE estimate and the /-divergence for trimmed data
Z+. We will study the form of saddlepoint approximation of the density of MLE and /-divergence as



a function of 2 variables (we will deal with two Pareto distributed random variables with parameters
~1, v2) based on available observations. Since we have derived saddlepoint approximation for the
density of MLE based on [-divergence, it is not surprising that both can be used in inference on
hypothetical value of parameter. The only difference between saddlepoint approximation for the
sufficient statistic and MLE is a multiplicative constant, therefore we will not plot the approximation
for the density of a sufficient statistic.

We will consider two independent Pareto distributed variables y;, ys with scale parameter
T = 2.03 x 1078, To study aforementioned properties with respect to changes in the unknown
parameters 44, i = 1,2, we randomly chose two observations y = 1.45 x 10~ % and yo = 4.24 x 1076
within the admissible area: ~; < —1, 7 = 1, 2. Results are shown in Fig. Ta and 7h.

e ] ¥
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Figure 7: Pareto real data Z+ with saddlepoint densities for MLE estimate and J-divergence.

In case of the I-divergence I2(%,,7), we expect that as a function of two variables it reaches
its minimum value, zero, for the arguments: §; = m —1,i = 1,2 (see properties of the
KL-divergence). Thus, in this case in the point 4; = —1.51 and 4» = —2.36, which can be seen in
Th also brings the view on the changes of the I-divergence with respect to v1,v2. We can see that
plotted [-divergence reaches minimum value for values 47 and 4. From the principle of maximum
likelihood, we expect that the approximated density reaches its maximum values for these values
of 41 and 42 (see figures).

The similar analysis was carried out for trimmed data set Z— with values z,, = 2 x 1079,
y1 = 4.85 x 1079 and y2 = 7.38 x 1075, The results are shown in Fig. 8a, 8b and corresponding
MLE are 4; = —2.13, 42 = —1.77.

Once we have derived the approximation for the density of 4, it enables us to do more statistical
inference on this parameter. One of the biggest advantages of saddlepoint approximation based on -
divergence is that it provides analytical formula for approximation of the density of MLE. Therefore
there is no need for any other numerical procedures and the density may be used straighforwardly.
In this case not only the density is tractable in explicit form, but also distribution function possesses
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Figure 8: Pareto real data Z- with saddlepoint densities for MLE estimate and [-divergence.

this desirable property. Among other applications, we will concentrate on estimating the probability
that the values of parameter exceed certain values and finding the confidence interval for given
probability.

Let us get back to the case of Z4 and randomly chosen observations 3 = 1.45 x 107° and
yo = 424 x 1075 As we are dealing with an approximation, it may happen that it will not
integrate exactly to 1. In our case

OO — 00
] / gr(§|y) dy1df2 = 1.18.
—0c J—o0

The way to solve this small inconvenience is to divide the formula for density by this number and
thus ensure this important property of density. The cumulative distribution function Q(z,y) is a
result of integration

T u
Qz,y) = / / ar(31y) 851 4

Suppose we would like to compute the probability that both 4, and 2 will exceed the valne —3 (or
equivalently that both o and as will be less than 2). Therefore we need to compute

—1 —1
/ f il i
-3 -3

and the resulting probability equals 0.39.
In order to compute a confidence interval for v we have to obtain the marginal density of v1

Fil)= ] et dla

o
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and find a, b such that
b
f fl("}.'i)d"}l = 0.95.

As fy is continuous and not symmetric, more tuples a, b satisfving this equation can be found. One
of them is a = —4.25 and b = —1.15, so the interval (a, b) will cover the real value of parameter v
with probability 0.95.

Computation of confidence level of I-divergence contours in the case of known threshold z,, is
in detail elaborated in [17]. The case of unknown x,, needs special attention. In the plots Fig. 9a
and Fig. 9b we plotted the probability that I-divergence does not exceed value ¢ for different values
of threshold x,, and for values 4, and 42. The chosen values of ¢ approximately vield the most
widely used probabilities for confidence intervals in statistics - 0.9 and 0.95 respectively. We may
observe that this probability in our case changes only imperceptibly for various choices of threshold
T, that means that the value of I-divergence depends on the shape parameter and not on the
threshold. The probabilities were approximated in Mathematica by numerical integration using
clobal adaptive integration strategy.
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Figure 9: Probability of event I < ¢ for various choices of threshold x,

5. Discussion

The complexities of methane emissions from wetlands, especially many dependencies and in-
teractions may lead an experimenter to conclusion that it is a complicated and chaotic system.
This chaos can be particularly related to the potential ebullition of methane, which is by definition
(see e.g. [23]) a spontaneous releasing of methane bubbles from flooded sediments (for a possible
parametric modelling of ebullition see e.g. [8]). In this paper we try to introduce simple graph-
ical tool for assessing the entropy in the system. One of valuable further research questions can
be a practical validation of the relationship between chaos and ebullition by introduced entropy
dissimilarity measure.

First, our method is parametric. and we can rigorously justify the parametric/semiparametric
form of a Pareto tails (see [1, 8]). There exist nonparametric methods for nonlinear filtering,
e.g. [24]. Thus, nonparametric framework is allowing more freedom in the model, however, it
decreases the precision of measurement of the amount of chaos present in the system. But the
latter, e.g. measurement of the amount of chaos present in the methane wetland system, is the main
address of our paper. The goal of [24] in particular, and thus the goal of the so-called ” Probability
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Integral Transform” in general is the evaluation of the filtering probability density as e whele, not
dependently on any particular point-estimator. However, the goal of the current measurement is to
find a good point estimate (or credible interval) of upper quantiles of a complex stochastic process
(not a one density), which mixes both chaos, stochasticity and deterministic part. From the point
of view of statistical theory of information, the problems aimed by " Probability Integral Transform”
and the problem of Entropy measured by upper quantiles of process are different-in the 1st case
(" Probability Integral Transform”) we need to use part of useful statistical information for the
filtering probability density as a whole, in our case we take all useful statistical information entirely
for quantiles, i.e. estimation of Pareto tails.

Chaos in biochemical systems can be measured in a different ways (e.g. by different complexity
measures proposed in the literature like Shannon entropy, Relative entropy, Lempel-Ziv, Kolmogrov
and Algorithmic complexity, etc.) and can be interpreted in a different set-ups. For example, one
can be interested in uncertainty quantification in chemical system (see e.g. [25|). However, in the
current manuscript we measure Entropy driven by heavy-tailed character of ebullition (or anomalous
diffusion), which is ecologically interpretable, e.g. as releasing of methane by bubbles. Thus we
are interested not in arbitrary technical entropy, which can be associated to our wetland system
(and there is definitely not the only one), but to the entropy related to ecological (biological) fact
of ebullition.

The study of chaos enables an important insight for ecologists since most natural systems are too
complex to be easily comprehensible. The comprehension and prediction of behavior of ecological
systems is difficult due to its irreducibility and persistent changes with none stable equilibrium (see
[26]). Chaos was firstly recognized in ecology in simple population models ([27]). These models
described changes of the population with deterministic way and chaos represents inaccurate model
predictions ([28, 29]). Chaos can refer to the apparent unpredictability of deterministic systems,
where the unpredictability is driven by gradual growth of errors in the specification of the initial
state. The earliest methods used to determine and study chaos in empirical time series were
developed for physical applications and assume noise-free dynamics and perfectly accurate data.
Ecologists unfortunately cannot make these assumptions for living systems.
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6. Appendix

The entropy of a continuous random variable X having pdf f(z) with respect to Lebesgue
measure is defined as

H(f(2)) = — ]X F(@)ha f () di @)
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The Kullback-Leibler (KL) divergence between two possible pdfs fi{x) and fa(x) of random
variable X and measures the divergence of f2(x) from fi(a ) KL-divergence is non-negative, anti-
symmetric and reaches its minimum when fi(z) = fa(z) a

KLD((0) (o) = [ o) 28 e~ ~H (i) = [ i) 1n foe) 3)

v) 4
)"
The pdf of the Pareto distribution Pareto(x,,, ) with scale parameter z,, and shape parameter

peted

fx(@) = a2

B0, a>0 (4)

Next we provide relations to other approaches via I-divergence. Tor recent developments on
deconvolutions and decompositions of I-divergence see [30].

6.1. Relation to the divergence score

We focus on divergence score DS defined in [31] based on Brier score. This divergence score mea-
sures the mean KL-divergence (KLD) from observation distribution to forecast distribution. The
observation distribution is represented by Kronecker delta, probability forecast (can be interpreted
as the best estimate of the unknown true outcome) by alternative distribution. With each new
observation a probability of rainfall is forecasted, the occurrence of the same forecast probabilities
is possible. This score is then decomposed onto three parts: reliability, resolution, uncertainty.
Reliahility part stands for the expected divergence of the observed probability distribution from
the forecast probability distribution. Resolution part contains the amount of information in obser-
vations with respect to the stratification based on values of forecasts. Uncertainty part contains
uncertainty relative to the observation.

In order to generalize this decomposition, let us now consider N events represented by N
independent Pareto distributed random variables. The observation distribution will now be Pareto
with known scale parameter z,, and the unknown cannonical parameter v replaced by a subjective
MLE estimate 4;, which is a function of a observation y;, i = 1,..., N. The forecast distribution
will be Pareto with the same scale parameter z,,, and unknown parameter set to v, i = 1,..., N.
Following the setup in [31], we obtain that:

DS =KLD(Pa-reto(:vm, AnmrLe)||Pareto(zm, vo)) — KLD{Pareto(xm, yuee)| | Pareto{@m,, yvre))

1
+ = z KLD(Pareto(xz,, 5i)|| Pareto{xn, Z 4i/N)) = ﬁIN (Fy: Yo,N),

1\_1

where pspE is the maximum likelihood estimate of v based on y1,...,yn. First part of this decom-
position, the expected divergence from the observation distribution to the hypothesis distribution,
coincides with reliability part explained above. The second part, expressing the resolution part,
disappears based on the properties of KL-divergence. This result was expected, since in this case
we have just one subgroup (the forecast is same for each i). Third term, uncertainty, can be viewed
as the uncertainty related to the observation, but also as the expected divergence from the obser-
vation distribution to the distribution with unknown parameter set as MLE estimate based on all
observations.

14



6.2, Relation to the density power divergence

Let us have a random sample 1, ..., x,, independent identically distributed random variables,
from the distribution with pdf depending on the unknown parameter v. This coincides exactly with
the I-divergence when N =1 and y1 = (1,...,xs). Thus v is one-dimensional. The joint pdf of
y1 is then

h(y1|y) =exp{—(y) +T(y1) — c(v)}

The I-divergence [;(y1,vo) for testing Hy : v = 7o against H; : v # ~¢ has the following form:

I (51, v0) =Li(Amie, vo) + (. Amee) = Li{(ymee,vo) +0

where the maximum likelihood estimate 4y g coincides with subjective maximum likelihood esti-
mate ;. Using the minimum density power estimator of «y instead of maximum likelihood estimator
we obtain the density power divergence Ri(hs, hy,) (see [32]).

The test statistics 2/1(9z,v0) = 2R1(hs, h-,) composed from the considered divergences are
asymptotically distributed according to x? for s = oc (see [16]) as well as test statistic 2sd(3ar,Y0)
derived in [33].

6.3. Relation to decision procedures based on scaled Bregman distance surfaces

Let us consider a probability density function of a distribution belonging to the exponential
family:

Py (y) = exp {go(y} +3 " giW)Tily) — b(T('}*)}} (5)

i=1

The canonical version of the considered pdf is:

py(y) =exp {go(y) +> " giy)vi - b(v)}

i=1

The coinciding Bregman power distance B, (P, P,|P,,) can be found in [34], formula (5). If we
consider o = 1, then the Bregman distance coincides with KL-divergence. The formula for scaled
Bregman power distance then reads:

B1(Py,, Py, | Pyy) =b(T(72)) — b(T (1)) — AT (v1))(T(v2) — T (1))
=b(y2) — b{y1) — Ab(m1) (2 — ) (6)

The above given probability density function (5) can be rewritten as follows:

N
p(y) =T [ Flwah(v:) exp {t(ye)vi}

N

N N
=exp {Z In f(y:) + Z oy )y + Z In h(%}}
i=1

i=1 i=1

=exp {—¥(y) + t{y)y — x(7)}
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Thus the relatione between the scaled Bregman power distance (6) and I-divergence is:

Sy T
Bu(Pyy, Poa Pry) =si(12) — (1) — 250 3, _ )

) 1 '
N N N
= Z Inh(y,) — Z In h(yz:) + Z t(yi) (v, — v2,0)
i=1 i=1 i=1
_'If"'('}'ls v2)
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