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Bayesian Blind Separation and Deconvolution of
Dynamic Image Sequences Using Sparsity Priors

Ondrej Tichý* and Václav Šmídl, Member, IEEE

Abstract—A common problem of imaging 3-D objects into image
plane is superposition of the projected structures. In dynamic
imaging, projection overlaps of organs and tissues complicate
extraction of signals specific to individual structures with dif-
ferent dynamics. The problem manifests itself also in dynamic
tomography as tissue mixtures are present in voxels. Separation
of signals specific to dynamic structures belongs to the category of
blind source separation. It is an underdetermined problem with
many possible solutions. Existing separation methods select the
solution that best matches their additional assumptions on the
source model. We propose a novel blind source separation method
based on probabilistic model of dynamic image sequences as-
suming each source dynamics as convolution of an input function
and a source specific kernel (modeling organ impulse response
or retention function). These assumptions are formalized as a
Bayesian model with hierarchical prior and solved by the Vari-
ational Bayes method. The proposed prior distribution assigns
higher probability to sparse source images and sparse convolution
kernels. We show that the results of separation are relevant to
selected tasks of dynamic renal scintigraphy. Accuracy of tissue
separation with simulated and clinical data provided by the
proposed method outperformed accuracy of previously developed
methods measured by the mean square and mean absolute errors
of estimation of simulated sources and the sources separated by
an expert physician. MATLAB implementation of the algorithm
is available for download.

Index Terms—Blind source separation, computer-aided detec-
tion and diagnosis, functional imaging, probabilistic and statistical
methods.

I. INTRODUCTION

D YNAMIC scintigraphic and molecular imaging is a tool
for examination of organ, tissue, cellular and intracellular

functions at various levels of spatial and time resolution. Its
aim is to describe physiological functions in the body by simple
diagnostic parameters derived from sophisticated pharmacoki-
netic models. On input, pharmacokinetic models require the
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curves reflecting local concentration of a tracer (radiopharma-
ceutical or molecular probe) as functions of time at specific
sites in individual tissues, compartments, and distribution
spaces, formally described as dynamic image components.
However, tissue-specific time-activity curves (TAC) are not
directly observable due to projection overlaps of the tissues
in dynamic scintigraphy [1], or tissue mixtures in the image
plane in dynamic positron emission tomography or dynamic
and functional magnetic resonance tomography [2]–[4].
Thus, one more step is required between collecting observed

data and using pharmacokinetic model, i.e., extraction of the
TACs from image data. In dynamic scintigraphy, this step is
usually performed by a human operator who manually draws a
region of interest (ROI), an area including the tissue of interest
over which the image signal is integrated to a sum representing
one point on TAC [5]. It is easy to understand that this single
step is a sort of a bottleneck of the whole process: it is subjective
(dependent on the operator’s knowledge, experience and skills)
and prone to errors due to overlapping dynamic structures [6].
Including several dynamic components in one ROI (assumed to
include just one component) invalidates the method producing
false results. In attempt to avoid inclusion of more than one
dynamic structure into a single ROI, the operator often needs
to define very small ROIs that are only few pixels large and
produce weak noisy signal. Sometimes there is no such area in
the image from where the signal of a single dynamic structure
can be safely extracted.
In the past, many attempts were made to define the ROIs and

extract TACs automatically or semiautomatically avoiding user
interaction (for more recent reports and reviews, see [7]–[10]).
Recent attempts to extract image-derived input function belong
to this category as well [11]–[13]. Despite all of these methods
were reported to provide good results and some of them are used
in their authors’ departments, none has been generally accepted
to be used in clinical practice.
An important option to facilitate separation of dynamic com-

ponents in image sequence is application of mathematical and
physiological models, for example factor analysis model as-
suming observed images and curves as linear combination of
dynamic components [10], or a linear model assuming organ
curve as convolution of input function (signal from the blood)
and tissue kernel [14]–[16]. Such models are employed in the
methods aiming at blind source separation as in the independent
component analysis [17], blind source separation with positivity
constraint [18], nonnegative matrix factorization [19], or blind
source separation and deconvolution [20], [21].
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Specialized methods of blind source separation has been de-
veloped for analysis of medial image sequences [22]–[24]. In
[23], the sparsity prior on the source images was used for blind
estimation of the ROIs. In [22], the mixture model of the source
images pixels was complemented by a convolution model of the
TAC with exponential parametrization of the input function and
the convolution kernels. Another parametrization of the convo-
lution kernels using piecewise linear function [25] has been pre-
sented in [24]. The main disadvantage of explicit parametriza-
tion of the input function and the convolution kernels is that the
true functions may differ from the assumed parametric model if
the parametric model is not sufficiently flexible. A more flex-
ible model was introduced in [26] using sparsity priors [27],
where the only restriction on the convolution kernel is its spar-
sity. However, the proposed method of estimation is incapable
to recover the correct number of underlying sources which re-
sults in artifacts (a single source is estimated as a sum of two
identical sources). In this paper, we use the model of [26]; how-
ever, we propose a more complex estimation method respecting
correlation of the convolution kernels.
The presented method is compared to the state-of-the-art

methods on simulated phantom study as well as clinical data
from renal scintigraphy. Specifically, we present the results of
the blind source separation with positivity constraints (BSS+)
[18], factor analysis with integrated ROIs estimation model
(FAROI) [23], CAM-CM algorithm [22], and the sparse blind
source separation and deconvolution (S-BSS-DC) model [26].
The set of 12 dynamic image sequences of computer phantoms
simulated using Monte Carlo method [28] available at [29] is
used. Advantage of simulated data is a knowledge of true TACs
of respective dynamic structures that can be used to validate
the algorithms. The performance of the methods with clinical
data was tested with 19 dynamic renal studies in the patients
in which reference TACs were obtained by an experienced
physician following the recommended guidelines [30], [31].

II. MATHEMATICAL MODEL

Let us first summarize the assumptions of the model of blind
source separation and deconvolution [26]. In nuclear imaging,
the source of image signal is a tracer (radiopharmaceutical).
In the body, the tracer is distributed in several compartments
of its distribution space. Each compartment is characterized by
its specific dynamics. The compartment may or may not corre-
spond to a specific anatomical structure and may contain one
or several different tissues. Observed data (image sequences
recorded over the period of time after intravenous injection of
the tracer) represent noisy observations of the compartments in
the body that, in the projection images, usually overlap each
other.
In the model, the signal source to be separated from a mix-

ture corresponds to a single compartment. Each compartment
is represented by its image reflecting spatial distribution and by
its TAC reflecting time distribution of its specific signal. TACs
observed over individual compartments result from convolution
of a common input function and the compartment-specific ker-
nels. Both input function and source kernels are unknown.

The aim of analysis is to extract the images and TACs corre-
sponding to individual signal sources (i.e., compartments) from
observed data. In the model [26], the only assumption about
the source images and convolution kernels is their sparsity. It
is assumed that the compartments cover only part of the image
and their kernels only part of the observation period. Sparsity is
modeled using prior distribution known as automatic relevant
determination (ARD) [32]. Therefore, the model is formulated
as a hierarchical Bayesian model.

A. Model of Observed Data

An observed image at time is stored as a vector
where the pixels are stored columnwise. The vector is as-
sumed to be a noisy observation of a superposition of source
images , , weighted by their activities

stored in a row vector . Formally

(1)

where , denotes transposition
of vector or matrix in this paper, and is the observa-
tion noise. A sequence of observed images forms a matrix

where is the number of images in
the sequence. The matrix version of (1) is

(2)

where . The columns of the matrix , i.e.,
vectors , represent the TAC of each source
image. We will use the bar symbol, , to distinguish the th row
of matrix , while will be used to denote the the column.
The noise is assumed to be homogeneous Gaussian with zero
mean and unknown precision (inverse variance)

(3)

Here, denotes Gaussian distribution and denotes identity
matrix of the size . The precision parameter of the normal
density function has a conjugate prior in the form of the Gamma
distribution

(4)

where constants are chosen.
Assumption of the homogeneous noise (3) can be too restric-

tive in modalities with Poisson distributed noise, such as scintig-
raphy. In that case, we may perform scaling of the data [33]. The
original data is scaled using the correspondence analysis

(5)

When this operation is performed, inverse scaling needs to be
applied to the estimates of and for their presentation in
the original scale. Note that scaling (5) is only asymptotically
optimal for Poisson noise, and may introduce bias for low count
scenarios.
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B. Model of Source Images

The only assumption on the images of the underlying com-
partments is that they are not present in all pixels of the observed
sequence. Therefore, we assume that only some elements of the
source images have nonzero value, all other elements are
zeros. The sparse solution is achieved by priors that favor zero
solution when insufficient data are available [27]. Specifically,
we will use the mechanism of automatic relevance determina-
tion (ARD) which is commonly used in hierarchical models
[34]. Each pixel of each underlying source image is assumed
to have truncated Gaussian prior with unknown precision

(6)

(7)

where denotes Gaussian distribution with sup-
port on interval Appendix B, and are chosen con-
stants. Note that each pixel of the source images has an extra
unknown parameter, forming a matrix of the same di-
mensions as .

C. Model of Time-Activity Curves

Accumulation of the tracer in a specific tissue compartment is
commonly modeled by convolution of input function b (usually
associated with TAC of the blood) with a compartment specific
kernels [25]. Therefore, we model TAC of the th source as

(8)

where matrix is defined as

(9)

Using matrix for aggregating convolution kernels as
, we can rewrite the matrix in terms of matrices

and as and rewrite the data model (2) as

(10)

Note that all matrices , and have to be estimated from
the data matrix .
1) Model of Convolution Kernels: Many parametric forms

of the convolution kernels has been proposed [25], [22]. How-
ever, these parametric forms may not fit well to the real data.
Therefore, we once again use only the assumption of sparsity of
the convolution kernel using ARD prior.
The prior distribution of the convolution kernels

is modeled as normally distributed truncated to posi-
tive values

(11)

(12)

where are selected constants. Each pixel of the convolu-
tion kernels thus has its unknown variance, forming a matrix
of the same size as .
2) Model of the Input Function: The input function from

(8) stored in vector is an arbitrary vector of
positive real numbers. The prior distribution of this vector is

(13)

(14)

where denotes zeros matrix of the respected size and con-
stants are chosen.

D. Summary of the Model

The probabilistic model of the sparse blind source separation
and deconvolution is formulated as a joint distribution

(15)

where the elements on the right-hand side are given by (3)–(4),
(6)–(7), and (11)–(14). The task is to find the posterior densi-
ties of the source images, , convolution kernels, , and
input function from the data matrix .

III. ESTIMATION OF THE MODEL PARAMETERS

Following the Bayesian approach, we will estimate the un-
known source images and TACs as posterior expected values.
However, evaluation of the marginal distribution of (15) is an-
alytically intractable. Therefore, we use the Variational Bayes
(VB) approximation [35], [36] also known as ensemble learning
method [18].

A. Variational Bayes Method

Let denote a multivariate observation of a parametric prob-
abilistic model given as , where is a
multivariate parameter. Our information about the is quanti-
fied by a prior distribution, . The Variational Bayes method
[35], is a technique for approximate evaluation of shaping pa-
rameters of posterior distribution . The approximation is
chosen in a restricted form and its shaping parameters
are optimized in order to minimize the Kullback-Leibler diver-
gence to the true posterior

(16)

Theorem 1: Let be the posterior distribution of multi-
variate parameter . Let be an approx-
imate distribution restricted to the set of conditionally indepen-
dent distributions as

(17)
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Then, the minimum of (16)

(18)

is reached for

(19)
where symbol means up to normalizing constant,
means expected value of an argument with respect to dis-
tribution , and denotes complement of in ; hence,

.
Proof of the theorem can be found, e.g., in [18]. Note that

(19) forms a set of implicit functional equations. The solution
involves extra steps, that has been systematized in [35]. We will
need only the following steps: 1) selection of the conditional in-
dependent parameter partitioning (17), 2) identification of the
standard form of the marginals (19), and evaluation of the ana-
lytical moments of (19), and 3) running of the iterative algorithm
for evaluation of shaping parameters of (19).

B. Parameter Partitioning

The first step of the VBmethod is selection of a partitioning of
the parameters of the natural logarithm of the model (15). Some
partitioning may appear naturally as a result of conditional in-
dependence of the likelihood function. Some partitioning has to
be forced to obtain tractability. Specifically, for likelihood func-
tion (3) with convolution model (10), the logarithm is

(20)

where denotes trace of a matrix. Natural partitioning arise
for source images , since the trace (20) can be rewritten in the
following form:

(21)

where is a term aggregating all elements of (20) independent
of . Note that only the elements of rows of the matrix in-
teract with each other. Hence, the posterior is naturally
partitioned into .
This does not happen for the convolution kernels . Using

matrix algebra [37]

where and is the Kronecker
product [37]. We note that all elements of the convolution ker-
nels interact with each other, hence forcing conditional indepen-
dence as it was proposed in [26] will introduce approximation
error. In this paper, we do not impose this restriction and eval-
uate full posterior .
For tractability reasons, we still need to impose conditional

independence between all precision parameters and

their mean values, e.g., . How-
ever, under this condition, the elements of the precision param-
eters also naturally partition into .

C. Standard Forms of the VB Marginals

The VB theorem (19) is applied to (15) and the set of
VB-marginals is established. The recognized standard distribu-
tions for the model are as follows:

(22)

(23)

(24)

(25)

The shaping parameters
of the posterior densities (22)–(25)

are given in Appendix A . They form a set of implicit equations
which will be solved iteratively.

D. Estimation of the Number of Sources

The number of sources can be manually selected for the
whole procedure as a static parameter, however, the results of
separation may be sensitive to this choice. The ARD prior has
been applied as sparsity criterion for selection of the number
of relevant sources, e.g., in [18]. In the proposed model, the
ARD prior is used as sparsity criterion for individual pixels of
the source images. Thus the sparsity at source level would have
to be enforced by an additional parameter, leading to multilevel
or multiresolution priors. This is certainly possible but it would
further complicate the algorithm.
To avoid even more complex prior structures, we propose an

alternative automatic approach for estimation of the number
using the estimate of precision parameter .
Specifically, we note that VB solution of the scalar version of

the model (2), , yields nonzero signal (i.e., )
when [26]. Using this inference bound, the sum of

corresponding to a pixel from the th source, should be
times greater than the noise level

(26)

This observation will be used as a criterion for removal of weak
sources within the iterative procedure. Since removal of a source
influence all others we disallow further removal for the next
50 iterations of the algorithm. The algorithm starts from
sources and terminates if all sources satisfy (26) or the minimum
number of sources is reached. The interval can
be specified by an expert or heuristically. In this paper, we used
heuristics based on differences of singular values of the data
matrix . Specifically, when is less than 95% of , then

. We observed that this starting point for overesti-
mates significantly the true value of . The same heuristics is
used for selection of but the coefficient is set to 75%.
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In general, we recommend to slightly overestimate the
number of of the relevant sources, since the redundant
source would be estimated to be weak or removed by the
automatic criteria (26). If the is chosen lower than the
true number of sources, the sources will be always mixed.
Condition (26) may remove even a valid signal if the number
nonzero elements in is much lower than . Removal of
sources becomes more aggressive with growing .

E. Iterative Algorithm

An iterative solution of the set of implicit equations from
Appendix A is given in Algorithm 1. The algorithm will be
denoted as the sparse blind source separation and vectorized
deconvolution (S-BSS-vecDC). Since VB suffers from local
minima [35], good initial conditions of the algorithm are
required to reach convergence to an acceptable solution. The
parameter most sensitive to its initial estimate is the input
function, . Good results were obtained with the pulse function
or an exponential. The initial shapes of the convolution kernels,
are chosen as unit pulses with different lengths and delays.

Algorithm 1 Iterative S-BSS-vecDC algorithm

1) Initialization:
(a) Initialize constants

(b) Initialize the maximum number of sources, ,
and the minimum number of sources, .

(c) Initialize the input function, , and the convolution
kernels, .

2) Iterate equations from Appendix A until no source is
removed and maximum number of iterations is not
reached:
(a) Compute shaping parameters: , , and

.
(b) Compute shaping parameters: , , and .
(c) Compute shaping parameters: , , and .
(d) Compute shaping parameter: .
(e) If the convergence is reached, compute criterion (26)

for each source and remove source if the criterion
is fulfilled.

3) Report estimates .

The iterations of the shaping parameters and their moments
use equations from Appendix A with the exception of moment

. This moment suffers from numerical instability when
the maximum of the input function is not on the first element.
We adopt the Moore-Penrose pseudoinverse to restore numer-
ical stability. Specifically, we discard singular values which are
smaller than of the mean of all singular values.
MATLAB implementation of Algorithm 1 is available from

http://www.utia.cas.cz/AS/softwaretools/image_sequences
together with documentation and tutorial examples.

IV. EXPERIMENTS AND RESULTS

The proposed algorithm is tested on simulated and clinical
data sets of dynamic renal scintigraphy. The result of estimation
are compared to the results of the competing methods.

A. Competing Methods

All methods in this section provide solution to the blind
source separation problem (1). However, they differ in addi-
tional assumptions (priors) on the source images and TACs.
In the following paragraphs, we briefly summarize the key
assumptions.
1) BSS+: The variational blind source separation

model [18] is based on (3) and (4). The ARD principle is used
only for determination of the number of sources, i.e., the un-
known scalar variance is common to all elements of TACs .
In effect, sparsity of the source images and TACs is not encour-
aged.
2) FAROI: The factor analysis with integrated regions of in-

terests (FAROI) model [23] is an extension of the BSS+ method
to encourage sparse estimates of the source images. An indicator
variable of the same dimension as is introduced, where each
element indicates if the pixel belongs to the zero com-
ponent or nonzero component. The estimation procedure is thus
closely related to clustering algorithms. The number of relevant
sources is estimated using the ARD principle on the TACs as in
the method.
3) CAM-CM: Interpretation of signal superposition as a

mixture model is also used in the CAM-CMmethod [22]. How-
ever, the number of unknown sources is determined for each
pixel. The TACs are modeled as a convolution of parametric
input function and parametric convolution kernels. Both the
input function and the kernels are assumed to have exponential
shape with an unknown rate parameter.
4) S-BSS-DC: The sparse blind source separation and decon-

volution (S-BSS-DC) method [26] is based on the same model
as proposed in this paper. Evaluation of the posterior distribu-
tion was however restricted to the mutually independent convo-
lution kernels as explained in Section III-B.

B. Experiment With Model-Generated Data

Quality of estimation of the proposed method is first val-
idated on a synthetic image sequence that was generated ac-
cording to the model (1). We simulate the data using the ad-
ditional assumptions on the curves required by the CAM-CM
model and using the same images [22]. The size of each image
is 50 50 pixels and 50 time points are simulated

. We simulate three sources: ,
, , and ,

where . The standard deviation of the noise is as-
sumed to be proportional to the signal with coefficient 0.5 such
as , where is random realization
from a normal distribution with mean 0 and standard deviation
1. The ground truth source data are shown in Fig. 1, left, and
are available for download together with the S-BSS-vecDC al-
gorithm.
We compare the estimation results of the CAM-CM,

S-BSS-DC and S-BSS-vecDC for initial value in
order to test the ability of the methods to recover the correct
number of sources. This experiment demonstrates the advan-
tage of S-BSS-vecDC over S-BSS-DC. While the S-BSS-DC
algorithm (Fig. 1, the fifth and the sixth columns) splits the
third source in two almost equal estimates, the S-BSS-vecDC
(Fig. 1, the seventh and the eighth columns) aggregates the
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Fig. 1. Results of blind source separation of synthetic data displayed in the two column format. Source images are in the odd columns and the corresponding
time-activity curves in the even columns. Simulated sources are displayed in columns 1 and 2, followed by the results of separation using the CAM-CM algorithm
(columns 3 and 4), the S-BSS-DC algorithm (columns 5 and 6), and the S-BSS-vecDC (columns 7 and 8). All methods were run with the maximum number of
sources, . Results of the S-BSS-vecDC algorithm with the automatic estimation of the number of sources are displayed in columns 9 and 10.

TABLE I
COMPARISON OF RESULTS FROM FIG. 1 USING MSE AND MAE

activity from the third source into the third estimate and the
fourth estimate is insignificant. Since the activity of the fourth
source is lower than the noise level, it could be automatically
removed using (26), yielding further improvement (Fig. 1, the
ninth and the tenth columns). Note that such criteria would not
be effective for the S-BSS-DC algorithm.
The visual comparison is accompanied with quantitative re-

sults using mean square error (MSE) and mean absolute error
(MAE)

(27)
for each source in Table I , . Here, denotes
elements of the estimated TAC and denotes the simulated
TAC.
For the four sources , the proposed S-BSS-vecDC

algorithm provides the best estimates (bold numbers in Table I ,
middle block) of the first and the third source while the best esti-
mate of the second source is provided by the S-BSS-DCmethod

(in terms of MSE) and by the CAM-CM (in terms of MAE).
None of the algorithms is able to correctly determine the cor-
rect number of sources. However, the proposed extension of the
S-BSS-vecDC algorithm (Section III-D ) correctly detects the
number of sources which results in the best MSE and MAE cri-
teria (Table I , bottom block). For completeness, we also per-
formed evaluation using other methods from Section IV-A . On
these data, none of them provide more accurate results than the
S-BSS-vecDC algorithm.

C. Experiment With Simulated Dynamic Renal Studies

The algorithms were tested with Monte Carlo simulated data
of dynamic renal study [28]. We analyzed 12 scintigraphic se-
quences from [29]. Each sequence consists of 120 images with
the resolution of 128 128 pixels, and is accompanied by the
ground truth (GT) data without tissue background, attenuation,
and noise. Reference TACs thus can be extracted easily without
interference of the contaminating structures.
We use algorithms: , FAROI, S-BSS-DC, and S-BSS-

vecDC. We do not use the CAM-CM algorithm since is has
computational issues with data matrices of this size. The al-
gorithms were applied to each of the two kidneys separately
using rectangular ROIs, yielding 24 sequences of individual left
and right kidneys to be analyzed. For comparison of respective
methods, TACs of renal parenchyma were chosen because they
are clinically important, often difficult to extract from real pa-
tient data, and in this case they could be reliably extracted from
the GT data by an expert physician. Example estimates of renal
parenchyma for all tested algorithms and one kidney sequence
are presented in Fig. 2. The images of renal parenchyma are
in the first row and the corresponding TACs are in the second
row. The solid blue lines indicate the estimated TACs and the
dashed black lines indicate the reference TACs. Statistical com-
parison of all 24 estimates is given in Table II using the average
MSE, denoted as , and the standard deviation, denoted as
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Fig. 2. Source images and time-activity curves corresponding to the renal
parenchyma tissue estimated in simulated renal study using algorithms:

, FAROI, S-BSS-DC, and S-BSS-vecDC. Solid blue lines indicate the
estimated time-activity curves while dashed black lines indicate the reference
time-activity curves.

TABLE II
STATISTICAL COMPARISON OF ESTIMATED AND REFERENCE TACS

OF RENAL PARENCHYMA IN SIMULATED STUDY

. The denotes the average difference (positive dif-
ference means improvement) of the S-BSS-vecDC’s MSE from
that of the competing methods, and denotes the p-value of
the statistical paired sample two-tailed t-test of MSEs from the
S-BSS-vecDC method and from other methods, demonstrating
that the improvement of the S-BSS-vecDC is statistically sig-
nificant.
On the tested data, the proposed S-BSS-vecDC algorithm out-

performs all other used algorithms in term of proximity of the
estimated TACs to those obtained by the experienced physician
from the GT data.

D. Experiment With Clinical Dynamic Renal Studies in
Patients

The same type of experiment as in Section IV-C was per-
formed with real data from dynamic renal scintigraphy. A
set of 19 studies was analyzed and the same parameters as in
Section IV-C were computed. Data of dynamic renal scintig-
raphy in patients were chosen from a large set of anonymized
data considered to be included into the database [29]. The
criterion of choice was clear visibility of dynamic structures.
Each sequence consists of 100–180 images of resolution
128 128 pixels. Rectangular ROI was placed around each
kidney and then processed by , FAROI, S-BSS-DC, and
S-BSS-vecDC algorithms. In this data, true TACs were not
available and a physician experienced in analysis of dynamic

TABLE III
STATISTICAL COMPARISON OF ESTIMATED AND REFERENCE TACS

OF RENAL PARENCHYMA IN CLINICAL DATA

renal studies was asked to extract the curves. The ROIs were
defined manually on a computer screen with a cursor using
anatomical and physiological knowledge, and currently recom-
mended procedure guidelines [30].
The results in terms of MSE are summarized in Table III ,

using the same methodology as in the previous Section. In
case of clinical data used in our experiment, the S-BSS-vecDC
method provided better estimates than any other competing
method, however, the difference from S-BSS-DC is not statis-
tically significant.

V. CONCLUSION

We propose a probabilistic model of dynamic image se-
quences that involves superposition of observed structures in
the recorded images and convolution of time-activity curves
with unknown input function and unknown convolution ker-
nels. This model is used to develop a method of blind source
separation that decomposes the sequence into a sum a source
images and their corresponding time-activity curves. The key
assumption of the method is that the images of the under-
lying tissues and the unknown convolution kernels are sparse.
The assumption of sparsity is incorporated using Bayesian
approach. Specifically, the chosen form of prior probability
distributions of the source images and the convolution kernels
assigns higher probability to sparse structures. Due to the
concept of hierarchical priors, the method also automatically
adjusts all uncertainties in the model with the exception of the
maximum number of sources which remains to be the only
tuning parameter. Hence, the method can be considered as a
general purpose tool for source separation.
To demonstrate separation ability of the proposed method,

it has been applied to 12 simulated dynamic renal studies
with known reference time-activity curves and to 19 clinical
dynamic renal studies in adult patients in which the reference
time-activity curves were extracted by an experienced physi-
cian. With both data sets, the proposed method estimated the
reference time-activity curves with significantly lower errors
than other state-of-the-art methods. Notably, the results were
achieved without any domain-specific assumptions. To test per-
formance of the method and facilitate its validation in analysis
of various dynamic data sets, MATLAB implementation of the
algorithm is available for download.
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APPENDIX A
VB EQUATIONS OF S-BSS-VECDC MODEL

Shaping parameters of posterior distributions (22)–(25) are
given as

Here, denotes a moment of respective distribution, de-
notes a trace of argument, denotes a square matrix with
argument vector on diagonal and zeros otherwise or a vector
composed from diagonal element of argument matrix, de-
notes the matrix of ones of dimension , the auxiliary ma-

trix is defined as ,

and standard moments of required probability distributions are
given Appendix B and, e.g., in [35, Appendix].

APPENDIX B
TRUNCATED NORMAL DISTRIBUTION

Truncated normal distribution of a scalar variable on
interval is defined as

where , , function
is defined as if and
otherwise. is the error function. The moments of truncated
normal distribution are

(28)

(29)
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