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Abstract 
This work provides empirical support for the fractional cointegration relationship between 
daily high and low stock prices, allowing for the non-stationary volatility of stock market 
returns. The recently formalized fractionally cointegrated vector autoregressive (VAR) model 
is employed to explain both the cointegration dynamics between daily high and low stock 
prices and the long memory of their linear combination, i.e., the range. Daily high and low 
stock prices are of particular interest because they provide valuable information about range-
based volatility, which is considered a highly efficient and robust estimator of volatility. We 
provide a comparison of the Czech PX index with other world market indices: the German 
Deutscher Aktienindex (DAX), U.K. Financial Times Stock Exchange (FTSE) 100, U.S. 
Standard and Poor’s (S&P) 500 and Japanese Nihon Keizai Shimbun (NIKKEI) 225 during 
the 2003-2012 period, that is, before and during the financial crisis. We find that the ranges 
of all of the indices display long memory and are mostly in the non-stationary region, 
supporting recent evidence that volatility might not be a stationary process. No common 
pattern is detected among all of the studied indices, and different behaviors are also observed 
in the pre-crisis and post-crisis periods. We conclude that the fractionally cointegrated VAR 
approach allowing for long memory is an interesting alternative for modeling range-based 
volatility. 
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1 Introduction 

Daily high and low stock market prices provide valuable information about range-based 
volatility that is not included in the open and close prices commonly studied by researchers. 
More specifically, the difference between high and low prices, i.e., the range, provides an 
efficient estimator of volatility robust to noise (Parkinson, 1980). To date, stock prices in 
developed markets have generally been considered to be unpredictable and are assumed to 
follow a random walk. Hence, most studies consider stock prices to be integrated of order 1 
(an 𝐼(1) process)2. However, the choice between stationary 𝐼(0)3 and non-stationary 𝐼(1) 
processes can be too restrictive for the degree of integration of daily high and low prices. 
Because high and low prices can be modeled together as a possibly fractionally cointegrated 
relationship (Fiess and MacDonald, 2002; Cheung, 2007), it allows for greater flexibility. 
This idea is especially interesting because the error correction term from the cointegrating 
relationship between high and low prices is the range. Hence, a more general fractional or 

                                                
1 Jozef Barunik gratefully acknowledges support from the Czech Science Foundation Project No. P402/12/G097 DYME—
“Dynamic Models in Economics.” 
2 An  process is a non-stationary process, where only a single differencing is sufficient to obtain stationarity. 
3 An ) process is a stationary process, where no differencing is needed to achieve stationarity. 
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long-memory framework, where the series are assumed to be integrated of order 𝑑 and 
cointegrated of order less than 𝑑, i.e., 𝐶𝐼(𝑑 − 𝑏), where 𝑑, 𝑏 ∈ ℝ and 0 < 𝑏 ≤ 𝑑, could be more 
useful in capturing the empirical properties of data.  
To determine the fractionally cointegrated relationship between highs and lows, we 
implement a fractionally cointegrated vector autoregressive model (FCVAR), as proposed by 
Johansen (2008) and Johansen and Nielsen (2010, 2012). The motivation for utilizing this 
framework is twofold. First, daily highs and lows are assumed to be cointegrated, i.e., in the 
short term they may diverge, but in the long term they have an embedded convergence path. 
Second, their specific linear combination is an efficient volatility estimate, i.e., the range, and 
is assumed to display a long memory.  
Substantial evidence of the presence of long memory has been documented in the literature 
not only in the volatility of asset prices (Ding, Granger and Engel, 1993; Andersen and 
Bollerslev, 1997; Breidt et al., 1998; Kellard et al., 2010; or Garvey and Gallagher, 2012) but 
also in the interest rate differentials, inflation rates, forward premiums, and exchange rates 
(Baillie, 1996). Although the vast literature concludes that volatility is a long-memory 
process, few studies suggest that volatility is a non-stationary process with the long memory 
parameter 𝑑 being greater or equal to 0.5 (Kellard et al., 2010). Yalama and Celik (2012) 
provide an excellent review of the literature studying the long memory properties of volatility 
and document the feature empirically as well. 
This work contributes to the literature through an empirical investigation of world market 
indices, especially of their daily high and low prices, in the fractional cointegration 
framework. Their linear combination, the daily range, is found to be a non-stationary process. 
Whereas Caporin et al. (2013) suggest a fractionally cointegrated framework for modeling 
daily high and low prices in their pioneering work, we present new empirical evidence of the 
long memory behavior of global stock markets. Moreover, we add a long memory analysis 
utilizing different measures and different periods such as pre-crisis and crisis, and thus we 
present new empirical evidence.  
The analysis is performed on four global stock market indices, the U.S. Standard and Poor’s 
(S&P) 500, German Deutscher Aktienindex (DAX), Japanese Nihon Keizai Shimbun 
(NIKKEI) 225, and U.K. Financial Times Stock Exchange (FTSE) 100 index over the 10-
year period 2003-2012. These results are compared to the Czech PX Index4 over the same 
period. Moreover, we study the behavior of the high and low prices in two sub-periods with 
December 2007 as the dividing point. This analysis enables us to compare both cointegration 
and estimated volatility before and during the recent financial crisis. The main result is that 
we find significant evidence of long memory in the daily ranges falling in the non-stationary 
region (except for the PX Index and NIKKEI 225 in the first period). Our results also 
distinguish between the two sub-periods. The long memory estimates during the first period 
of 2003-2007 are generally lower in comparison to the second period, where primarily the 

years 2008 and 2009 seem to increase the long memory. Overall, the PX Index displays the 
lowest estimates of the order of price range integration, and its behavior is very similar to the 
NIKKEI 225 in this respect. The ranges of the S&P 500, FTSE 100 and DAX indices display, 
however, relatively higher orders of integration. Furthermore, we find that the unrestricted 
FCVAR performs better in detecting the stationarity of the range indicated by other applied 
tests than the FCVAR specification with restrictions on the cointegrating vector.  
The remainder of the study is organized as follows. Section 2 describes the motivation for 
using daily high and low prices and descriptions of the data. In the Section 3, we conduct the 
preliminary analysis of daily high and low prices and the range, focusing on their long 
memory properties. Section 4 then suggests an empirical model of fractionally cointegrated 
                                                
4 The PX Index was introduced in March 2006 as a merging of two indices, PX-D and PX 50. The PX Index obtained the 
historical prices from the PX 50 and continued henceforth. 
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daily high and low prices and discusses the main results. Final Section 5 concludes the 
findings.  

2 Motivation and data description 

In this work, we focus on investigating daily high and low prices. By the high price, we 
understand the maximum price observed during the day, and by the low price, we understand 
the minimum price achieved during that day. These prices can be viewed as additional 
information about the change in direction of excess demand (Cheung, 2007). Caporin et al. 
(2013) nicely summarize other reasons why the daily high and low prices are of importance. 
First, daily high and low prices can have a role as a reference level. Stock market agents 
employ these reference levels to make assumptions and predictions about future 
developments and employ daily highs and lows as reference values. Second, daily highs and 
lows can function as a stop-loss indicator and may contain information about liquidity 
provisioning and the price discovery process. Third, high and low prices are more likely to 
correspond to ask and bid quotes, respectively, implying that they may be influenced by 
transaction costs and other market frictions (e.g., price discreteness, stale prices, and tick 
size). Moreover, daily high and low prices tend to react to unanticipated public 
announcements or other unexpected shocks. 
Daily high and low stock prices are primarily valuable as a measure of dispersion, i.e., a 
measure of the deviation from the mean. In financial literature, dispersion measures the 
degree of uncertainty, and thus risk, associated with a particular asset. Parkinson (1980) was 
among the first to show that a variance estimator based on close-to-close returns is a far less 
efficient volatility estimator than the price range defined as a difference between daily high 
and low prices. Alizadeh et al. (2002) further demonstrate that a range-based estimator of 
volatility is highly statistically efficient and robust with respect to several types of 
microstructure frictions because it is much less contaminated by measurement error and 
explains not only the autocorrelation of volatility but also the volatility of volatility. 
Furthermore, Corwin and Schultz (2012) argue that, because daily high and low prices are 
mostly buy and sell trades, respectively, the price range thus represents a fundamental 
volatility because it reflects both the stock’s variance and its bid-ask spread. Alizadeh et al. 
(2002) note that using the range as a volatility proxy has a “long and colorful” history in 
finance (e.g., Garman and Klass, 1980; Parkinson, 1980; Andersen and Bollerslev, 1998; 
Degiannakis and Livada, 2013). More recently, Caporin et al. (2013) find evidence of long 
memory in the ranges of all 30 of the components of the Dow Jones Industrial Average 
(DJIA) index during the 2003-2010 period. 
This work focuses on analysis of the daily high and low prices of four major global indices 
over the 2003-2012 period covering both the calm and financial crisis periods. We consider 
four world indices: the U.S. S&P 500, German DAX, Japanese NIKKEI 225, and U.K. FTSE 
100, available from TICK data, which are examined and compared to the Czech stock market 
index. Moreover, we examine the indices during the entire 10-year period from January 2003 
to December 2012 and as during two sub-periods. The first sub-period covers the pre-crisis 
years from January 2003 until December 2007. This break point has been chosen based on 
the statement of the National Bureau of Economic Research (NBER), which identified 
December 2007 as the peak of pre-crisis economic activity. The subsequent decline in 
economic activity was large enough to be qualified as a recession. The second sub-period 
spans from January 2008 until December 2012 and covers the recent crisis period. We 
synchronize the data with the same time stamps but discard holidays from further analysis. 
Figure 1 depicts the development of daily high and low prices of the PX index and their 
difference – the range. The peak of December 2007 is depicted as a vertical line in the figure. 
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We can see that the PX index was experiencing steep growth in the first period, but at the end 
of 2007, it was severely hit by the crisis. After a stable period from mid-2009 through mid-
2011, another drop followed; however, it was less dramatic than the decline observed at the 
end of 2007. 

 

Figure 1: High and low prices of the PX index (left) and range of the PX index (right) 

The range-based volatility measured as the difference between daily high and low prices is 
higher after the outbreak of the crisis and reaches its maximum at the end of 2008; then it 
gradually returns to its pre-crisis values. A similar pattern emerges for all of the other studied 
indices5. With the DAX, we document a slightly different behavior, mainly after the crisis, 
when it grows steadily following the drop in 2007, with the exception of a short period of 
decline at the end of 2011. This pattern is also the case with the S&P 500. However, the 
FTSE 100 displays only a very slight or no growth after the crisis, and the NIKKEI 225 
actually declines.  
When we compare the behavior of all of the studied markets, we find that they are influenced 
by similar factors; however, the reaction to the crisis is quite different for each of them. All of 
the indices experienced rapid growth during the 2003-2007 period followed by a steep 
downturn at the end of 2007. The DAX and PX indices are the two indices least affected by 
the crisis. The DAX is also the first index in our sample to recover from the crash and 
remains the best-performing one. On the other hand, the PX index is the second-least hit by 
the crisis, but is the second-worst performing index as of the end of 2012. Until mid-2009, it 
closely follows the DAX, but then it loses pace and falls at the end of 2011. The other indices 
also experience this fall, but in contrast to the PX Index and NIKKEI 225, they are able to 
resume their previous growth. Although the NIKKEI 225 outperforms the remaining indices 
slightly before the crisis, this is no longer true after the crisis, when its performance is the 
worst; it never quite recuperates from the crisis. Since the beginning of 2012, the S&P 500 
begins to catch up with DAX, and the FTSE 100 follows close behind. Overall, we can see 
that before the crisis, all of the indices are growing together, but the reactions to the crisis 
vary significantly.  

3 Preliminary analysis of daily high, low prices and range 

Following the intuition that daily high and low prices are non-stationary and share a common 
trend, Cheung (2007) proposed to model them as cointegrated time series. While this is the 
first step for our modeling strategy, we first examine the properties of the daily high and low 
log-prices employing 𝑝𝑡

𝐻 = log 𝑃𝑡
𝐻  and 𝑝𝑡

𝐿 = log 𝑃𝑡
𝐿 , and, as defining their difference, the 

                                                
5 Figures for all of the remaining series can be found in the Appendix (Figure 3 for the DAX, Figure 4 for the FTSE 100, 
Figure 5 for the NIKKEI 225, and finally, Figure 6 for the S&P 500). 

2004 2006 2008 2010 2012
6

6.5

7

7.5

8
High and Low Log−Prices of PX Index 

 

 
p
t
H

p
t
L

2004 2006 2008 2010 2012
0

0.05

0.1

0.15

0.2
Range of PX Index 



 5 

range as 𝑅𝑡 = 𝑝𝑡
𝐻 − 𝑝𝑡

𝐿. We also define a vector 𝑋𝑡 ≡ 𝑝𝑡
𝐻, 𝑝𝑡

𝐿 ′, which will be used throughout 
the remainder of the study.  
The Augmented Dickey-Fuller (ADF) test for daily high and low prices reported in the 
Appendix confirm the expected result, that the series are unit root processes. Their difference, 
the range, is stationary; thus, daily high and low prices are cointegrated, as proposed by 
Cheung (2007). There are, however, two exceptions. We find that the daily high and low 
prices of the DAX and FTSE 100 in the first period are at the boundary of trend-stationarity. 
Figure 2 displays the autocorrelation function (ACF) of the DAX range for all of the 
examined periods. We employ this plot to motivate the need to improve the analysis of 
Cheung (2007). While the ADF test is designed to test for the presence of a unit root against 
the I(0) alternative, it has very low power against fractional processes. Despite the 
stationarity of the range in all periods, the ACF of the range displays a high degree of 
persistence. As motivated by Caporin et al. (2013), the simple cointegration analysis may not 
be satisfactory in explaining the relationship between high and low prices. ACF plots for all 
remaining tested series show similar behavior and are reported in the Appendix; all of the 
autocorrelations are significant even after 40 lags, except for the PX Index in the first period. 
 

 

 

 

 

 

 

 

Figure 2: 
ACF of the DAX range in (a) 2003 – 2012, (b) 2003 – 2007 and (c) 2008 – 2012 

In addition, we employ the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test of Kwiatkowski 
et al. (1992), which has greater power in situations when the tested series are close to being a 
unit root. The results reported in the Appendix confirm non-stationarity for daily high and 
low prices. However, the results are different for the ranges that are non-stationary, according 
to the KPSS test as well. While the ranges seem to be stationary according to the ADF test, 
we believe that this result points to the presence of long memory in the ranges. Hence, long 
memory needs to be utilized as a proper framework for modeling the high and low prices 
relationship. 
3.1 Long memory properties 
While Cheung (2007) first introduced the idea of modeling daily high and low prices as a 
cointegrated relationship, Caporin et al. (2013) first noted that the “error correction” term, the 
range, arising from this analysis may contain long memory. Thus, they proposed a 
fractionally cointegrated model to capture this feature. The preliminary analysis of our data 
set confirms the need to generalize to the fractional cointegration framework. Before we 
introduce the actual analysis, we briefly introduce the basic notion of the models here. 
Long-memory models have been used by the natural sciences (specifically, hydrology and 
climatology) since the 1950s. They drew the attention of econometricians in approximately 

1980, when Granger (1980) and Granger and Joyeux (1980) developed the autoregressive 
fractionally integrated moving average (ARFIMA) and Geweke and Porter-Hudak (1983) 
proposed a technique for estimating the long memory parameter. Later, the fractionally 
integrated generalized autoregressive conditional heteroskedasticity (GARCH) (𝑝, 𝑑, 𝑞) 
(FIGARCH) was proposed by Baillie (1996) to capture the slowly decaying autocorrelation 

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

Lag

 

(a)

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

Lag

 

(b)

0 20 40
−0.2

0

0.2

0.4

0.6

0.8

Lag

 

(c)



 6 

functions of volatility. Substantial evidence of the presence of long memory has been 
demonstrated in the literature on financial data such as the volatility of asset prices, interest 
rate differentials, inflation rates, forward premiums, and exchange rates (Baillie, 1996; Ding, 
Granger and Engel, 1993; Andersen and Bollerslev, 1997; Breidt et al., 1998; Kellard et al., 
2010; or Garvey and Gallagher, 2012).  
We can define a long-memory process as a weakly stationary process with an autocorrelation 
function 𝜌(∙)  having hyperbolic decay (Brockwell and Davis, 1991), 𝜌(ℎ)~𝐶 ∙ ℎ!𝑑!!  as 
ℎ → ∞, 
where 𝐶 ≠ 0, 𝑑 < 0.5 . In contrast, a weakly stationary process has short memory if its 
autocorrelation function is geometrically bounded.  
Consider a vector 𝑋𝑡 holding 𝐼(1) elements as a cointegrated vector if there exists a linear 
combination 𝛽!𝑋𝑡 that is an 𝐼(0) process. Robinson and Yajima (2002) note that the possible 
existence of a long-run, stable relationship among non-stationary series 𝑋𝑡 does not depend 
on whether the series are 𝐼(1). The need for a flexible approach is solved by considering an 
𝐼(𝑑) series, i.e., a series integrated of order 𝑑, with a real-valued 𝑑. Robinson and Yajima 
(2002) define the series 𝑋𝑡 as an 𝐼 𝑑  process if 𝑢𝑡 = (1 − 𝐿)𝑑𝑋𝑡 is 𝐼(0), where 𝐿 is the lag 
operator and 𝑑 < 0.5 . For 𝑑 ≥ 0.5 , we define a non-stationary 𝐼 𝑑  series 
𝑋𝑡 = 1 − 𝐿 !𝑑𝑢𝑡Ι{𝑡 ≥ 1}, 𝑡 = 0,±1,±2,…, where Ι  is the indicator function (for details, 
see, e.g., Shimotsu and Phillips, 2005). If 𝑑 > 0, we say that the process has long memory, 
and if 𝑑 < 0, we say that the process is anti-persistent. One can easily see that if 𝑑 = 1, then 
the process represents a random walk, and if 𝑑 = 0,, then the process is stationary. The 
parameter 𝑑 is called the fractional differencing parameter, fractional degree of persistence or 
fractional order of integration, and it describes the memory properties of 𝑋𝑡 (Robinson and 
Yajima, 2002). 
 
  Bandwidths 𝐸𝐿𝑊𝑚!𝑇!.! 𝐸𝐿𝑊𝑚!𝑇!.! 
  𝑇 𝑇0.5   𝑇0.6 𝑑𝐻 𝑑𝐿 𝒅𝑹 s.e. 𝑑𝐻 𝑑𝐿 𝒅𝑹 s.e. 
S&P 500            
 2003-2012 2517 50 109 1.0972 1.0709 0.7626 0.0707 1.0442 1.0036 0.6216 0.0479 
 2003-2007 1258 35 72 0.9094 0.8547 0.5870 0.0845 0.9265 0.8932 0.5740 0.0589 
 2008-2012 1259 35 72 1.1428 1.0853 0.6643 0.0845 1.0512 1.0130 0.6867 0.0589 
FTSE 100            
 2003-2012 2526 50 110 0.9990 0.9763 0.6575 0.0707 0.9673 0.9369 0.6324 0.0477 
 2003-2007 1264 35 72 0.8518 0.8182 0.6220 0.0845 0.8539 0.8357 0.6028 0.0589 
 detrending    0.5765 0.5877   0.8138 0.8011   
 2008-2012 1262 35 72 1.0377 1.0026 0.6278 0.0845 0.9799 0.9568 0.6169 0.0589 
DAX            
 2003-2012 2556 50 110 1.0221 1.0055 0.5884 0.0707 1.0434 1.0058 0.5887 0.0477 
 2003-2007 1274 35 72 0.9711 0.9158 0.6142 0.0845 0.9817 0.9461 0.5968 0.0589 
 detrending    0.9076 0.8451   0.9630 0.9289   
 2008-2012 1282 35 73 1.0913 1.0766 0.7001 0.0845 1.0237 1.0057 0.6229 0.0585 
NIKKEI 225            
 2003-2012 2543 49 108 1.0572 1.0372 0.4833 0.0714 1.0564 1.0428 0.6493 0.0481 
 2003-2007 1229 35 71 0.9909 0.9630 0.4955 0.0845 0.9755 0.9447 0.3916 0.0593 
 2008-2012 1224 34 71 1.1082 1.1018 0.6131 0.0857 1.0697 1.0544 0.6044 0.0593 
PX            
 2003-2012 2494 49 109 1.0990 1.0876 0.5158 0.0714 1.1659 1.1367 0.5197 0.0479 
 2003-2007 1235 35 71 0.8911 0.8601 0.2811 0.0845 1.0174 0.9659 0.4455 0.0593 
  2008-2012 1259 35 72 1.2337 1.2189 0.5723 0.0845 1.1216 1.0986 0.5165 0.0589 
Table 1: Exact local Whittle (ELW) estimator of the fractional degree of integration parameter 𝑑 based on the 
2-step ELW estimator for the high prices (𝑑𝐻), low prices (𝑑𝐿), and their difference, the range (𝑑𝑅). We 
consider two bandwidths 𝑚, determining the number of periodogram ordinates employed in estimation equal to 
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𝑚=𝑇0.5 and 𝑚=𝑇0.6, similar to Nielsen and Shimotsu (2007). For the possibly trend-stationary series (DAX in 
the first period and FTSE 100 in the first period), we also include the results of the 2-step ELW estimator with 
prior detrending. 
 
There are several methods of estimating the fractional degree of persistence. In our analysis, 
we employ two semi-parametric methods, a univariate exact local Whittle estimator (ELW) 
proposed by Shimotsu and Phillips (2005) and a procedure proposed by Geweke and Porter-
Hudak (GPH) (1983). Because we are estimating the order of integration for two series (daily 
high and low prices), we also test for the equality of integration orders later in this study 
because this is a condition for further analysis. 
The exact local Whittle (ELW) estimator proposed by Shimotsu and Phillips (2005) is 
consistent in both situations, when cointegration is present as well as absent in the tested 
series. This estimator is also applicable to both stationary and non-stationary cases, which 
removes the limitation of the original tests proposed by Robinson and Yajima (2002) working 
under stationary data only. It also improves the original local Whittle (LW) estimator whose 
asymptotic theory is discontinuous for the values of 𝑑 = 3/4 and 𝑑 = 1. 
The results in Table 1 support our two initial hypotheses. First, the daily highs and lows are 
not stationary. The order of integration is generally close to 1; however, in the full period and 
in the second sub-period, unitary integration is substantially exceeded. Only in 25 cases out 
of 60 is the integration order of daily highs and lows smaller than 1. The lowest values of 
integration of daily highs and lows are achieved in the first period. The DAX and the FTSE 
100 remain non-stationary even for the detrended case, which is in line with the KPSS test, 
and hence we may conclude that high and low prices are non-stationary. The difference 
between high and low prices (the range) is mostly non-stationary and displays long memory 
with parameter 𝑑𝑅 > 0.5. As the robustness check, we also compute the fractional degree of 
integration on the data excluding the years 2008 and 2009. These data display order of 
integration that is lower than the second period but higher than the first period. Because the 
different sample lengths make it difficult to compare the results statistically, we do not 
present the full results here, but we can provide them upon request instead.  
The results for the PX Index are different from the other indices because the range is in the 
stationary region in the first period. This finding is also true for the Japanese NIKKEI 225, 
but not for the other indices because its range is non-stationary in all of the studied periods. 
This finding confirms the observations from the ACF of the PX and NIKKEI 225.  
 
  Bandwidths 𝐺𝑃𝐻𝑚!𝑇!.! 𝐺𝑃𝐻𝑚!𝑇!.!  
  𝑇 𝑇0.5   𝑇0.6 𝑑𝐻 𝑑𝐿 𝒅𝑹 𝑑𝐻 𝑑𝐿 𝒅𝑹 s.e. 
S&P 500           
 2003-2012 2517 50 109 1.0261 1.0202 0.7646 1.0819 1.0593 0.6742 0.0256 
 2003-2007 1258 35 72 1.0921 1.0819 0.5204 1.0914 1.0945 0.6778 0.0362 
 2008-2012 1259 35 72 1.2206 1.2483 0.7526 1.0390 1.0398 0.7211 0.0361 
FTSE 100           
 2003-2012 2526 50 110 1.0187 1.0095 0.7095 1.0524 1.0306 0.7123 0.0255 
 2003-2007 1264 35 72 1.0299 1.0157 0.5145 1.1522 1.1606 0.5960 0.0361 
 detrending    0.6543 0.6425  0.6674 0.6732   
 2008-2012 1262 35 72 1.1200 1.0774 0.7387 0.9274 0.9292 0.7010 0.0361 
DAX           
 2003-2012 2556 50 110 1.0756 1.0647 0.6518 1.1018 1.1023 0.7059 0.0254 
 2003-2007 1274 35 72 1.0695 1.0623 0.8031 1.0768 1.0819 0.8264 0.0359 
 detrending    0.7396 0.7131  0.8819 0.8758   
 2008-2012 1282 35 73 1.1732 1.1692 0.7099 0.9912 0.9828 0.7384 0.0358 
NIKKEI 225           
 2003-2012 2543 49 108 1.0696 1.0841 0.4989 1.0753 1.0869 0.6589 0.0254 
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 2003-2007 1229 35 71 1.0403 1.0310 0.4627 1.0703 1.0590 0.4013 0.0366 
 2008-2012 1224 34 71 1.2168 1.1852 0.7009 1.0606 1.0344 0.7841 0.0367 
PX           
 2003-2012 2494 49 109 1.0653 1.0673 0.5765 1.0871 1.0859 0.6167 0.0257 
 2003-2007 1235 35 71 1.0166 1.0159 0.2106 1.0158 1.0128 0.3155 0.0365 
 2008-2012 1259 35 72 0.8935 0.9182 0.7603 0.8478 0.8336 0.5805 0.0361 
Table 2: GPH estimator of the fractional degree of integration for the high prices (𝑑𝐻), low prices (𝑑𝐿), and 
their difference, the range (𝑑𝑅). The bandwidth parameters are chosen in the same manner as for the ELW 
estimator. 
 
Table 2 presents complimentary results obtained with the Geweke and Porter-Hudak GPH) 
(1983) estimator. In the first period, the order of integration for the prices of FTSE 100 is 
approximately 0.65 in both specifications, and in the case of the DAX, it is even higher. This 
finding supports the previous results; hence, for the remainder of the study, we consider these 
two series non-stationary and employ them in their original form (without detrending). The 
rest of the GPH estimates generally support the previous findings. First, the integration orders 
of daily highs and lows are close to 1, and second, the range is not integrated of order 0 and 
displays long memory.  
However, we can observe some differences between the two estimation procedures. The GPH 
estimates of the integration orders of daily highs and lows utilizing each bandwidth are much 
closer to each other than the ELW estimates. However, if we look at the first (calmer) period, 
the ELW estimates the integration orders of daily highs and lows below 1, but GPH estimates 
are mostly greater than 1 (overall, in only 8 cases out of 60 are the GPH integration orders of 
daily highs and lows smaller than 1). Surprisingly, from the GPH results for the 𝑚 = 𝑇!.! 
bandwidth, one would believe that the prices in the second (after-crisis) period are closer to 
0.5, indicating a stationarity region, than in the first (pre-crisis) period, although they remain 
non-stationary. If we compare this result with results using the 𝑚 = 𝑇!.! bandwidth, we arrive 
at the opposite conclusion. 
The estimates of integration orders of the range vary substantially between the two 
specifications of bandwidth. Similarly to the ELW estimator, in the case of the NIKKEI 225 
for the full period, the choice of bandwidth changes the conclusion about the stationarity of 
the range. In 24 cases out of 30, the GPH estimator provides higher estimates of the long 
memory of the range than the ELW estimator. Among the indices, the integration orders of 
range vary substantially, from 0.21 for the PX Index in the first period up to 0.83 for the 
DAX in the same period. The ranges of the PX Index and of the NIKKEI 225 are definitely 
stationary in the first period and non-stationary in the others. The ranges of the other indices 
are non-stationary in all periods. One can also observe the large difference between the ELW 
and GPH estimates of the integration order of the range of the DAX in the first period: the 
GPH estimate is more than 30% higher than the ELW estimate with the same bandwidth 
specification. The GPH estimate is more consistent with the findings from the inspection of 
the DAX autocorrelation function than the ELW estimate. 
Overall, we can conclude that the results are sensitive to both the selected estimator (ELW or 
GPH) and to the bandwidth parameter. However, it is clear that the daily high and low prices 
are not stationary and display long memory. The range also displays long memory, but in 
some cases, it is in the stationary region.  
 
3.2 Testing the equality of integration orders 
The presence or absence of cointegration is not known when we estimate the fractional 
integration orders. Nielsen and Shimotsu (2007) present the possibility of testing the equality 
of integration orders by designing two test hypotheses: the pairwise equality of the 
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integration orders and the equality of all of the integration orders. For each hypothesis, a test 
statistic is defined. However, in our bivariate case, these two possible hypotheses collapse 
into one, allowing us to only focus on the hypothesis of equality of all of the integration 
orders: ℋ!: 𝑑𝐻 = 𝑑𝐿 = 𝑑∗. 
Under the null hypothesis, Nielsen and Shimotsu (2007) prove that, if the variables are 
cointegrated (i.e., their cointegration rank is 𝑟 = 1), then the test statistic 𝑇! should converge 
in probability to 0. However, if they are not cointegrated (𝑟 = 0), then under the null 
hypothesis, the test statistic 𝑇!  should converge in distribution to the chi-quadrat distribution. 
This relationship means that, if the value of the test statistic 𝑇! is significantly large with 
respect to the chi-quadrat, then we can take this as evidence that the null of the equality of 
integration orders is rejected. 
Table 3 presents the test statistics for testing the equality of integration orders of daily high 
and low prices. For each index and time period, we present two test statistics; the first is 
estimated utilizing the 𝑇!.!  bandwidth, and the second is estimated utilizing the 𝑇!.! 
bandwidth. Because the maximum test statistic is 1.3361 and the lowest critical value of chi-
quadrat distribution with one degree of freedom is 2.71 (for the 90% confidence interval), we 
cannot reject the null hypothesis of equality of the integration orders for all tested series. This 
implies that we can perform the FCVAR estimation with the same degree of integration 
orders 𝑑𝐻 = 𝑑𝐿. 
 
  Bandwidths 𝑇0  𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 
  𝑇 𝑇0.5   𝑇0.6 𝑇0(𝑚 = 𝑇0.5)   𝑇0(𝑚 = 𝑇0.6) 
S&P 500      
 2003-2012 2517 50 109 0.2636 1.3361 
 2003-2007 1258 35 72 0.7113 0.5400 
 2008-2012 1259 35 72 0.8033 0.7043 
FTSE 100      
 2003-2012 2526 50 110 0.1979 0.7689 
 2003-2007 1264 35 72 0.2716 0.1596 
 2008-2012 1262 35 72 0.3005 0.2635 
DAX      
 2003-2012 2556 50 110 0.1041 1.1610 
 2003-2007 1274 35 72 0.7085 0.6007 
 2008-2012 1282 35 73 0.0525 0.1604 
NIKKEI 225      
 2003-2012 2543 49 108 0.1493 0.1517 
 2003-2007 1229 35 71 0.1919 0.4660 
 2008-2012 1224 34 71 0.0096 0.1129 
PX      
 2003-2012 2494 49 109 0.0488 0.6988 
 2003-2007 1235 35 71 0.2329 1.2668 
 2008-2012 1259 35 72 0.0538 0.2520 
Table 3: Test statistics for the equality of integration orders. 

4 An empirical model of fractionally cointegrated daily high and low 
prices 

Preliminary analysis suggests that the range displays long memory and that the integration 
orders of daily high and low prices are the same; hence, we can continue with the empirical 
fractionally cointegrated VAR model for the daily highs and lows. The fractionally 
cointegrated vector error correction model (FVECM) or fractionally cointegrated VAR 



 10 

(FCVAR) was discussed in the work of Granger (1986) and formalized recently by Johansen 
(2008) and Johansen and Nielsen (2010, 2012). The main distinction from the classical 
cointegration analysis is that the generalized model allows 𝑋𝑡 to be fractional of order 𝑑 and 
cofractional of order 𝑑 − 𝑏; that is, 𝛽!𝑋𝑡 should be fractional of order 𝑑 − 𝑏 ≥ 0. In other 
words, fractional cointegration assumes the existence of a common stochastic trend, which is 
integrated of order 𝑑, and the short-term departures from the long-run equilibrium being 
integrated of order 𝑑 − 𝑏.  
Following Johansen and Nielsen (2012) and Nielsen and Morin (2012), we describe the 
model in two steps. First, the usual lag operator and the difference operator are replaced by 
the fractional lag operator and fractional difference operator, 𝐿𝑏 = 1 − Δ𝑏 and Δ𝑏 = 1 − 𝐿 𝑏, 
respectively. The fractional difference operator is defined by the binomial expansion 
Δ𝑏𝑍𝑡 = −1 𝑛 𝑏

𝑛
!
𝑛!! 𝑍𝑡!𝑛. Second, the resulting model is applied to 𝑍𝑡 = Δ𝑑!𝑏𝑋𝑡. Thus, a 

fractionally cointegrated VARd,b(p) model for a vector of high and low prices 𝑋𝑡 ≡ 𝑝𝑡
𝐻, 𝑝𝑡

𝐿 ′, 
is defined as 
 

Δ𝑑𝑋𝑡 = Δ𝑑!𝑏𝐿𝑏𝛼𝛽!𝑋𝑡 + Γ𝑖Δ𝑑𝐿𝑏
𝑖 𝑋𝑡

𝑝

𝑖!!

+ 𝜀𝑡, 𝑡 = 1,… 𝑇,  

where 𝜀𝑡  is an 𝑖. 𝑖. 𝑑. 0,𝛺 , with 𝛺  positive-definite variance matrix, and 𝛼  and 𝛽  are 2×𝑟 
matrices, 0 ≤ 𝑟 ≤ 2, 𝑑 ≥ 𝑏 > 0.  Non-zero mean data, e.g., 𝑌𝑡 = 𝜇 + 𝑋𝑡  can be modeled as 
Δ𝑎𝑌𝑡 = Δ𝑎 𝜇 + 𝑋𝑡 = Δ𝑎𝑋𝑡 because Δ𝑎1 = 0 for 𝑎 > 0. 𝑌𝑡 and thus satisfies the same equations 
as 𝑌𝑡 = 𝜇 + 𝑋𝑡. This relationship means that the model with 𝑑 > 𝑏 is invariant to the inclusion 
of a restricted constant term 𝜌. Therefore, we consider the inclusion of a constant term only in 
the model with 𝑑 = 𝑏: 
 

Δ𝑑𝑋𝑡 = 𝐿𝑑𝛼 𝛽!𝑋𝑡 + 𝜌! + Γ𝑖Δ𝑑𝐿𝑑
𝑖 𝑋𝑡

𝑝

𝑖!!

+ 𝜀𝑡, 𝑡 = 1,… 𝑇,  

Both models include the standard cointegrated VAR model as the special case when 
𝑑 = 𝑏 = 1. The cointegration as well as adjustment towards equilibrium is more general 
because the model incorporates both fractional integration and cointegration. 𝑋𝑡 is integrated 
of order 𝑑, and 𝑏 is the strength of the cointegrating relationships (a higher 𝑏 means less 
persistence in the cointegrating relationships; 𝑏 can also be called the cointegration gap). 
Moreover, if 𝑑 − 𝑏 < 1/2, then 𝛽!𝑋𝑡 is asymptotically a zero-mean stationary process. If we 
write Π = 𝛼𝛽′, where the 2×𝑟 matrices 𝛼 and 𝛽 with 𝑟 ≤ 2 are assumed to have full column 
rank 𝑟, the columns of 𝛽 are then the 𝑟 cointegrating (cofractional) relationship determining 
the long-run equilibrium. The rank 𝑟 is called the cointegration or cofractional rank, the 
parameter 𝛼 determines the speed of adjustment towards the equilibrium, the parameters 
Γ = (Γ!,… , Γ𝑝) govern the short-run dynamics, and the parameter 𝜌 is the restricted constant 
term (because the constant term in the model is restricted to be of the form 𝜇 = 𝛼𝜌!) and is 
interpreted as the mean level of the long-run equilibrium. In the special case when 𝑑 = 𝑏, 
(𝛽!𝑋𝑡 + 𝜌!)  is a zero-mean process of fractional order zero. The model parameters are 
estimated using the procedure6 outlined in Johansen and Nielsen (2012). 
 

4.1 Testing cointegration rank  
The traditional tests for cointegration proposed by Johansen (1991) are not applicable in the 
presence of long memory. Instead, more recent tests allowing for fractional cointegration 
should be applied. Time series 𝑋𝑡 is said to be fractionally cointegrated 𝐶𝐼(𝑑, 𝑏) if 𝑋𝑡 has 𝐼(𝑑) 
elements and for some 𝑏 > 0, there exists 𝛽 such that 𝛽!𝑋𝑡 is integrated of order (𝑑 − 𝑏). In our 
work, we use two cointegration rank tests proposed by Nielsen and Shimotsu (2007) and 
                                                
6 For the estimation, we employ the software available from the authors Nielsen and Morin (2012). 
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Johansen and Nielsen (2012). The cointegration rank determination procedure proposed by 
Nielsen and Shimotsu (2007) extends the procedure found in Robinson and Yajima (2002) 
because it allows for both stationary and non-stationary fractionally integrated processes. The 
ability to consider any value of the fractional differencing parameter 𝑑 follows from the 
application of the exact local Whittle analysis of Shimotsu and Phillips (2005). The exact 
local Whittle estimate of 𝑑 is then employed to examine the rank of the spectral density 
matrix of the 𝑑’th differenced process around the origin to provide a consistent estimate of 
the cointegration rank. This semi-parametric method only requires information about the 
behavior of the spectral density matrix around the origin, but it also relies on the choice of the 
bandwidth and threshold parameters. However, this approach does not require the 
cointegrating vectors to be estimated to determine the cointegration rank. 
Table 4 summarizes the results indicating that there is one cointegrating relationship. 𝐿 0  
and 𝐿 1  are the values of the loss function evaluated with regard to a cointegration rank of 0 
or 1. The cointegration rank 𝑟 is then determined by the 𝑎𝑟𝑔 𝑚𝑖𝑛   of 𝐿 𝑢 . In all cases, the loss 
function 𝐿 1  is smaller than 𝐿 0 , implying that there is exactly one fractionally 
cointegrating relationship between the daily high and low prices. 
In addition, we also utilize the testing procedures of Johansen and Nielsen (2012) and Nielsen 
and Morin (2012). In the fractionally cointegrated VAR model, we test the hypothesis 
ℋ𝑟 ∶ 𝑟𝑎𝑛𝑘 Π = 𝑟 against ℋ𝑛 ∶ 𝑟𝑎𝑛𝑘 Π = 𝑛. Let 𝐿 𝑑, 𝑏, 𝑟  be the profile likelihood function 
given a rank 𝑟, where (𝛼, 𝛽, Γ) have been concentrated out by regression and reduced rank 
regression (see Johansen and Nielsen, 2012, p. 23). In the case of the model with a constant, 
we test ℋ𝑟 ∶ 𝑟𝑎𝑛𝑘 Π, µμ = 𝑟 against ℋ𝑛 ∶ 𝑟𝑎𝑛𝑘 Π, µμ = 𝑛, and the profile likelihood function 
given rank 𝑟 is then 𝐿 𝑑, 𝑟 , where again the parameters (𝛼, 𝛽, 𝜌, Γ) have been concentrated 
out.7 
 
  Eigenvalues Rank estimates 
     𝑣(𝑇) = 𝑚!

!!.!" 𝑣(𝑇) = 𝑚!
!!.!" 

  𝑑∗ 𝛿! 𝛿! 𝐿(0) 𝐿(1) 𝑟 𝐿(0) 𝐿(1) 𝑟 
S&P 500          
 2003-2012 1.0239 0.3169 0.0010 -1.7117 -1.8491 1 -0.3872 -1.1868 1 
 2003-2007 0.9099 0.2151 0.0009 -1.6561 -1.8197 1 -0.3553 -1.1694 1 
 2008-2012 1.0321 0.5076 0.0022 -1.6561 -1.8189 1 -0.3553 -1.1686 1 
FTSE 100          
 2003-2012 0.9521 0.4360 0.0010 -1.7117 -1.8511 1 -0.3872 -1.1889 1 
 2003-2007 0.8448 0.3286 0.0014 -1.6561 -1.8194 1 -0.3553 -1.1691 1 
 2008-2012 0.9684 0.6313 0.0018 -1.6561 -1.8222 1 -0.3553 -1.1718 1 
DAX          
 2003-2012 1.0246 0.5136 0.0017 -1.7117 -1.8491 1 -0.3872 -1.1869 1 
 2003-2007 0.9639 0.4063 0.0025 -1.6591 -1.8172 1 -0.3569 -1.1662 1 
 2008-2012 1.0147 0.7520 0.0029 -1.6591 -1.8217 1 -0.3569 -1.1706 1 
NIKKEI 225          
 2003-2012 1.0496 0.4847 0.0011 -1.7099 -1.8504 1 -0.3861 -1.1885 1 
 2003-2007 0.9601 0.4551 0.0010 -1.6561 -1.8235 1 -0.3553 -1.1731 1 
 2008-2012 1.0621 0.6491 0.0021 -1.6529 -1.8199 1 -0.3537 -1.1703 1 
PX          
 2003-2012 1.1513 0.3563 0.0009 -1.7099 -1.8496 1 -0.3861 -1.1877 1 
 2003-2007 0.9917 0.4132 0.0016 -1.6561 -1.8200 1 -0.3553 -1.1696 1 
 2008-2012 1.1101 0.5811 0.0035 -1.6561 -1.8159 1 -0.3553 -1.1656 1 
Table 4: Fractional cointegration rank test by Nielsen and Shimotsu (2007). We report the common integration 
order 𝑑∗, which is used in the fractional cointegration analysis and is simply computed as an average of the 
estimated integration orders of daily high and low prices from the ELW estimator based on a given bandwidth. 
Eigenvalues of the estimated statistics are reported as well.  
 

                                                
7 The model with an inclusion of a constant is considered only when  and that is why the profile likelihood function depends 
only on the given rank  and the parameter . 
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We maximize the profile likelihood function under both hypotheses ℋ𝑟  and ℋ𝑛 ; the 
likelihood ratio (LR) statistic is 𝐿𝑅𝑇 𝑞 = 2 log(𝐿( 𝑑𝑛, 𝑏𝑛, 𝑛)/𝐿(𝑑𝑟, 𝑏𝑟, 𝑟)), where 𝑞 = 𝑛 − 𝑟 and 
𝐿 𝑑𝑛, 𝑏𝑛, 𝑛 = max𝑑,𝑏 𝐿(𝑑, 𝑏, 𝑛) ,𝐿 𝑑𝑟, 𝑏𝑟, 𝑟 =   max𝑑,𝑏 𝐿(𝑑, 𝑏, 𝑟), similarly for the model with a 
constant. The asymptotic distribution of 𝐿𝑅𝑇 𝑞  depends both qualitatively and quantitatively 
on the parameter 𝑏 and on 𝑞 = 𝑛 − 𝑟. This dependence on the unknown parameter 𝑏 makes the 
empirical analysis more complicated; however, MacKinnon and Nielsen (2012) provide 
asymptotic critical values for the LR rank test. In the case of “weak cointegration,” when 
0 < 𝑏 < 1/2, 𝐿𝑅𝑇 𝑞  has a standard asymptotic distribution, 𝐿𝑅𝑇 𝑞

𝐷
𝜒!(𝑞!). The situation 

is, however, different when 1/2 < 𝑏 ≤ 𝑑. Then, the asymptotic theory is nonstandard and 

𝐿𝑅𝑇 𝑞
𝐷
Tr 𝑑𝑊 𝑠 𝐹′ 𝑠 𝐹 𝑠 𝐹′ 𝑠 𝑑𝑠

!

!

!!!

!
𝐹 𝑠 𝑑𝑊′(𝑠)
!

!
, 

where the vector process 𝑑𝑊 is the increment of the ordinary vector Brownian motion of 
dimension 𝑞 = 𝑛 − 𝑟. The vector 𝐹 depends on deterministics in a similar way as the CVAR 
model in Johansen (1996). If we do not include any deterministic terms in the model, then 
𝐹 𝑢 = 𝑊𝑏 𝑢 . If the restricted constant term is included in the model, then 𝐹 𝑢 = (𝑊𝑏

′ 𝑢 , 1)′, 
where 𝑊𝑏 𝑢 = Γ 𝑏 !! 𝑢 − 𝑠 𝑏!!𝑑𝑊(𝑠)𝑢

!  is vector fractional type-II Brownian motion.  
 
   𝑟 = 0 𝑟 = 1 𝑟 = 2 
  𝐼𝑉 𝑑 𝑏 𝐿𝑅 𝐶𝑉!% 𝑑 𝑏 𝐿𝑅 𝐶𝑉!% 𝑑 𝑏 
S&P 500            
 2003-2012 70 0.681 0.372 271.232 9.490 0.998 0.302 0.058 3.840 1.002 0.295 
 2003-2007 80 0.517 0.517 117.535 9.362 0.999 0.467 1.338 3.840 0.984 0.481 
 2008-2012 60 0.719 0.329 136.629 9.490 0.981 0.334 1.699 3.840 1.033 0.233 
FTSE 100            
 2003-2012 80 0.623 0.416 254.914 9.490 0.970 0.357 2.368 3.840 0.954 0.387 
 2003-2007 70 0.497 0.497 118.642 9.490 0.984 0.380 2.510 3.840 0.968 0.424 
 2008-2012 30 0.667 0.361 120.148 9.490 0.987 0.463 2.035 3.840 1.009 0.416 
DAX            
 2003-2012 60 0.609 0.439 233.689 9.490 0.987 0.388 3.808 3.840 0.966 0.408 
 2003-2007 50 0.561 0.524 38.776 9.359 1.042 0.476 0.323 3.840 1.055 0.480 
 2008-2012 80 0.638 0.405 133.836 9.490 0.967 0.336 0.302 3.840 0.955 0.361 
NIKKEI 225            
 2003-2012 80 0.591 0.476 138.368 9.490 1.004 0.517 0.254 3.636 0.997 0.515 
 2003-2007 60 0.513 0.513 80.636 9.365 1.019 0.635 0.003 3.587 1.018 0.635 
 2008-2012 60 0.708 0.370 79.292 9.490 0.996 0.010 28.181 3.840 0.978 0.547 
PX            
 2003-2012 80 0.520 0.520 109.031 9.360 1.007 0.475 1.289 3.840 0.988 0.472 
 2003-2007 60 0.532 0.532 65.024 9.360 1.021 0.680 5.991 6.373* 0.977 0.666 
 2008-2012 60 0.511 0.511 53.246 9.367 0.982 0.454 1.092 3.840 1.010 0.451 
Table 5: Cointegration rank test by Johansen and Nielsen (2012). The first column, 𝐼𝑉, stands for the number 
of initial values used in the estimation. For each rank 𝑟 = 0, 1, 2,, we present the estimates of the parameter of 
the fractional order of integration (𝑑), the parameter of the cointegration gap (𝑏), and the corresponding 
likelihood ratio statistic (𝐿𝑅) and its critical value at a 5% level of significance. When 𝑏 is smaller than 0.5, it 
follows the 𝜒!(𝑞!) distribution; this means that for cointegration rank 𝑟 = 0, 𝑞 = 2 and 𝜒!.!"

! 4 = 9.49. When 
𝑟 = 1, then 𝑞 = 1 and 𝜒!.!"

! 1 = 3.84. If 𝑏 is greater than 0.51, we use MacKinnon and Nielsen (2012) for 
critical values. Asterisk (*) denotes the 1% critical value rather than the 5% critical value. The cointegrating 
relationship is not significant at the 5% level of significance, but it is significant at the 1% level of significance. 
 
The results of the cointegration rank test by Johansen and Nielsen (2012) are presented in 
Table 5. We find one significant cointegrating relationship, except for the NIKKEI 225 in the 
second period, where no cointegrating vector is found. In the case of the PX Index in the first 
period, the LR statistic for one cointegrating vector (𝑟 = 1) is significant at the 1% level. 
When 𝑟 = 0, the likelihood ratio (LR) statistic is significantly larger than the corresponding 
critical value, meaning that we reject the null hypothesis of zero cointegrating relationships 
When 𝑟 = 1,,  , the LR statistic is significantly smaller than the corresponding critical value, 
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and thus, we do not reject the null of one cointegrating relationship. This finding is not true 
for the NIKKEI 225 in the second period, where we do not find a significant cointegrating 
vector, even though its presence was hinted at by the results of the cointegration rank test 
proposed by Nielsen and Shimotsu (2007).  
 
4.2 FCVAR model of daily high and low prices 
Having in mind the result that in each specification there is one significant cointegrating 
vector (except for the NIKKEI 225 in the second period), we build an FCVAR for the daily 
high and low prices. We employ one lag for the short-term deviations 𝑝 = 1 because it 
sufficiently captures the autocorrelation of residuals. MacKinnon and Nielsen (2012) state 
that a single lag is usually sufficient in the fractional model, which is in contrast with the 
standard cointegrated VAR, where several more lags are needed to capture the serial 
correlation in residuals. The number of initial values utilized for the estimation of the FCVAR 
model is the same number as the number of initial values utilized for the estimation of the 
cointegration rank in the previous section. Next, we consider restricting the order of 
integration of the range. Because the range is defined as the difference between the maximum 
and minimum daily prices, i.e., (𝑝𝑡

𝐻 − 𝑝𝑡
𝐿), we would like the cointegrating vector to be 

1,−1 . If the cointegrating vector is different from 1,−1 , we cannot interpret the difference 
(𝑑 − 𝑏) as the order of integration of the range. That is why we first estimate the model 
without any restrictions imposed to see whether the model yields a significant cointegrating 
vector and significant estimates of 𝑑 and 𝑏, and then we impose the 1,−1  restriction on the 
cointegrating vector. However, when a restriction is imposed, the standard errors are not 
provided; thus, we cannot make any inference regarding the significance of the estimated 
parameters. We estimate the model for the case when 𝑑 ≠ 𝑏; however, the procedure is 
capable of detecting whether 𝑑 and 𝑏 are close to equality; if they were, we would re-estimate 
the model with the restriction 𝑑 = 𝑏. This situation did, however, not occur, which is 
consistent with our previous findings because the equality of the 𝑑 and  𝑏 parameters would 
imply that the order of integration of the range is 0, which we previously rejected based on 
both the ELW and GPH estimator results. 
Table 6 presents the results from the FCVAR estimation without any restrictions imposed. In 
all of the specifications, the parameters of interest (𝑑 and 𝑏 ) are significantly different from 
zero and different from each other (thus 𝑑 ≠ 𝑏 ). Additionally, the estimates of the 
cointegrating vector 𝛽  are very close to the desired vector of (1,−1). The results suggest that 
a linear combination of the daily high and low prices (the range) is integrated of a non-zero 
order. However, because the estimate of the cointegrating vector is not exactly (1,−1), we 
cannot interpret the difference (𝑑 − 𝑏) as the order of integration of the range. 
 
   𝑑 𝑏 𝛽 𝛼𝐻 𝛼𝐿 𝛾!! 𝛾!" 𝛾!" 𝛾!! 
S&P 500          
u 2003-2012 0.998 0.302 (1,-1.007) -0.195 3.986 -0.773 1.050 -1.614 2.619 
  (0.014) (0.028)  (0.302) (0.945) (0.310) (0.316) (0.727) (0.776) 
 2003-2007 0.999 0.467 (1,-1.002) -1.072 1.680 0.153 0.076 -0.282 0.924 
  (0.009) (0.038)  (0.254) (0.363) (0.178) (0.193) (0.258) (0.283) 
u 2008-2012 0.981 0.334 (1,-1.008) -0.013 3.081 -0.755 1.049 -0.935 1.890 
  (0.015) (0.035)  (0.348) (0.922) (0.363) (0.370) (0.696) (0.752) 
FTSE 100          
 2003-2012 0.970 0.357 (1,-1.005) -0.657 2.308 -0.263 0.569 -0.620 1.505 
  (0.011) (0.024)  (0.218) (0.466) (0.190) (0.204) (0.358) (0.386) 
u 2003-2007 0.984 0.380 (1,-1.003) -1.344 2.339 0.245 -0.009 -0.994 1.727 
  (0.009) (0.027)  (0.331) (0.513) (0.252) (0.280) (0.426) (0.442) 
 2008-2012 0.987 0.463 (1,-1.004) -0.429 1.344 -0.309 0.524 -0.049 0.669 
  (0.009) (0.031)  (0.189) (0.305) (0.162) (0.171) (0.231) (0.247) 
DAX          
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 2003-2012 0.987 0.388 (1,-1.004) -0.436 1.891 -0.332 0.571 -0.433 1.101 
  (0.011) (0.033)  (0.209) (0.440) (0.195) (0.202) (0.327) (0.354) 
 2003-2007 1.042 0.476 (1,-1.001) -0.551 1.520 -0.145 0.319 -0.169 0.526 
  (0.013) (0.064)  (0.259) (0.429) (0.194) (0.203) (0.279) (0.305) 
 2008-2012 0.967 0.336 (1,-1.007) -0.016 2.651 -0.695 0.980 -0.910 1.718 
  (0.016) (0.035)  (0.393) (0.846) (0.413) (0.415) (0.675) (0.711) 
NIKKEI 225          
 2003-2012 1.004 0.517 (1,-1.002) -0.175 1.318 -0.295 0.535 -0.066 0.543 
  (0.012) (0.043)  (0.134) (0.271) (0.124) (0.133) (0.183) (0.205) 
 2003-2007 1.019 0.635 (1,-1.001) -0.361 1.144 -0.154 0.309 -0.171 0.522 
  (0.010) (0.053)  (0.151) (0.242) (0.120) (0.125) (0.168) (0.186) 
 2008-2012 - - - - - - - - - 
PX          
 2003-2012 1.007 0.475 (1,-1.003) -0.682 1.281 -0.172 0.340 -0.447 0.861 
  (0.017) (0.045)  (0.168) (0.310) (0.127) (0.136) (0.236) (0.258) 
 2003-2007 1.021 0.680 (1,-1.002) -0.410 0.612 0.021 0.204 0.123 0.243 
  (0.015) (0.065)  (0.119) (0.168) (0.095) (0.096) (0.120) (0.130) 
 2008-2012 0.982 0.454 (1,-1.003) -0.732 1.346 -0.272 0.453 -0.600 1.031 
    (0.017) (0.056)  (0.253) (0.445) (0.194) (0.211) (0.355) (0.389) 
Table 6: FCVAR estimation results (no restrictions). Note: Standard errors are given in the brackets, and “u” 
denotes that the model is unstable (some of the roots of the characteristic polynomial lie outside the unit root 
circle). 
 
Daily high and low prices are integrated of an order close to 1. Surprisingly, in the first 
period, which we consider the calmer period, daily prices are further from stationarity than in 
the second period or in the full period. Additionally, the orders of integration of daily prices 
are smaller than unity in 9 out of 14 cases. 
The adjustment coefficients 𝛼𝐻 and 𝛼𝐿 capturing the speed of adjustment of 𝑝𝑡

𝐻 and 𝑝𝑡
𝐿 toward 

equilibrium are significantly different from zero with the expected signs; 𝛼𝐻 is negative, and 
𝛼𝐿 is positive, implying that they move in opposite directions to restore equilibrium after a 
shock to the system occurs. We can note that the absolute values of the estimates of 𝛼𝐻 are 
much smaller than 𝛼𝐿, which suggests that the correction in the equation for daily lows 
overshoots the long-run equilibrium. Caporin et al. (2013) obtained similar results when 
analyzing DJIA stocks. When interpreting the short-run dynamics parameters (𝛾!!, …, 𝛾!!), 
we may notice that the coefficients of the lagged daily highs are mostly negative, whereas the 
coefficients of the lagged daily lows are mostly positive. Cheung (2007) states that negative 
coefficients imply a regressive behavior, whereas positive coefficients are an indication of 
spill-over effects. He argues that higher daily highs tend to fall to a lower level, lower daily 
highs tend to drift up to a higher level, and higher daily lows lead to higher daily highs.  
 
  𝑑 𝑏 𝛽 𝛼𝐻 𝛼𝐿 𝛾!! 𝛾!" 𝛾!" 𝛾!! 

S&P 500          
u 2003-2012 1.035 0.339 (1,-1) -0.258 3.483 -0.692 0.846 -1.362 2.139 
d 2003-2007 1.000 0.426 (1,-1) -1.114 1.834 0.145 0.129 -0.396 0.997 
u 2008-2012 1.024 0.366 (1,-1) -0.154 2.788 -0.646 0.819 -0.827 1.583 
FTSE 100          
 2003-2012 1.013 0.390 (1,-1) -0.623 2.135 -0.303 0.487 -0.595 1.286 
d 2003-2007 1.000 0.419 (1,-1) -1.055 1.890 0.078 0.140 -0.743 1.295 
 2008-2012 1.018 0.468 (1,-1) -0.593 1.215 -0.224 0.369 0.021 0.515 
DAX          
 2003-2012 1.018 0.409 (1,-1) -0.398 1.876 -0.392 0.543 -0.495 1.039 
 2003-2007 1.054 0.446 (1,-1) -0.685 1.670 -0.103 0.253 -0.252 0.591 
 2008-2012 1.013 0.373 (1,-1) -0.098 2.343 -0.647 0.795 -0.790 1.385 
NIKKEI 225          
 2003-2012 1.028 0.489 (1,-1) -0.210 1.511 -0.342 0.539 -0.202 0.645 
 2003-2007 1.046 0.507 (1,-1) -0.590 1.631 -0.138 0.261 -0.468 0.828 
 2008-2012 1.001 0.516 (1,-1) -0.079 1.123 -0.295 0.542 0.188 0.297 
PX          
 2003-2012 1.039 0.455 (1,-1) -0.753 1.510 -0.201 0.306 -0.642 0.993 
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 2003-2007 1.053 0.520 (1,-1) -0.624 1.049 0.041 0.160 -0.121 0.493 
d 2008-2012 1.000 0.427 (1,-1) -0.863 1.493 -0.252 0.399 -0.727 1.122 
Table 7: FCVAR estimation results (with restrictions). Note: “u” denotes that the model is unstable (some of 
the roots of the characteristic polynomial lie outside the unit root circle), and “d” denotes that the restriction 
𝑑 = 1 had to be imposed to achieve model convergence. 
 
In the model without any restrictions imposed, in one case, namely the second period of the 
NIKKEI 225, we were unable to estimate the FCVAR model without restrictions because the 
model did not converge for any of the specified number of initial values. Additionally, we 
must note that the model was not stable in three cases (the S&P 500 in the full period and in 
the second sub-period and the FTSE 100 in the first sub-period). We state that a model is 
stable when the roots of the characteristic polynomial are smaller than unity. In these three 
situations, the roots exceeding unity are 1.365, 1.374, and 1.101, respectively, and thus, the 
model should be interpreted with caution in these cases. In the Tables, we mark this situation 
with the letter “u” set before the period specification of the affected periods. We also test the 
residuals for the remaining autocorrelation and heteroskedasticity. Based on the Ljung-Box 
Q-test, we reject in most cases the null of no autocorrelation; however, the value of the 
statistic is rather marginal. Based on the visualization of the autocorrelation functions, the 
dependency is weak, and it disappears after the second lag. Additionally, based on the 
visualization of the autocorrelation function of squared residuals, we can detect some 
heteroskedasticity; however, it is again very weak. Neither of these findings impacts the 
quality of our estimates.8 
Since the estimates of the cointegrating vector from the unrestricted model are very close to 
the desired vector of (1,−1), we impose the restriction on the vector to be exactly (1,−1) to 
be able to interpret the cointegrating relation as the range. Table 7 contains the results of this 
estimation. In three specifications moreover, we had to impose the restriction 𝑑 = 1 to 
achieve convergence of the model (we mark this restriction with the letter “d” set before the 
period specification of the affected periods). Imposition of this restriction solved the 
instability of the model for the FTSE 100 in the first period. However, this restriction was of 
no use in the case of the S&P 500. In the case of the S&P 500, the models in the full period 
and in the second sub-period remain unstable (which we mark with “u”). The roots of the 
characteristic polynomial exceeding unity are 1.205 and 1.237, respectively. 
We can see that the order of integration of daily prices is in all cases greater than 1 (which is 
different from the estimation without the restriction, where the order of integration was 
mostly below 1). The estimates of the cointegration gap 𝑏 are quite similar to the unrestricted 
specification, apart from the case of the NIKKEI 225 and the PX Index in the first period. In 
these two situations, the difference (𝑑 − 𝑏) changed from 0.384 to 0.539 and from 0.341 to 
0.533, respectively. The estimates of the order of integration of the range have thus changed 
from the stationary region into the non-stationary region. We have already discussed these 
two indices when analyzing their ACFs, where we noted that the presence of long memory in 
the first period is arguable; this finding was further supported by the results from the GPH 
and ELW estimators, where the range was found to be stationary but not integrated of order 
0. In all of the other cases, the maximum change in the estimate of the difference (𝑑 − 𝑏) was 
0.05, and the implication for stationarity or non-stationarity remained unchanged. In the cases 
of the NIKKEI 225 and PX Index in the first period, we can also note the highest differences 
among the 𝛼 and 𝛾 parameters in the estimation with and without the restriction. In the other 
specifications, these six parameters vary slightly, but nowhere near as much as in these two 
cases. The adjustment coefficients 𝛼𝐻 are again negative, and the adjustment coefficients 𝛼𝐿 
remain positive. When interpreting these signs, we can make use of the fact that the 

                                                
8 For the sake of brevity, this residual diagnostic is not presented here but is available upon request. 
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cointegrating vector is now the range. An increase in the daily range is reduced the next day 
by decreasing the high price and boosting the low price for that day. The short-run dynamics 
parameters (𝛾!!, …, 𝛾!!) are again mostly negative for the lagged daily highs and mostly 
positive for the lagged daily lows; the interpretation remains the same as in the previous 
specification. We can conclude that the imposition of the (1,−1)  restriction on the 
cointegrating vector may have impaired the results, even though the original estimates of the 
cointegrating vector are fairly close to the desired (1,−1). The residual diagnostics are very 
similar to the previous case.  
Finally, having all the estimates, we compare the level of integration of the range. Table 8 
summarizes the GPH, ELW and final FCVAR estimates. The estimates of long memory in 
the range are quite sensitive to both the chosen methodology and the chosen bandwidth 
parameter. In the case of the S&P 500, even though there were some problems with the 
stability of the FCVAR model, we can see that the FCVAR estimates of long memory in the 
range are consistent with both the GPH and ELW estimates (with the smaller bandwidth 
parameter specification). For the FTSE 100 index in the second period, the FCVAR estimates 
of long memory appear to be quite underestimated because the values would imply that the 
second period is less non-stationary than the first one, which contrasts with all of the other 
results (the ELW and GPH estimates and inspection of ACF). In the case of the DAX, we can 
note that each estimator chooses different periods to be the most and the least non-stationary, 
despite the fact that the estimates are of magnitudes that are close to each other. 
 
  GPH ELW FCVAR 
    𝑚 = 𝑇!.! 𝑚 = 𝑇!.! 𝑚 = 𝑇!.! 𝑚 = 𝑇!.! R NR 
S&P 500       
 2003-2012 0.765 0.674 0.763 0.622 0.696 0.696 
 2003-2007 0.520 0.678 0.587 0.574 0.574 0.532 
 2008-2012 0.753 0.721 0.664 0.687 0.658 0.647 
FTSE 100       
 2003-2012 0.710 0.712 0.658 0.632 0.623 0.613 
 2003-2007 0.515 0.596 0.622 0.603 0.581 0.604 
 2008-2012 0.739 0.701 0.628 0.617 0.550 0.524 
DAX       
 2003-2012 0.652 0.706 0.588 0.589 0.609 0.599 
 2003-2007 0.803 0.826 0.614 0.597 0.608 0.566 
 2008-2012 0.710 0.738 0.700 0.623 0.640 0.631 
NIKKEI 225       
 2003-2012 0.499 0.659 0.483 0.649 0.539 0.487 
 2003-2007 0.463 0.401 0.496 0.392 0.539 0.384 
 2008-2012 0.701 0.784 0.613 0.604 0.485 - 
PX       
 2003-2012 0.577 0.617 0.516 0.520 0.584 0.532 
 2003-2007 0.211 0.316 0.281 0.446 0.533 0.341 
  2008-2012 0.760 0.581 0.572 0.517 0.573 0.528 
Table 8: Comparison of integration orders of range. Note: “R” denotes a model with restrictions on the 
cointegrating vector, and “NR” denotes a model without restrictions. 
 
Contrary to the ELW and GPH estimates, the FCVAR results for the NIKKEI 225 with 
restrictions do not confirm the stationarity of the range in the first period, and the model 
overestimates the order of integration. Moreover, in the second period, the dependence is 
significantly underestimated. We can observe that the FCVAR model also fails to confirm the 
stationarity of the range of the PX Index in the first period and overestimates the dependence 
as well. The FCVAR results in the two remaining periods are quite similar to both the ELW 
and GPH estimates (with the larger bandwidth parameter).  
To summarize the results, the FCVAR model with restrictions fails to detect the lower orders 
of integration of the range and suggests that the range is in the non-stationary region when it 
should be stationary according to the results of other applied tests. However, we should note 



 17 

that the FCVAR model does detect the stationarity of the “range” when the restriction on the 
cointegrating vector is not imposed. However, without the restriction, interpreting the error 
correction term in the model as the range is incorrect, even though the cointegrating vector is 
fairly close to the value required for the interpretation to be valid even in the unrestricted 
model.  
The most unanimous conclusion is that, except for the ranges of the PX Index and the 
NIKKEI 225 in the first period, which are in the stationary region, the remaining ranges are 
non-stationary and display long memory. The best results can be observed in the case of the 
S&P 500, where all four different methods for examining long memory yield results closest 
to each other, despite the instability of the FCVAR model for this index. 

5 Conclusion 

This work provides empirical support for the fractional cointegration of daily high and low 
stock prices in several markets. The main motivation for examining these maximum and 
minimum daily prices is that they provide valuable information about range-based volatility. 
The range, defined as the difference between daily high and low prices, is considered a highly 
efficient and robust estimator of volatility. An empirical model based on the fractionally 
cointegrated VAR framework is able to capture both the cointegration between daily high and 
low prices and the long memory of their linear combination, i.e., the range. In this concept, 
the range is the error correction term in the FCVAR model and is allowed to fall into a non-
stationary region.  
The analysis is performed on four major global indices, namely, the U.S. S&P 500, German 
DAX, Japanese NIKKEI 225 and U.K. FTSE 100, and the results are compared with the 
Czech PX Index. We consider three periods, the base period being 2003-2012, and its 
division into two sub-periods, with the year 2007 as the dividing point. The first sub-period 
captures the relatively calm behavior before the crisis, whereas the second period covers the 
outbreak of the crisis and the post-crisis turbulence. We find significant evidence that the 
range-based volatility estimated as an error correction from the FCVAR of daily high and low 
prices displays long memory. Moreover, the range is in the non-stationary region in most of 
the cases, with the exception of ranges of the PX Index and NIKKEI 225 in the first period. 
In general, the estimates of the long memory parameters are mostly lower in the first period 
before the crisis. We also demonstrate that the results in the FCVAR framework with 
restrictions imposed are slightly inferior to the original unrestricted FCVAR model, primarily 

in the situation when the range should be in the stationary region based on other applied tests. 
Furthermore, the results for the PX Index are very similar to the results for the NIKKEI 225 
because their ranges display the lowest estimates of integration orders. Integration orders of 
the ranges of the S&P 500, FTSE 100 and DAX indices are, however, relatively higher.  
These results can be useful for the predictability of asset prices. The fact that we find a long 
memory in the range allows the predictability of the variance to be embedded in a model for 
the mean dynamics of high and low prices and to obtain better forecasts of future extreme 
prices based on past values. Our results thus provide compelling evidence that daily high and 
low prices are predictable and can be modeled. This evidence can be materialized in future 
research in several areas. More precise estimates of daily ranges can be used to enhance 
trading strategies because many trading strategies are based on daily ranges. Further, it would 
be interesting to investigate not only how the results can improve risk analysis and 
management but also other broad areas employing precise volatility estimates as derivative 
pricing.  



 18 

References 

Alizadeh, S., M. W. Brandt, and F. X. Diebold (2002): Range–Based Estimation of Stochastic Volatility 
Models, The Journal of Finance, 57(3), 1047–1091. 

Andersen, T. G., and T. Bollerslev (1997): Heterogeneous Information Arrivals and Return Volatility 
Dynamics: Uncovering the Long–Run in High Frequency Returns, The Journal of Finance, 52(3), 975–1005. 

Andersen, T., and T. Bollerslev (1998): Answering the Skeptics: Yes, Standard Volatility Models Do Provide 
Accurate Forecasts, International Economic Review, 39(4), 885–905. 

Baillie, R. T. (1996): Long Memory Processes and Fractional Integration in Econometrics, Journal of 
Econometrics, 73(1), 5–59. 

Breidt, F. J., N. Crato, and P. de Lima (1998): The detection and estimation of long memory in stochastic 
volatility, Journal of Econometrics, 83 (1–2), 325–348. 

Brockwell, P.J., and R.A. Davis (1991): Time Series: Theory and Methods, 2nd edition, Springer–Verlag, New 
York. 

Caporin, M., Ranaldo, A., and P. Santucci de Magistris (2013): On the predictability of stock prices: A case for 
high and low prices, Journal of Banking & Finance 37(12), 5132–5146. 

Cheung, Y. (2007): An empirical model of daily highs and lows, International Journal of Finance and 
Economics, 12(1), 1–20. 

Cipra, T. (2008): Finanční ekonometrie, (Financial Econometrics), first edition, Ekopress 2008. 
Corwin, S. A., and P. H. Schultz (2012): A Simple Way to Estimate Bid–Ask Spreads from Daily High and Low 

Prices, The Journal of Finance, 67(2), 719–760. 
Degiannakis, S. and Livada, A. (2013): Realized volatility or price range: Evidence from a discrete simulation 

of the continuous time diffusion process, Economic Modelling, 30, 212-216. 
Dickey, D. A., and W. A. Fuller (1981): Likelihood ratio statistics for autoregressive time series with a unit root, 

Econometrica: Journal of the Econometric Society, 1057-1072. 
Ding, Z., Granger, C.W.J., and R.T. Engle (1993): A long memory property of stock market returns and a new 

model, Journal Empirical Finance 1(1), 83–106. 
Engle, R., and C.W.J. Granger (1987): Cointegration and error correction: representation estimation, and testing, 

Econometrica, 55(2), 251–276. 
Fiess, N.M. and MacDonald, R. (2002): Towards the fundamentals of technical analysis: analysing the 

information content of High, Low and Close prices, Economic Modelling, 19(3), 353-374. 
Garman, M. B., and M. J. Klass (1980): On the Estimation of Security Price Volatilities from Historical Data, 

The Journal of Business, 53(1), 67–78. 
Garvey, J. F., and L.A. Gallagher (2012): The Realised–Implied Volatility Relationship: Recent Empirical 

Evidence from FTSE–100 Stocks. J. Forecast., 31(7), 639–660. 
Geweke, J., and S. Porter–Hudak (1983): The estimation and application of long memory time series models, 

Journal of Time Series Analysis 4(4), 221–238. 
Granger, C.W.J. (1980): Long memory relationships and the aggregation of dynamic models, Journal of 

Econometrics, 14(2), 227–238. 
Granger, C.W. J. (1986): Developments in the study of cointegrated economic variables, Oxford Bulletin of 

Economics and Statistics, 48(3), 213-228. 
Granger, C.W.J., and N. Hyung (2004): Occasional structural breaks and long memory with an application to 

the S&P 500 absolute stock returns, Journal of Empirical Finance, 11(3), 399–421. 
Granger, C. W. J., and R. Joyeux, (1980): An introduction to long memory time series models and fractional 

differencing, Journal of Time Series Analysis, 1(1), 15–29. 
Greene, W. H. (2008): Econometric Analysis, Sixth Edition, Prentice Hall: New Jersey 
Johansen, S. (1991): Estimation and hypothesis testing of cointegration vectors in Gaussian vector 

autoregressive models, Econometrica 59(6), 1551–1581. 
Johansen, S. (1996): Likelihood–Based Inference in Cointegrated Vector Autoregressive Models, 2nd edition, 

Oxford University Press, Oxford. 
Johansen, S. (2008): A representation theory for a class of vector autoregressive models for fractional processes, 

Econometric Theory, 24(3), 651–676. 
Johansen, S., and M. O. Nielsen (2010): Likelihood inference for a nonstationary fractional autoregressive 

model, Journal of Econometrics 158(1), 51–66. 
Johansen, S., and M. O. Nielsen (2012) : Likelihood inference for a fractionally cointegrated vector 

autoregressive model, Econometrica, 80(6), 2667–2732. 
Kanzler, L. (1998): GPH: MATLAB module to calculate Geweke–Porter–Hudak long memory statistic, 

Statistical Software Components. 
Kellard, N., Dunis, C., and N. Sarantis (2010): Foreign exchange, fractional cointegration and the implied–

realized volatility relation, Journal of Banking & Finance, 34(4), 882–891. 



 19 

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Y. Shin (1992): Testing the Null Hypothesis of Stationarity 
against the Alternative of a Unit Root, Journal of Econometrics 54(1), 159–178. 

Lobato, I.N., and N.E. Savin (1997): Real and spurious long–memory properties of stock–market data, Journal 
of Business and Economic Statistics, 16(3), 261–268. 

MacKinnon, J. G., and M. Ø. Nielsen (2012): Numerical distribution functions of fractional unit root and 
cointegration tests, Journal of Applied Econometrics. 

NBER: US Business Cycle Expansions and Contractions, available at: http://www.nber.org/cycles/, last 
accessed on 15. 5. 2012. 

Nielsen, M., and L. Morin (2012): FCVARmodel.m: A MATLAB software package for estimation and testing 
in the fractionally cointegrated VAR model, QED working paper 1273, Queen’s University. 

Nielsen, M. Ø., and K. Shimotsu (2007): Determining the cointegration rank in nonstationary fractional system 
by the exact local Whittle approach, Journal of Econometrics, 141(2), 574–596. 

Parkinson, M. (1980): The Extreme Value Method for Estimating the Variance of the Rate of Return, The 
Journal of Business, 53(1), 61–65. 

Robinson, P. M., and Y. Yajima (2002): Determination of cointegrating rank in fractional systems, Journal of 
Econometrics, 106(2), 217–241. 

Shimotsu, K., and P. Phillips (2005): Exact local Whittle estimation of fractional integration, Annals of 
Statistics, 33(4), 1890–1933. 

Yalama, A., and Celik, S.(2013): Real or spurious long memory characteristics of volatility: Empirical evidence 
from an emerging market, Economic Modelling, 30, 67-72. 

 
  



 20 

Appendix: Figures 

 

 

 

 

 

 

 
 

Figure 3: High and low prices of the DAX index (left) and range of the DAX index (right) 

 

 

 

 

 

 

 

 

Figure 4: High and 
low prices of the FTSE 100 index (left) and range of the FTSE 100 index (right) 

 
 

 

 

 

 

 

 

Figure 5: High and 
low prices of the NIKKEI 225 index (left) and range of the NIKKEI 225 index (right) 

 
 

 

 

 

 

 

 

Figure 6: High and low prices of the S&P 500 index (left) and range of the S&P 500 index (right) 
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Figure 7: ACF of the PX range in (a) 2003 – 2012, (b) 2003 – 2007 and (c) 2008 – 2012 

 
 

 

 

 

 

 

 

 

Figure 8: ACF of the FTSE 100 range in (a) 2003 – 2012, (b) 2003 – 2007 and (c) 2008 – 2012 

 

 

 

 

 

 

 

 

 

Figure 9: ACF of the S&P 500 range in (a) 2003 – 2012, (b) 2003 – 2007 and (c) 2008 – 2012 

 

 

 

 

 

 

 

 

Figure 10: ACF of the NIKKEI 225 range in (a) 2003 – 2012, (b) 2003 – 2007 and (c) 2008 – 2012 
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Appendix: Tables 

   𝐴𝐷𝐹𝐻 𝐴𝐷𝐹𝐿 𝐴𝐷𝐹𝑅 
    Level First-differences Level First-differences Level 
S&P 500      
c 2003-2012 0.2947 0.001 0.2697 0.001 0.001 
c, t 2003-2007 0.6369 0.001 0.2830 0.001 0.001 
c 2008-2012 0.5718 0.001 0.5333 0.001 0.001 
FTSE 100      
c 2003-2012 0.2683 0.001 0.1467 0.001 0.001 
c, t 2003-2007 0.0225 - 0.0180 - 0.001 
c 2008-2012 0.2863 0.001 0.1917 0.001 0.001 
DAX      
c 2003-2012 0.3666 0.001 0.3380 0.001 0.001 
c, t 2003-2007 0.0419 - 0.0329 - 0.001 
c 2008-2012 0.3246 0.001 0.1799 0.001 0.001 
NIKKEI 225      
c 2003-2012 0.4489 0.001 0.3779 0.001 0.001 
c 2003-2007 0.4578 0.001 0.4349 0.001 0.001 
c 2008-2012 0.1224 0.001 0.0979 0.001 0.001 
PX      
c 2003-2012 0.1107 0.001 0.1162 0.001 0.001 
c 2003-2007 0.2578 0.001 0.3114 0.001 0.001 
c 2008-2012 0.2488 0.001 0.1570 0.001 0.001 
Table 9: P-values for an ADF test for variables based on levels and first-differences. Note: the letter “c” 
denotes the inclusion of a constant only, and the letter “t” denotes the additional inclusion of a trend for daily 
high and low prices in levels only. The reported p-value of 0.001 is the smallest reported p-value. 
 
    𝐾𝑃𝑆𝑆𝐻 𝐾𝑃𝑆𝑆𝐿 𝐾𝑃𝑆𝑆𝑅 
 Short lag Long lag Short lag Long lag Short lag Long lag 
S&P 500       
c 2003-2012 0.01 0.01 0.01 0.01 0.01 0.0131 
c, t 2003-2007 0.01 0.01 0.01 0.01 0.01 0.01 
c 2008-2012 0.01 0.01 0.01 0.01 0.01 0.01 
FTSE 100       
c 2003-2012 0.01 0.01 0.01 0.01 0.01 0.0143 
c, t 2003-2007 0.01 0.01 0.01 0.01 0.01 0.001 
c 2008-2012 0.01 0.01 0.01 0.01 0.01 0.001 
DAX       
c 2003-2012 0.01 0.01 0.01 0.01 0.01 0.0784 
c, t 2003-2007 0.01 0.01 0.01 0.0188 0.01 0.001 
c 2008-2012 0.01 0.01 0.01 0.01 0.01 0.001 
NIKKEI 225       
c 2003-2012 0.01 0.01 0.01 0.01 0.01 0.0943 
c 2003-2007 0.01 0.01 0.01 0.01 0.01 0.01 
c 2008-2012 0.01 0.01 0.01 0.01 0.01 0.01 
PX       
c 2003-2012 0.01 0.01 0.01 0.01 0.01 0.01 
c 2003-2007 0.01 0.01 0.01 0.01 0.01 0.0772 
c 2008-2012 0.01 0.01 0.01 0.01 0.01 0.01 
 
Table 10: P-values for a KPSS test for variables based on levels with two lag specifications Note: the letter “c” 
denotes the inclusion of a constant only, and the letter “t” denotes the additional inclusion of a trend for daily 
high and low prices in levels only. The p-value of 0.01 is the minimum reported p-value. 


