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Abstract. We utilize long-term memory, fractal dimension and approximate entropy as input variables
for the Efficiency Index [L. Kristoufek, M. Vosvrda, Physica A 392, 184 (2013)]. This way, we are able
to comment on stock market efficiency after controlling for different types of inefficiencies. Applying the
methodology on 38 stock market indices across the world, we find that the most efficient markets are
situated in the Eurozone (the Netherlands, France and Germany) and the least efficient ones in the Latin

America (Venezuela and Chile).

1 Introduction

Efficient markets hypothesis (EMH) is one of the corner-
stones of the modern financial economics. Since its in-
troduction in 1960s [1-3], EMH has been a controversial
topic. Nonetheless, the theory still remains a stable part
of the classical financial economics. Regardless of its defi-
nition via a random walk [1] or a martingale [3], the main
idea of EMH is that risk-adjusted returns cannot be sys-
tematically predicted and there can be no long-term prof-
its above the market profits assuming the same risk. The
EMH definition is also tightly connected with a notion of
rational homogenous agents and Gaussian distribution of
returns. Both these assumptions have been widely disre-
garded [4].

In the econophysics literature, EMH has been most fre-
quently studied with respect to the correlation structure
of the series. There are several papers ranking various fi-
nancial markets with respect to their efficiency. Research
group around Di Matteo [5-7] finds that the correlations
structure of various assets (stocks, exchange rates and in-
terest rates) is connected to the development of the spe-
cific countries and stock markets. The importance of long-
term memory and multifractality in the financial series
is then further discussed in the subsequent research of
the group [8-10]. In the series of papers, Cajueiro and
Tabak [11-14] study the relationship between the long-
term memory parameter H and development stages of the
countries’ economy. Both groups find interesting results
connecting persistent (long-term correlated) behavior to
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the least developed markets but also anti-persistent be-
havior for the most developed ones. Lim [15] investigates
how the ranking of stock markets based on Hurst exponent
evolves in time and reports that the behavior can be quite
erratic. Zunino et al. [16] utilize entropy to rank stock mar-
kets to show that the emergent/developing markets are
indeed less efficient than the developed ones. Even though
the ranking is provided in these studies, the type of mem-
ory taken into consideration (either long-term memory or
entropy/complexity) is limited and treated separately.

In this paper, we utilize the Efficiency Index proposed
by Kristoufek and Vosvrda [17] incorporating long-term
memory, fractal dimension and entropy to control for var-
ious types of correlations and complexity using a single
measure. Basing the definition of the market efficiency
simply on no correlation structure, we can state the ex-
pected values of long-term memory, fractal dimension and
entropy for the efficient market to construct an efficiency
measure based on a distance from the efficient market
state. Introduction of the entropy measure into the Effi-
ciency Index is novel compared to the original one [17] and
it substitutes the short-term memory effect of the Index
which turned out to be a rather weak component of the
Index. Short-term memory inefficiency is still controlled
for by inclusion of the fractal dimension. As it turns out,
the inclusion of the entropy measure has a strong effect on
the final efficiency ranking. The procedure is applied on
38 stock indices from different parts of the world and we
show that the most efficient markets are indeed the most
developed ones — the Western European markets and the
US markets — and majority of the least efficient ones are
situated in the Latin America and South-East Asia.
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The paper is structured as follows. In Section 2, we
provide brief description of used methodology focusing
on long-term memory, fractal dimension, entropy and effi-
ciency measure. Section 3 introduces the dataset and de-
scribes the results. Section 4 concludes.

2 Methodology
2.1 Long-term memory

Long-term memory (long-range dependence) is usually
characterized in time domain by a power-law decay of
autocorrelation function and in frequency domain by a
power-law divergence of spectrum close to the origin. More
specifically, the autocorrelation function p(k) with lag k
of a long-range correlated process decays as p(k) oc k22
for k — +o00, and the spectrum f(A) with frequency A of
a long-range correlated process diverges as f()\) oc \172H
for A — 0+. The characteristic parameter of the long-term
memory Hurst exponent H ranges between 0 < H < 1 for
stationary processes. The breaking value of 0.5 indicates
no long-term memory so that the autocorrelations decay
rapidly (exponentially or faster). For H > 0.5, the series is
persistent with strong positive correlations characteristic
by a trend-like behavior while still remaining stationary.
For H < 0.5, the series is anti-persistent and it switches
the direction of increments more frequently than a random
process does.

There are many different estimators of the long-term
memory parameter H in both frequency and time do-
mains [18-21]. However, the estimators are usually af-
fected by short-term memory bias [20,22], distributional
properties [21-23] or finite-size effect [24-27] causing the
estimates to have rather wide confidence intervals for these
specific cases. Therefore, the estimated Hurst exponents
deviating from the theoretical value of 0.5 do not nec-
essarily indicate presence of the long-term memory. To
distinguish between the true long-term memory and vari-
ous effects named earlier, several long-term memory tests
have been proposed in references [28-31]. We introduce
the Efficiency Index, which is described later in the text,
as a ranking procedure to compare efficiency levels of var-
ious stock markets based on a distance of the actual mar-
ket state with respect to an ideal efficient market. The
fact that the distance is based on squared deviations from
the ideal state helps to mitigate a potential problem of
wrongly finding long-term memory as small deviations are
suppressed and large deviations are accentuated. This is
true also for the other measures introduced in the follow-
ing sections.

We utilize two estimators from the frequency domain —
the local Whittle and GPH estimators — which are appro-
priate for rather short financial series with a possible weak
short-term memory [18,19] and moreover, they have well-
defined asymptotic properties — consistency and asymp-
totic normality. Efficiency Index is then based on these
estimators of Hurst exponent H.

Eur. Phys. J. B (2014) 87: 162

2.1.1 Local Whittle estimator

The local Whittle estimator [32] is a semi-parametric
maximum likelihood estimator — the method utilizes a
likelihood function of Kiinsch [33] and focuses only on
a part of spectrum near the origin. The periodogram
I(\) = + Zthl exp(—2mitA;)z, is utilized as an estima-
tor of the spectrum of a series {x;} with j = 1,2,...,m
where m < T/2 and A\; = 27j/T. Assuming that series is
indeed long-range correlated with 0 < H < 1, the local
Whittle estimator is defined as

H= argoénbl{rilR(H),

(1)

where

1 & 2H — 1 &
R(H) =log | — SN | - > log ;.
j=1 j=1

m

(2)
The local Whittle estimator is consistent and asymptoti-
cally normal, specifically

Vm(H — H%) —4 N(0,1/4). (3)

2.1.2 GPH estimator

The GPH estimator, named after Geweke and Porter-
Hudak [34], is based on a full functional specification of
the underlying process as the fractional Gaussian noise
implying a specific spectral form:

(4)

Again, the spectrum needs to be estimated using the pe-
riodogram so that Hurst exponent is estimated using the
least squares method to the following equation:

log f(\) &< —(H — 0.5) log [4sin*()\/2)] .

log I(X\;) o< —(H —0.5)log [4 sin2()\j/2)} . (5)
The GPH estimator is consistent and asymptotically nor-
mal [35], specifically

VT(H — H°) —4 N (0,7%/6) . (6)
Asymptotically, the GPH estimator is thus infinitely more
efficient than the local Whittle estimator. However, this
holds only if the true underlying process is indeed the frac-
tional Gaussian noise. In financial series, this is frequently
not the case and the processes are mostly combinations
of short-term and long-term memory processes. The GPH
estimator then becomes biased. To overcome this issue, we
base the GPH estimator only on a part of the spectrum
(periodogram) close to the origin to avoid the short-term
memory bias. The regression in equation (5) is then not
run on all \; frequencies but only for a part based on the
same parameter m as for the local Whittle estimator.
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2.2 Fractal dimension

Fractal dimension D is a measure of roughness of the
series and can be taken as a measure of local memory
of the series [17]. For a univariate series, it holds that
1 < D < 2. For self-similar processes, the fractal dimen-
sion is connected to the long-term memory of the series so
that D + H = 2. This can be attributed to a perfect re-
flection of a local behavior (fractal dimension) to a global
behavior (long-term memory). However, the relation usu-
ally does not hold perfectly for the financial series so that
both D and H give different insights into the dynamics
of the series. In general, D = 1.5 holds for a random se-
ries with no local trending or no local anti-correlations.
For a low fractal dimension D < 1.5, the series is lo-
cally less rough and thus resembles a local persistence.
Reversely, a high fractal dimension D > 1.5 is charac-
teristic for rougher series with local anti-persistence. For
purposes of the Efficiency Index, we utilize Hall-Wood and
Genton estimators [36,37].

2.2.1 Hall-Wood estimator

Hall-Wood estimator [38] is based on box-counting pro-
cedure and utilizes scaling of absolute deviations between
steps. Formally, let us have

iy
Al/n) =~ > iym = T—1ynl (7)
1=1

which represents these absolute deviations for the series
of length n within boxes of size [. Based on the definition
of the fractal dimension [36,37], the Hall-Wood estimator
is given by

iy (51— 5) log(A(1/n)
ZIL:1 (st —5)
where L > 2, s; = log(l/n) and 5 = %ZZLZI s1. Using

L = 2 as suggested by Hall and Wood [38] to minimize
bias, we get

Daw =2-—

(8)

log A(2/n) — log A(1/n)

Diw =2 — : 9
- s )

2.2.2 Genton estimator
Genton  estimator is a method of moments

estimator [36,37] based on the robust estimator of
variogram of Genton [39]. Defining the variogram as

— 1 n )
Va(l/n) = =1 ; (Ti/m — T(it)i/n)”s (10)
we get the Genton estimator as
L _ —_—
Do — o S (= 9)loga/m)

230 (51— 5)2
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where again L > 2, s; = log(l/n) and § = %Zle Si.
Using L = 2 [40,41] to decrease the bias again, we get

—  logVa(2/n) —log Va(1/n)
Dg =2 2 Tog 2 . (12)

2.3 Approximate entropy

Entropy can be taken as a measure of complexity of the
system. The systems with high entropy can be character-
ized by no information and are thus random and reversely,
the series with low entropy can be seen as determinis-
tic [42]. The efficient market can be then seen as the one
with maximum entropy and the lower the entropy, the
less efficient the market is. For purposes of the Efficiency
Index, we need an entropy measure which is bounded.
Therefore, we utilize the approximate entropy introduced
by Pincus [43].
Foreachiin 1 <¢<T —m+ 1, we define

T—m+41 1
Zj:l d[i,j]<r

) = = F

(13)

where 1, is a binary indicator function equal to 1 if the
condition in e is met and 0 otherwise and where
d[i,j] = (14)

max
k=1,2,....m

(lZirk—1 = ujer—1l)-
C?"(r) can be thus seen as a measure of auto-correlation as
it is based on a maximum distance between lagged series.
Averaging CI"(r) across i yields

1 T—m—+1
"= oy X GO 09
which is connected to the correlation dimension
. . log C™(r)
fn =l M er (16)

which is in turn treated as a measure of entropy and com-
plexity of the series [43]. 3,, ranges between 0 (completely
deterministic) and 1 (completely random).

2.4 Capital market efficiency measure

According to Kristoufek and Vosvrda [17,44], the Effi-
ciency Index (EI) is defined as:

—~ 2
" M; — M;
()

i=1

Bl = (17)

where M, is the ith measure of efficiency, ]\Z is an esti-
mate of the ith measure, M is an expected value of the
ith measure for the efficient market and R; is a range of
the ith measure. In words, the efficiency measure is simply
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Table 1. List of the analyzed indices.

Eur. Phys. J. B (2014) 87: 162

Ticker Index Country
AEX Amsterdam Exchange Index Netherlands
ASE Athens Stock Exchange General Index Greece
ATX Austrian Traded Index Austria
BEL20 Euronext Brussels Index Belgium
BSE Bombay Stock Exchange Index India
BUSP Bovespa Brasil Sao Paulo Stock Exchange Index Brasil
BUX Budapest Stock Exchange Index Hungary
CAC Euronext Paris Bourse Index France
DAX Deutscher Aktien Index Germany
DJI Dow Jones Industrial Average Index USA
FTSE Financial Times Stock Exchange 100 Index UK
HEX OMX Helsinki Index Finland
HSI Hang Seng Index Hong-Kong
IBC Caracas Stock Exchange Index Venezuela
IGBM Madrid Stock Exchange General Index Spain
IGRA Peru Stock Market Index Peru
1PC Indice de Precios y Cotizaciones Mexico
IPSA Santiago Stock Exchange Index Chile
JKSE Jakarta Composite Index Indonesia
KFX Copenhagen Stock Exchange Index Denmark
KLSE Bursa Malaysia Index Malaysia
KS11 KOSPI Composite Index South Korea
MERVAL Mercado de Valores Index Argentina
MIBTEL Borsa Italiana Index Ttaly
NASD NASDAQ Composite Index USA
NIKKEI NIKKEI 225 Index Japan
NYA NYSE Composite Index USA
PX Prague Stock Exchange Index Czech Republic
SAX Slovakia Stock Exchange Index Slovakia
SET Stock Exchange of Thailand Index Thailand
SPX Standard & Poor’s 500 Index USA
SSEC Shanghai Composite Index China
SSMI Swiss Market Index Switzerland
STRAITS Straits Times Index Singapore
TA100 Tel Aviv 100 Index Israel
TSE Toronto Stock Exchange TSE 300 Index Canada
WIG20 Warsaw Stock Exchange WIG 20 Index Poland
XU100 Instanbul Stock Exchange National 100 Index Turkey

defined as a distance from the efficient market specifica-
tion based on various measures of the market efficiency. In
our case, we consider three measures of market efficiency
— Hurst exponent H with an expected value of 0.5 for the
efficient market (Mj; = 0.5), fractal dimension D with an
expected value of 1.5 (M}, = 1.5) and the approximate
entropy with an expected value of 1 (M} = 1). The
estimate of Hurst exponent is taken as an average of es-
timates based on GPH and the local Whittle estimators.
The estimate of the fractal dimension is again taken as
an average of the estimates based on the Hall-Wood and
Genton methods. For the approximate entropy, we utilize
the estimate described in the corresponding section. How-
ever, as the approximate entropy ranges between 0 (for
completely deterministic market) and 1 (for random se-
ries), we need to rescale its effect, i.e. we use Rap = 2
for the approximate entropy and Ry = Rp = 1 for the
other two measures so that the maximum deviation from
the efficient market value is the same for all measures.

3 Application and discussion

We analyze 38 stock indices from various locations — the
complete list is given in Table 1 — between January 2000
and August 2011. Various phases of the market behavior
— DotCom bubble, bursting of the bubble, stable growth
of 2003-2007 and the current financial crisis — are thus
covered in the analyzed period. The indices cover stock
markets in both North and Latin Americas, Western and
Eastern Europe, Asia and Oceania so that markets at var-
ious levels of development are included in the study. Ta-
ble 2 summarizes the basic descriptive statistics of the
analyzed indices — the returns are asymptotically station-
ary (according to the KPSS test), leptokurtic and returns
of majority of the indices are negatively skewed.

Let us now turn to the results. In Figure 1, all the
results are summarized graphically. For the utilized three
measures — Hurst exponent, fractal dimension and approx-
imate entropy — we present the absolute deviations from
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Table 2. Descriptive statistics for the analyzed indices.

Index Mean Min Max SD Skewness Ex. kurtosis KPSS  p-value
AEX -0.0003 -0.0959 0.1003 0.0157 -0.0183 6.1531 0.1084  >0.05
ASE -0.0006 -0.1021 0.1343 0.0169  -0.0697 5.0812 0.3531  >0.05
ATX 0.0002  -0.1025 0.1202 0.0150  —0.3410 8.2241 0.3141  >0.05
BEL20 -0.0001 -0.0832 0.0933 0.0135 0.0694 6.7098 0.1381  >0.05
BSE 0.0004  -0.1181 0.1599 0.0170  —-0.1630 6.2487 0.1900  >0.05
BUSP 0.0004 -0.1210 0.1368 0.0193  —0.0641 4.5410 0.1229  >0.05
BUX 0.0004 -0.1265 0.1318 0.0169  —0.1105 6.3117 0.2860  >0.05
CAC -0.0002 -0.0947 0.1060 0.0154 0.0594 5.3189 0.0944  >0.05
DAX -0.0001 -0.0887 0.1080 0.0159 0.0025 4.7729 0.1681  >0.05
DJI 0.0000 —-0.0820 0.1051 0.0126  —0.0089 7.8817 0.0647  >0.05
FTSE -0.0001 -0.0927 0.0938 0.0129  -0.1309 6.4856 0.1222  >0.05
HEX -0.0003 -0.1441 0.1344 0.0193  -0.1933 5.2159 0.1886  >0.05
HIS 0.0001  -0.1770 0.1341 0.0166  —0.2283 12.5630 0.1306  >0.05
IBC 0.0008  —0.2066 0.1453 0.0155  —0.4151 25.8530 0.2665  >0.05
IGBM -0.0001 -0.1875 0.1840 0.0153 0.0833 20.5300 0.1272  >0.05
IGRA 0.0008  —0.1144 0.1282 0.0147  —0.3550 10.3010 0.3896  >0.05
IPC 0.0005  —-0.0727 0.1044 0.0144 0.0515 4.3402 0.1295  >0.05
IPSA 0.0007  -0.0717 0.1180 0.0108  -0.0140 10.7400 0.1663  >0.05
JKSE 0.0006  -0.1095 0.0762 0.0150  —0.6570 6.1905 0.3397  >0.05
KFX 0.0002  -0.1172 0.0950 0.0137  —0.2594 5.7183 0.0939  >0.05
KLSE 0.0002  -0.1122 0.0537 0.0092  -1.1810 15.4970 0.1591  >0.05
KS11 0.0002  -0.1212 0.1128 0.0174 -0.4309 4.5849 0.1617 >0.05
MERVAL 0.0006  -0.1295 0.1612 0.0214 —0.1235 5.6617 0.1006 >0.05
MIBTEL  0.0002 -0.0771 0.0683 0.0108  -0.3979 5.7820 0.4301  >0.05
NASD -0.0002 -0.1029 0.1116 0.0175 -0.1624 3.9587 0.2958 >0.05
NIKKEI -0.0003 -0.1211 0.1324 0.0158 —0.3633 7.3242 0.1252 >0.05
NYA 0.0002  -0.1023 0.1153 0.0140  —0.4233 10.5210 0.1514  >0.05
PX50 0.0003  -0.1619 0.1236  0.0154  -0.6011 15.4230 0.4121  >0.05
SAX 0.0007  —-0.0882 0.0711 0.0120  —0.0481 6.5294 0.5215  >0.05
SET 0.0000  -0.2211 0.1058 0.0158 -1.8111 26.2170 0.2975 >0.05
SPX -0.0001 -0.0947 0.1096 0.0134  -0.1842 8.1808 0.0958  >0.05
SSEC 0.0002  -0.1200 0.0903 0.0168  —0.2784 4.7064 0.1461  >0.05
SSMI -0.0001 -0.0811 0.1079 0.0127 0.0331 6.2488 0.0918  >0.05
STRAITS  0.0000 -0.2685 0.1406 0.0137  —2.2597 56.9590 0.1989  >0.05
TA100 0.0003  -0.0734 0.0978 0.0141  -0.1535 3.2977 0.1157  >0.05
TSE 0.0001  -0.0979 0.0937 0.0122  —0.6630 8.9915 0.0782  >0.05
WIG20 0.0004  —-0.0886 0.3322 0.0185 2.6452 52.0680 0.1909  >0.05
XU100 0.0004 -0.1334 0.1749 0.0230 0.0039 4.5896 0.1105  >0.05

the expected values of the efficient market for compari-
son. For the Hurst exponent estimates, we observe huge
diversity — between practically zero (for IPSA of Chile)
and 0.18 (for Peruvian IGRA). Interestingly, for some of
the most developed markets, we observe Hurst exponents
well below 0.5 (Tab. 3 gives the specific estimates) which
is, however, in hand with results of other authors [5,7].
The results for the fractal dimension again vary strongly
across the stock indices. The highest deviation is observed
for the Slovakian SAX (0.19) and the lowest for the FTSE
of the UK (0.02). In Table 3, we observe that apart from

FTSE, all the other stock indices possess the fractal di-
mension below 1.5 which indicates that the indices are
locally persistent, i.e. in some periods, the indices experi-
ence significant positively autocorrelated behavior which
is well in hand with expectations about the herding behav-
ior during critical events. The approximate entropy esti-
mates are more stable across indices compared to the pre-
vious two cases. The highest deviation from the expected
value for the efficient market is observed for the Chilean
IPSA (0.98) and the lowest for the Dutch AEX (0.48). Ev-
idently, all the analyzed stock indices are highly complex
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Fig. 1. Hurst exponent, fractal dimension, approximate entropy and efficiency index for analyzed indices. The centers of the
circle represent no deviation from the efficient market both for the specific deviations and for the Efficiency Index. The further
the red line is from the center, the higher the deviation. The figures are rescaled to make the results more evident. From the
Efficiency Index, we find that the Slovakian SAX, Venezuelan IBC, and Chilean IPSA are the least efficient markets whereas
the Dutch AEX, French CAC and German DAX are the most efficient ones.

as the approximate entropy is far from the ideal (efficient
market) value of 1 and such complexity is not sufficiently
covered by the other two applied measures. The inclusion
of the approximate entropy into the Efficiency Index thus
proves its worth.

Putting the estimates of the three measures together,
we get the Efficiency Index which is also graphically pre-
sented in Figure 1. For the ranking of indices according
to their efficiency, we present Table 3. The most efficient
stock market turns out to be the Dutch AEX closely fol-
lowed by the French CAC and the German DAX. We can
observe that the most efficient markets are usually the EU
(or rather Eurozone) countries followed by the US markets
and other developed markets from the rest of the world —
Japanese NIKKEI, Korean KS11, Swiss SSMI. The least
efficient part of the ranking is dominated by the Asian and
the Latin American countries. At the very end, we have
the Slovakian SAX, Venezuelan IBC and Chilean IPSA.
The efficiency of the stock markets is thus strongly geo-
graphically determined which is connected to the stage of
development of the specific markets.

To see the contribution of the separate parts of the
Index to the overall ranking, we present Table 4 where

the rankings according to the Efficiency Index and its
components are compared. Evidently, the overall ranking
is tightly connected to the ranking according to the en-
tropy measure. However, the correspondence is not perfect
— Spearman’s rank correlation between the two is equal
to 0.94. For the fractal dimension and long-term mem-
ory components, the rank correlations are 0.65 and 0.49,
respectively. It thus turns out that the stock indices are
highly complex and this complexity plays the main role
in their potential inefficiency. It also makes good sense
that the effect of entropy dominates the ones of the frac-
tal dimension and the long-term memory. In practice, it
is hard to believe that stock indices would be persistent
as such persistence would be quickly arbitraged out by
profit-seeking traders. The fact that the fractal dimension
has a stronger effect on the overall inefficiency compared
to the long-term memory component is well in hand with
the properties of the fractal dimension which tracks local,
short-lived, correlations which are present in the stock in-
dices. However, such dominance of the entropy measure
in the overall Efficiency Index does not discredit utility of
the Index itself as it turns out that such dominance might
be stock index specific — the Efficiency Index including
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Table 3. Ranked stock indices according to the Efficiency Index.

Index Country Hurst exponent  Fractal dimension  Approximate entropy  Efficiency index
AEX Netherlands 0.5358 1.4356 0.5246 0.0619
CAC France 0.5118 1.4592 0.5059 0.0628
DAX Germany 0.5334 1.4646 0.4807 0.0698
XU100 Turkey 0.5493 1.4350 0.4870 0.0724
FTSE UK 0.4470 1.5171 0.4500 0.0787
NYA USA 0.5348 1.4457 0.4418 0.0821
NIKKEI Japan 0.5063 1.4716 0.4285 0.0825
KS11 South Korea 0.5137 1.4204 0.4473 0.0829
SSMI Switzerland 0.5297 1.4617 0.3983 0.0929
BEL20 Belgium 0.5481 1.4574 0.3869 0.0981
MIBTEL Italy 0.5267 1.4728 0.3525 0.1063
NASD USA 0.5340 1.4526 0.3428 0.1114
SPX USA 0.5026 1.4437 0.3405 0.1119
KFX Denmark 0.5927 1.4665 0.3516 0.1148
DJI USA 0.4477 1.4685 0.3284 0.1165
BUX Hungary 0.6448 1.4844 0.3811 0.1170
TSE Canada 0.5626 1.4375 0.3272 0.1210
TA100 Israel 0.6536 1.4739 0.3648 0.1251
BUSP Brazil 0.6055 1.4142 0.3435 0.1262
JKSE Indonesia 0.6505 1.3657 0.3986 0.1311
WIG20 Poland 0.5232 1.4545 0.2790 0.1326
ATX Austria 0.6744 1.4455 0.3669 0.1336
HSI Hong-Kong 0.5945 1.4033 0.3033 0.1396
IPC Mexico 0.5550 1.3817 0.2991 0.1398
ASE Greece 0.6210 1.3926 0.2911 0.1518
SSEC China 0.6205 1.3698 0.3019 0.1533
IGBM Spain 0.5615 1.4581 0.1912 0.1691
STRAITS Singapore 0.5937 1.4500 0.2027 0.1702
PX Czech Rep 0.6124 1.4386 0.2053 0.1743
MERVAL Argentina 0.5850 1.3729 0.2225 0.1745
HEX Finland 0.5524 1.4385 0.1747 0.1768
BSE India 0.6139 1.4313 0.1842 0.1841
SET Thailand 0.5591 1.4311 0.1590 0.1851
KLSE Malaysia 0.5489 1.3620 0.1773 0.1906
IGRA Peru 0.6806 1.3435 0.2160 0.2108
SAX Slovakia 0.6673 1.3132 0.1534 0.2421
IBC Venezuela 0.5881 1.3308 0.0890 0.2439
IPSA Chile 0.4997 1.3187 0.0239 0.2711

entropy applied on various commodity futures does not
show such a strong position of entropy compared to the
other measures [44].

Compared to the other studies mentioned in the In-
troduction section, our study provides a broader picture
of treating the capital market efficiency. Most impor-
tantly, majority of the efficiency ranking studies focus
on the long-term memory characteristics of the capital
markets [5-7,11-14]. However, we show that the persis-
tence or anti-persistence of the series plays only a marginal
role in the overall efficiency ranking. This is well in hand

with the assumption that any significant autocorrelations
are quickly arbitraged away by algorithmic trading and
noise traders. Such short-term profit opportunities repre-
sented by short-lived significant autocorrelations are cap-
tured by the fractal dimension which is found to be the
more important component of the Efficiency Index. The
most important role is attributed to the entropy, which
makes our results partly comparable with the ones of
Zunino et al. [16] where the French CAC, German DAX
and Italian MIB30 are, respectively, detected as the most
efficient ones compared to our most efficient triad of the
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Table 4. Ranking of the indices according to the components.

Index Country Efficiency Index Hurst exponent  Fractal dimension = Approximate entropy
AEX Netherlands 1 12 22 1
CAC France 2 4 10 2
DAX Germany 3 9 8 4
XU100 Turkey 4 15 23 3
FTSE UK 5 18 2 5
NYA USA 6 11 16 7
NIKKEI Japan 7 3 5 8
KS11 South Korea 8 5 26 6
SSMI Switzerland 9 8 9 10
BEL20 Belgium 10 13 12 11
MIBTEL Ttaly 11 7 4 15
NASD USA 12 10 14 18
SPX USA 13 2 18 19
KFX Denmark 14 25 7 16
DJI USA 15 16 6 20
BUX Hungary 16 33 1 12
TSE Canada 17 22 21 21
TA100 Israel 18 35 3 14
BUSP Brazil 19 28 27 17
JKSE Indonesia 20 34 33 9
WIG20 Poland 21 6 13 26
ATX Austria 22 37 17 13
HSI Hong-Kong 23 27 28 22
IPC Mexico 24 19 30 24
ASE Greece 25 32 29 25
SSEC China 26 31 32 23
IGBM Spain 27 21 11 31
STRAITS Singapore 28 26 15 30
PX Czech Rep 29 29 19 29
MERVAL Argentina 30 23 31 27
HEX Finland 31 17 20 34
BSE India 32 30 24 32
SET Thailand 33 20 25 35
KLSE Malaysia 34 14 34 33
IGRA Peru 35 38 35 28
SAX Slovakia 36 36 38 36
IBC Venezuela 37 24 36 37
IPSA Chile 38 1 37 38

Dutch AEX, French CAC and German DAX in a descend-
ing order. However, the dataset of the former study does
not include the Dutch stock index. And even though the
most efficient triplets are very alike, the rest of the ranking
differs more which we attribute to more sources of ineffi-
ciencies taken into consideration by the Efficiency Index
presented in this study.

4 Conclusions

We have utilized long-term memory, fractal dimension and
approximate entropy as input variables for the Efficiency
Index [17,45]. This way, we are able to comment on stock
market efficiency after controlling for different types of in-
efficiencies. Applying the methodology on 38 stock market

indices across the world, we find that the most efficient
markets are situated in the Eurozone (the Netherlands,
France and Germany) and the least efficient ones in the
Latin America (Venezuela and Chile). The Efficiency In-
dex thus well corresponds to the expectation that the
stock market efficiency is connected to the development
of the market.

The research leading to these results has received fund-
ing from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant agreement No. FP7-
SSH-612955 (FinMaP) and the Czech Science Foundation
project No. P402/12/G097 “DYME — Dynamic Models in
Economics”.
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