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ABSTRACT

Rough textures describe a general visual appearance of real-

world materials with regard to view and illumination direc-

tions. As the massive size and dimensionality of such repre-

sentations is a main limitation of their broader use, efficient

parameterization and compression methods are needed. Our

method is based on estimating the joint probability density of

the included nine spatial, directional, and spectral variables

in the form of a Gaussian mixture of product components.

Our reflectance prediction formula can be expressed analyti-

cally as a simple continuous function of input variables and

allows fast analytic evaluation for arbitrary spatial and direc-

tional values without need for a lengthy interpolation from

a finite grid of angular measurements. This method achieves

high compression ratio increasing linearly with texture spatial

resolution.

Index Terms— rough texture, BTF, compression, mix-

ture model

1. INTRODUCTION

Real-world natural or man-made materials change, due to

rough and structured material surface, their appearance with

respect to actual viewing and illumination conditions. A

proper visualization, classification, or retrieval of such rough

materials with respect to viewing and illumination condi-

tions is a challenging task [1]. Although representations exist

that can comprehend a material’s appearance variability, due

to the massive size of the corresponding high-dimensional

data set, it is not practical to use them. Probably the most

often, but still not widely, used is a bidirectional texture

function (BTF), introduced by Dana et al [2]. BTF is a

seven-dimensional function representing the appearance of a

material sample’s surface for variable illumination ωi(θi, ϕi)
and view ωv(θv, ϕv) directions (see Fig. 1-a), resulting in

a function BTF (λ, x, y, θi, ϕi, θv, ϕv), where θ and ϕ are

elevation and azimuthal angles, respectively, λ is the spectral

channel, and (x, y) is the spatial location on the texture.

The behavior of each view- and illumination-dependent

BTF pixel at position x, y can be approximated as a five-

dimensional bidirectional reflectance distribution function

(BRDF) [4] BRDFx,y(λ, θi, ϕi, θv, ϕv). A typical size of
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Fig. 1. Parameterization of illumination and view directions

within the rough texture: (a) standard parameterization using

spherical angles, (b) onion-slice parameterization [3].

BTF is several gigabytes. Hence, it has been approximated

by various compression and modeling approaches so far [5].

Most of them were focused on creating a highly compact

parametric representation retaining as much of the original

visual fidelity as possible.

In this paper we attempt to create an analytic BTF model

based on a very compact set of parameters. Unlike most of

the previous approaches, we want to design a model in ours

that would allow fast, ideally graphics hardware supported,

analytic evaluation for arbitrary input data variables without

need for a lengthy interpolation from a predefined grid of an-

gular measurements during the appearance rendering.

2. RELATED WORK

A number of rough texture compression and modeling tech-

niques exist [5].

Factorization and BRDF Fitting Approaches – They

are either based on BTF data linear factorization, clustering,

pixel-wise modeling by analytical BRDF models, or by their

combinations. A parametric representation of most of them

is not fully analytic and thus the model evaluation requires

a time-consuming interpolation for non-measured illumina-

tion and viewing directions in individual pixels on the basis

of the compressed data known for the measured directions.

The factorization approaches are most often based on PCA

[6, 7] or tensors [8, 9, 10]. The clustering approaches usu-

ally accomplish factorization into a predefined set of clus-

ters [3, 11]. Analytical pixel-wise reflectance BRDF mod-

els have also been used, but due to inherited limitations of

BRDF (e.g., reciprocity) [12] they have had to be further ex-

tended [13, 14]. Approaches combining reflectance fitting

with estimated meso-structure geometry have also been pre-

sented [15, 16]. Although the techniques mentioned above are
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able to reproduce material’s appearance in high visual quality

and reconstruction speed, they are due to storing some sort

of pixel-wise parametric information limited to compression

ratios ≈ 1 : 2000.

Probabilistic Models – The approaches that allow us to

achieve of such compression ratios are based on probabilistic

Markov random field (MRF) BTF models that are closely re-

lated to our method. Several different MRF models have been

published in the past, based either on causal autoregressive

models [17, 18] or on a Gaussian MRF model [19]. Due to the

stochastic nature of the MRF models, they are less successful

at reproducing regular or near-regular structures in BTF sam-

ples [5]. Hence these methods combine an estimated range

map with a synthetic multi-scale smooth texture.

The Gaussian mixture (GM) models have been applied to

static texture synthesis. The method described in [20], [21]

was based on a multivariate GM model of the local statistical

texture properties in a moving contextual neighborhood.

In this paper we consider the problem of general modeling

and rendering of rough textures in full complexity of viewing

and lighting conditions – in a nine-dimensional space (i.e.,

spatial (2D), directional (4D), and color (3D) dependencies).

We suggest a solution based on simultaneous modeling BTF

data using the nine-dimensional GM model. Such a model,

contrary to some of the previous approaches, allows full-color

modeling of arbitrary materials as well as analytic evaluation

from a compact parametric set. Therefore, the model offers a

compression potential that outperforms most of the BTF com-

pression factorization approaches published so far.

3. PROPOSED ROUGH TEXTURE MODEL

Method Overview – The proposed method starts with a mean

BRDF computation by averaging view- and illumination-

dependent reflectance across individual BTF images. Then

these mean values are subtracted from individual BTF im-

ages and the resulting data are subject to the fitting using a

Gaussian mixture model. The other remaining inputs to the

model are the number of mixture components used M , and

the number of iterations or minimal increment ε of the fitting

quality evaluation function. Fitting of the Gaussian mixture

is performed by means of the EM algorithm, resulting in a

very compact parametric set. After the model’s parameters

are fitted, their pixel-wise reconstruction is combined with

mean BRDF value to obtain final BTF.

Rough Texture Data Preprocessing – Let ξ be the nine-

dimensional vector, where ξ1, ξ2 are the spatial pixel coordi-

nates of the source rough texture; ξ3, ξ4 and ξ5, ξ6 define the

information concerning view and illumination directions, re-

spectively; and ξ7, ξ8, ξ9 denote the color RGB values.

First, the input illumination and viewing directions are

transformed from common spherical angles (θi, ϕi, θv, ϕv) to

”onion-cut” parameterization [3] (ξ3, ξ4, ξ5, ξ6) (see Fig. 1),

avoiding 0 ≈ 2π discontinuity of azimuth angles in the spher-

ical parameterization:

ξ4 = arcsin(sin θi · cosϕi), ξ3 = arccos(cos θi/ cos ξ4),

ξ6 = arcsin(sin θv · cosϕv), ξ5 = arccos(cos θv/ cos ξ6).

Finally, to simplify the prediction problem, we centralize

the color reflectance values by subtracting the mean BRDF

color values ξ̄, i.e., obtaining xn = ξn − ξ̄n, n = 7, 8, 9 and

xn = ξn, n = 1 . . . 6 forming S = {x(1), . . . ,x(|S|)}.
Gaussian Texture Model – For the sake of predicting

the output color values x7, x8, x9 for any given input vari-

ables x1, . . . , x6, we approximate the joint multivariate den-

sity function of x in the form of Gaussian mixture

P (x) =
∑

m∈M

wmF (x|µm,σm), x ∈ R9, (1)

Here M = {1, 2, . . . ,M} is the index sets of components,

N = {1, 2, . . . , 9} denotes the index sets of variables, wm

are probability weights and F (x|µm,σm) denote the mix-

ture components defined as products of univariate Gaussian

densities [20], [21]:

F (x|µm,σm) =
∏

n∈N

fn(xn|µmn, σmn), (2)

fn(xn|µmn, σmn) =
1√

2πσmn

exp

{

− (xn − µmn)2

2σ2mn

}

.

From the computational point of view the product compo-

nents (2) avoid the risk of ill-conditioned covariance matrices

and simplify the evaluation of marginal densities [cf. later

Eq. (10)]. Note that the above-described GM model based

on the product components does not imply independence of

variables (i.e., it is not defined by marginal probability dis-

tributions alone). As there is no risk of over-fitting in the

case of approximation problems like rough texture rendering,

the chosen number of mixture components can be arbitrarily

large. As it is well known, the weights of redundant compo-

nents will be suppressed by the EM algorithm, and the com-

putational time is the only practical limitation. Typically, we

used ≈ 500 components, providing a reasonable trade-off be-

tween visual quality and computational complexity.

Parameter Estimation – We use the data set S intro-

duced above to estimate the mixture model. The EM algo-

rithm maximizes the corresponding log-likelihood function

L =
1

|S|
∑

x∈S

log [
∑

m∈M

wmF (x|µm,σm)] (3)

by means of the well-known EM iteration equations [20]:

q(m|x) =
wmF (x|µm,σm)
∑

j∈M wjF (x|µj ,σj)
, x ∈ S, (4)

w
′

m =
1

|S|
∑

x∈S

q(m|x), m ∈ M, (5)
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µ
′

mn =
1∑

x∈S q(m|x)
∑
x∈S

xnq(m|x), n ∈ N , (6)

(σ
′

mn)
2 =

1∑
x∈S q(m|x)

∑
x∈S

x2nq(m|x)− (µ′

mn)
2. (7)

Here, the apostrophe denotes the new parameter values in

each iteration.

Considering large sample size and a large number of com-

ponents, we may expect numerous local maximums of the

log-likelihood function (3) but, according to our experience,

the corresponding mixture estimates are of comparable qual-

ity. The frequently discussed implementation points of EM

algorithm are therefore less relevant: we choose the number

of components in hundreds (M ≈ 102) according to problem

complexity and initialize the parameters randomly. After the

mixture model is estimated, it is used for prediction of the

functional values as we explain in the following section.

Reflectance Prediction from Parameters – Let us sup-
pose that the first six input variables corresponding to pixel
coordinates, illumination and view directions are known. De-
noting xI = (x1, x2, . . . , x6) ∈ XI the subvector of input
variables, I = {1, 2, . . . , 6} ⊂ N , we can estimate the out-
put color reflectance values x7, x8, x9 by means of the condi-
tional densities

pn|I(xn|xI) =
Pn,I(xn,xI)

PI(xI)
=

∑

m∈M

Wm(xI)fn(xn|µmn, σmn).

(8)

Here
Wm(xI) =

wmF (xI |µm,σm)∑
j∈M wjF (xI |µj ,σj)

(9)

are the conditional weights given xI ∈ XI and

F (xI |µm, σm) =
∏
n∈I

fn(xn|µmn, σmn) (10)

denotes the marginal component functions corresponding to

the subspace XI . Note that the simple plug-in formula (8)

is formally enabled by a simple evaluation of the marginal

densities Pn,I(xn,xI) and PI(xI).
Equation (8) can be applied to predict the output color

variables xn, n ∈ N \ I, e.g., by computing the conditional

expectations for indices n = 7, 8, 9

E{xn|xI} =
∫
xnpn|I(xn|xI)dxn =

∑
m∈M

Wm(xI)µmn,

Note that the final estimated reflectance values ξ̂7, ξ̂8, ξ̂9, are

obtained as a sum of the previously subtracted mean BRDF

values and GM model contributions:

ξ̂n = E{xn|xI}+ ξ̄n, n = 7, 8, 9. (11)

As the proposed model is fully parametric, the rough texture

values for any spatial and angular coordinates are obtained

analytically from parameters of individual components. Con-

trary to MRF BTF models [17, 18, 19], the proposed re-

construction of individual pixels is completely independent

and can be easily implemented directly in graphics hardware

(GPU) for fast visualization purposes.

4. TESTING AND RESULTS

Test Datasets – We have used five data sets from the BTF

Database Bonn1 (aluminum profile, corduroy, dark and light

fabrics, and knitted wool). Four of the tested material samples

are fabrics, exhibiting challenging visual interactions between

the light and the material’s surface. These data have illumina-

tion and viewing directions (ni × nv = 81 × 81) producing

uniform sampling of a hemisphere above a material sample.

A spatial resolution of the data sets is 256×256 pixels; but

for the sake of faster and more convenient data processing we

cut BTF tiles [22] that can be freely repeated without visu-

ally disruptive seams. The mean BRDFs obtained from the

tested samples by means of averaging these BTF pixels are

shown in Fig. 2. The rows and columns in the BRDF images

are indices of individually measured illumination- and view-

ing directions uniformly covering the hemisphere above the

sample, by spiral movement starting at its pole.

aluminum corduroy fabric d. fabric l. knitted wool

Fig. 2. The mean BRDF computed for the five tested ma-

terials (rows illumination directions, columns viewing di-

rections). ”Diamond”-like patterns correspond to material’s

anisotropic behavior for fixed elevation angles.

Experimental Results – The proposed parametric rep-

resentation has broad application potential and its view- and

illumination-dependent descriptive qualities are best illus-

trated in compressed data visualization. Therefore, we com-

pared renderings from the original data (6561 images) with

renderings obtained as reconstructions from the proposed

model. Our implementation in the OpenGL evaluates the

model at each pixel of the rough texture mapped on a triangu-

lated 3D model. After conducting the practical experiments

we set the numbers of components to M = 600. Note that

M is related to spatial visual complexity of material structure

rather than to pixel count. Results on the five BTF samples

are shown in Fig. 3, where the first row (a) shows original

data rendering and the second row (b) shows reconstruction

by the model. Fig. 3 also shows tile sizes and compression

ratios for the tested BTF tiles achieved by the proposed GM

model’s parametric representation. Note that the ratios in-

clude the model’s parameters as well as mean BRDF data.

Additionally, in Fig. 3-c we show differences between origi-

nal and modeled images using RMSE, PSNR [dB] and SSIM

metrics, as well as the difference image in the selected in-

set window. It is apparent that although the model tends to

reliably match rough texture structure, in its current state it

does not reproduce well all of the fine high-frequency details,

1http://btf.cs.uni-bonn.de/
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aluminum corduroy fabric d. fabric l. knitted wool
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Fig. 3. The model’s performance on five BTF samples – alu-

minum profile, corduroy, dark fabric, light fabric, and knitted

wool. Individual rows show: (a) rendering of measured BTF

data, (b) the proposed model (M=600), (c) 10 × difference

images and averaged RMSE / PSNR[dB] / SSIM values.

as is visible, e.g., on the corduroy material. The current im-

Table 1. Performance of the LPCA method [11].
material tilesize [pixels] C.R. RMSE/PSNR/SSIM
alu 21×26 1:18 1.9 / 42.5 / 0.99
corduroy 36×46 1:55 4.6 / 34.9 / 0.94
fabric dark 21×23 1:16 7.3 / 30.9 / 0.85
fabric light 19×23 1:10 2.0 / 42.2 / 0.98
knitted wool 25×25 1:21 3.3 / 37.9 / 0.95

plementation of our method has a supreme data-compression

ratio, but its reconstruction accuracy is lower than PCA-based

methods (see compression and visual quality reconstruction

of the local PCA-based method [11] in Tab. 1); nevertheless,

the achieved visual results are encouraging for further devel-

opment. The compression ratio achieved for the knitted wool

material (25×25 = 625 pixels) as compared with compres-

sion ratios achieved by previous approaches [5] are shown in

Tab. 2.

Table 2. Compression ratios achieved by the GM model in

comparison with previous approaches to the rough texture

compression.
method (BTF tile:25×25 pix.) C.R.
Gaussian mixture model 195.6
Polynomial texture maps (per-view) PTM RF 13.5
Polynomial Lafortune (per-view) PLM RF 14.3
PCA factorization (per-view) PCA RF 11.2
PCA factorization (entire data) PCA BTF 23.8
Local PCA clustering (entire data) LPCA BTF 21.4
Probabilistic GMRF model (tiled range-map) 600.0
Probabilistic 2D CAR model (tiled range-map) 800.0
Probabilistic 3D CAR model (tiled range-map) 100.0

The graph in Fig. 4 shows different methods’ compres-

sion ratios dependency on number of BTF pixels. Although

this dependency is linear in the Local PCA approach [11],

which is also true for the proposed model, the compression

ratios of our model are far higher given the same pixel count.

Note, that the compression ratios of GMRF, 2D CAR, and

3D CAR methods have this dependency linear as well beyond

the size of tiled height-map. Although their compression ra-

tio is higher their visual quality is compromise due to height

simulation of regular structures, that cannot handle non-local

effects such as inter-reflections, translucency, or scattering.

Note that 500 components (M ) require us to store M ×
9 (variables) × 2 (µ and σ) = 9000 floating point values, in

addition to the mean BRDF image represented by 81×81×3

= 6561×3 byte values, which in the case of a modest size of

BTF data (256 × 256 × 81 × 81 × 3 = 1.3 · 109) represent

a BTF sample compression ratio of 1:45 323 (for HDR 32-

bits/channel) and 1:22 989 (for LDR 8-bits/channel).

Fig. 4. Dependency of compression ratios of the compared

methods on size of the rough texture.

The model’s parameter fitting for BTF of size 64×64 us-

ing 600 components typically takes 5 hours in 40 iterations of

the EM algorithm on Intel Xeon 2.7GHz using a single core

and non-optimized C++ implementation. Image rendering for

resolution of 800×800 in model using 600 components takes

an average of 30 seconds using non-optimized CPU imple-

mentation. These times can be further substantially reduced

by the EM algorithm implementation on multiple cores or a

GPU.

5. CONCLUSIONS

This paper outlines a novel method for high-dimensional

rough texture parameterization and compression. The method

starts with data normalization and their modeling with the aid

of a Gaussian mixtures model. This model allows full-color

BTF reconstruction based on analytic evaluation for any com-

bination of spatial and directional variables. Moreover, the

size of the model’s parametric representation is very com-

pact, and its compression ratio is linearly dependent on a

rough texture resolution. We are not aware of any parametric

BTF model that would provide such a compact parametric

representation together with the similar visual performance

as the model proposed here. Although the model’s visualiza-

tions do not convey all fine details in a material’s structure yet,

its main visual features are preserved accurately. In our future

work we will attempt to improve implementation and input

data processing steps to enhance speed and quality of the
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model’s fitting and apply them to adaptive data measurement.
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