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Abstract—Five fully automatic methods for X-ray digital
mammogram enhancement based on a fast analytical textural
model are presented. These efficient single and double view
enhancement methods are based on the underlying two-
dimensional adaptive causal autoregressive texture model.
The methods locally predict breast tissue texture from single
or double view mammograms and enhance breast tissue
abnormalities, such as the sign of a developing cancer, using
the estimated model prediction statistics. The double-view
mammogram enhancement is based on the cross-prediction
of two mutually registered left and right breasts mammo-
grams or alternatively a temporal sequence of mammograms.
The single-view mammogram enhancement is based on
modeling prediction error in case of not the both breasts’
mammograms being available.

Keywords-mammography; image enhancement; MRF; tex-
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I. INTRODUCTION

Breast cancer is the most common type of cancer among

middle-aged women in most developed countries [1], [2].

Almost one woman in ten grows a breast cancer in her

life. To lower the mortality rate, women in the developed

countries usually regularly attend a preventive mammog-

raphy screening. However, around 25% of radiologically

visible cancers are missed by the radiologists at screening

[3]. This means that millions of cancer cases are missed

and therefore even a slightest improvement in the detection

methods could have a huge impact and save many lives.

The biggest problem with current CAD (computer-aided

diagnosis) systems is their large false negative rate and

an even larger false positive rate. Most CAD systems

(e.g., [1], [4]) point out 2-3 regions of interest (ROIs)

per mammogram on average. Taking into account that

there are about 8 malignant mammograms in 1000 [3],

the radiologists consider the current CAD systems as

misleading.

An alternative way is to automatically enhance mam-

mograms to support radiologists with their visual mammo-

gram evaluation. Several mammogram enhancement meth-

ods have been published [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17]. Salvado and Roque [9]

use wavelet analysis to detect microcalcifications, Dippel

et al. [7] compare the merits of using either Laplacian

pyramids or wavelet analysis for whole mammogram en-

hancement, Sakellaropoulos et al. [8] designed an adaptive

wavelet based method for enhancing the contrast of the

whole mammograms. Pisano et al. [6] and Rahmati et al.

[15] use contrast-limited adaptive histogram equalization

techniques to reduce noise and enhance mammograms.

This approach based on the local windows histogram

equalization can provide subtle edge information but

might degrade performance in the screening setting by

enhancing the visibility of nuisance information [6]. The

[15] method requires interactive placement of the seed

point. Mencattini et al. [12] selectively enhance segmented

mammograms regions using wavelet transformation. Wang

et al. published [17] enhancement method based on the

idea of image matting. This method has promising results

(Fig. 5) but needs a lot of time to compute (tens of

minutes for 2Mpix images on a regular PC). A nonlinear

unsharp masking combined with nonlinear filtering for

mammogram enhancement was introduced by Panetta et

al. [16]. Tang et al. [14] use local contrast enhancement

in the wavelet domain.

An approach to diagnostic evaluation of screening

mammograms based on local statistical Gaussian mixture

textural models was proposed in [13]. The local evaluation

tool has the form of a multivariate probability density

of gray levels in a suitably chosen search window. First,

the density function in the form of Gaussian mixture is

estimated from data obtained by scanning the mammo-

gram with the search window. The estimated mixture was

evaluated at each position and displays the corresponding

log-likelihood value as a gray level at the window cen-

ter. The resulting log-likelihood image closely correlates

with the structural details of the original mammogram

and emphasizes unusual places, but the method is very

computationally demanding.

Radiologists regularly compare the bilateral mammo-

gram pairs during mammogram screening in search for

breast abnormalities. The mutual mammograms enhance-

ment requires accurate registration of both breast X-ray

images, which is difficult due to their elasticity. Marias et

al. [18], [19] use thin-plate spline transformation [20] to

align the breasts and then use wavelet based feature de-

tection to find internal landmarks. Thin-plate spline based

approach is also used by Wirth et al. in [21]. Hachama [22]

deals only with the comparison of temporal mammograms

based on a general method for registering images with
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the presence of abnormalities. However, it needs the prior

abnormalities distribution knowledge. The registration and

transformation are based on the Bayesian maximum a

posteriori probability approach and minimization of the

registration and deformation energy.

The novelty of the presented methods is that whereas

other alternative methods usually use simple pixel differ-

ence or trivial statistics like cross-correlation to compare

the left and right images, we use the mammograms of

one breast as a learning sample for the 2DCAR breast

texture model [23], [24] and then try to analyze the other

mammogram based on this acquired information. Using

the 2DCAR model for bilateral comparison, we achieve

a result which is robust to inaccurate registration, very

fast, and which gives improved enhancement results than

just a single-view analysis even using similar local texture

modeling.

II. MAMMOGRAM ENHANCEMENT

Our methods presume that left and right breasts are

architecturally symmetrical. This presumption is indeed

reasonable, since radiologists frequently compare double-

view mammograms to find asymmetrical parts, which

could indicate a developing cancer. The texture based

symmetry detection neither needs to assume the pixel-wise

correspondence of the both breast images, nor their ideal

sub-pixel registration inside the breast area.

The presented enhancement methods (7)-(9),(12),(13)

consist of three major steps: registration, model param-

eters adaptive estimation, and the cross-prediction based

analysis.

A. Mammogram Registration

The registration process is described for mammographic

MLO views (medio-lateral oblique), but it can be easily

adapted also for CC views (cranio-caudal). Since we

compare the images based on textural features rather than

pixel-wise, we do not require as precise registration as

other methods, and can use a simple registration based on

the affine transformation.

Three reference points are needed for the affine trans-

formation. We chose the nipple and one point above and

one below it which are closest to the pectoral muscle.

The nipple is located using the heuristic method de-

scribed in [25]. It works on the idea of the nipple being

a point on the skin-line of the breast which is the most

distant from the line of the pectoral muscle. After the

candidates for the nipple reference points have been found

in both the mammograms, the positions of the reference

points can still slightly differ in both images. Therefore,

we adjust their position by searching the neighborhood on

the skin line of the breast for the most correlated window.

The remaining reference point candidates have to be

further adjusted as well. Since the bilateral mammograms

usually do not cover the same area of the breast, some

anatomical parts of the breast can be seen only in one of

the images and therefore the reference points wouldn’t

match. To make up for this problem, we measure the

Figure 1. Registered mammograms with visible reference points.

distance of the points to the nipple, weighted by the

nipples distance to the pectoral muscle. The weighting

compensates for the differences of positioning of the breast

in the mammogram which could result in one image

displaying the breast bigger than the other one. We then

adjust the corresponding reference points, so that they are

on the skin line with the most similar weighted distance

to the nipple possible.

Having found the reference points, the affine transfor-

mation is performed. Fig.1 in the upper row shows the

images of right and left breast with marked line of the

pectoral muscle (colored in red) and the distance from

the pectoral muscle to the nipple. The lower row shows

the registered breasts with the reference points painted as

white squares with the right breast (shown on the left side)

transformed to match the left breast.

B. Adaptive Textural Model

The X-ray mammographic tissue is locally modeled

by its dedicated independent Gaussian noise-driven au-

toregressive random field two-dimensional texture model

(2DCAR), which is a rare exception among Markovian

random field model family that can be completely analyt-

ically solved [26], [27]. Apart from that, this descriptive

model has good modeling performance, all statistics can

be evaluated recursively, and the model is very fast to

evaluate. The 2DCAR random field is a Markovian family

of random variables with a joint probability density on the

set of all possible realizations Y of the M × N lattice

I , subject to the following condition:
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xy(r−1)
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Here, r = [r1, r2, φ] is a spatial multiindex denot-

ing history of movements on the rectangular lattice I ,

where r1, r2 are row and column indices, and φ ∈
{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦} is the direc-

tion of the model development. The contextual neighbor-

hood weights and the additive noise variance γ, σ2 are

unknown model parameters to be estimated. The 2DCAR

model can be expressed as a stationary causal uncorrelated

noise-driven 2D autoregressive process:

Yr = γφXr + er , (1)

where γφ = [a1, . . . , aη] is the parameter vector,

η = cardinality(Icr), Icr denotes a causal (or alterna-

tively unilateral) contextual neighborhood (i.e., all support

pixels were previously visited and thus they are known).

Furthermore, er denotes white Gaussian noise with zero

mean and a constant but unknown variance σ2, and

Xr is a support vector of Yr−s where s ∈ Icr .

The method uses a locally adaptive version of this 2DCAR

model [27], where its recursive statistics are modified by

an exponential forgetting factor, i.e., a constant smaller

than 1 which is used to weight the older data.

Parameter Estimation: Parameter estimation of a

2DCAR model using either the maximum likelihood, or

the least square or Bayesian methods can be found analyt-

ically. The Bayesian parameter estimates of the 2DCAR

model using the normal-gamma parameter prior are:

γ̂T
r−1 = V −1

x(r−1)Vxy(r−1) , (2)

σ̂2
r−1 =

λ(r−1)

β(r)
, (3)

where

λ(r−1) = Vy(r−1) − V T
xy(r−1)V

−1
x(r−1)Vxy(r−1) ,

V(r−1) = Ṽ(r−1) + V(0) ,

β(r) = β(0) + r − 1 ,

and β(0) is an initialization constant and submatrices

in V(0) are from the parameter prior. The parameter

estimates (2),(3) can also be evaluated recursively [27].

The posterior probability density [27] of the model is:

Figure 2. Three different malignant breast images (single view analysis)
- leftmost is from the DDSM database, the other two are from the
INbreast. Upper row shows original images with the ground truth, middle
row shows the modelled predicted gradient and bottom row shows
prediction probability densities.
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2 ) π

1
2 (1 +XT

r V
−1
x(r−1)Xr)

1
2 |λ(r−1)| 12(

1 +
(Yr − γ̂r−1Xr)

Tλ−1
(r−1)(Yr − γ̂r−1Xr)

1 +XT
r V

−1
x(r−1)Xr

)− β(r)−η+3
2

(4)

And the conditional mean value predictor of the one-

step-ahead predictive posterior density (4) for the normal-

gamma parameter prior is

E
{
Yr |Y (r−1)

}
= γ̂r−1Xr . (5)

Prediction: The conditional mean value of the one-step-

ahead predictive posterior density for the normal-gamma

parameter prior is
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E
{
Yr |Y (r−1)

}
= γ̂r−1Xr . (6)

The predictor (6) is used only for single-view mammo-

gram enhancement. For double-view mammograms where

there are available both left and right breasts mammo-

grams the method uses the cross-prediction (10),(11).

C. Enhancement Methods

Let us denote two mutually registered (e.g., left and

right breasts’ mammograms) Y and Ỹ , the lo-

cal 2DCAR model parameters estimates (2), (3) com-

puted on the mammogram image Y γ̂T
r−1, σ̂

2
r−1.

The same parameter estimates (2), (3) computed on

the other mammogram Ỹ are denoted γ̃T
r−1, σ̃

2
r−1,

and the corresponding support vector is X̃r. The di-

rectional models are computed in the following angles

φ ∈ Φ = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}.
The proposed single and double view enhancement meth-

ods use all eight possible directional prediction or cross-

prediction error statistics. However any fewer number of

directional models can be used if needed. For example,

in case of real time enhancement directly during a digital

mammogram scanning.

Single-View Enhancement: The single-view enhace-

ment the multidirectional prediction error (7), the mul-

tidirectional prediction probability (8), and the multidirec-

tional absolute prediction error (9) methods are computed

from up to eight directional models, i.e.,

Y enh1
r =

∑
∀φ∈Φ̄

(Yr+1 − γ̂r−1Xr) , (7)

Y enh2
r =

∑
∀φ∈Φ̄

p(Yr |Y (r−1), γ̂r−1) , (8)

Y enh3
r =

∑
∀φ∈Φ̄

|Yr+1 − γ̂r−1Xr| , (9)

where Φ̄ ⊆ Φ. All the enhanced values are normalized

into the 0− 255 range.

Double-View Enhancement: The double-view enhance-

ment is based on statistics computed on one breast im-

age and applied to the complementary one. The cross-

prediction between images Y, Ỹ is computed as follows:

E
{
Ỹr |Y (r−1)

}
= γ̂r−1X̃r (10)

and the opposite direction cross-prediction is analogously

E
{
Yr | Ỹ (r−1)

}
= γ̃r−1Xr . (11)

The enhanced mammograms are then the corre-

sponding cross-prediction statistics images. The cor-

responding cross-prediction probability densities are

p(Ỹr | Ỹ (r−1), γ̂r−1) and p(Yr |Y (r−1), γ̃r−1).

The proposed double-view enhancement methods the

multidirectional cross-prediction error (12) and the multi-

directional cross-prediction probability (13) are

Y com1
r =

∑
∀φ∈Φ̄

(
Ỹr+1 − γ̂r−1Xr

)
, (12)

Y com2
r =

∑
∀φ∈Φ̄

p(Ỹr | Ỹ (r−1), γ̂r−1) . (13)

III. EXPERIMENTAL RESULTS

The algorithm was tested on mammograms from the

INbreast database [28] and the Digital Database for

Screening Mammography (DDSM) from the University

of South Florida [29]. The DDSM database contains 2620

four view (left and right cranio-caudal (LCC, RCC) and

medio-lateral oblique (LMLO, RMLO)) mammograms in

different resolutions digitized from original X-ray films.

Single mammogram cases are divided into normal, benign,

benign without callback volumes and cancer.

The INbreast database is a mammographic database,

with images acquired at a Breast Centre, located in a

University Hospital (Hospital de São João, Breast Centre,

Porto, Portugal). INbreast has a total of 115 cases (410

images) of which 90 cases are from women with both

breasts (4 images per case) and 25 cases are from mastec-

tomy patients (2 images per case). Several types of lesions

(masses, calcifications, asymmetries, and distortions) are

included. Accurate contours made by specialists are also

provided in XML format.

Fig.2 shows three single-view MLO mammogram en-

hancements from the DDSM and INbreast databases using

one directional diagonal 2DCAR model moving from the

bottom right to the top left.

The single-view enhacement method is compared with

three different state-of-the-art methods: a nonlinear un-

sharp masking based method by Panetta et al. [16], a

wavelet decomposition based method by Tang et al. [14]

and a matting based method by Wang et al. [17] (Fig.5).

Compared with our results, these methods tend to highlight

mostly the brighter areas of the images while not taking

into account the local texture. While the method by Wang

et al. [17] gives comparable results, it takes distinctively

longer to compute compared to our method - tens of

minutes whereas our method needs just several seconds.

Double-view medio-lateral oblique (Figs.3,4) digital

mammograms’ enhancements from the INbreast database

show the cross-prediction based enhancement perfor-

mance. Comparing the cross-prediction enhancements on

Fig.3 with the same breast single-view enhancement on

Fig.2, the benefits of the cross-prediction are clearly

visible.

Our double-view enhancement method is compared

with the registered image pixel difference which is stan-

dardly used for comparison ([18], [21], [22])

ΔYr = max{Y R
r − Y L

r , 0} . (14)

This standard double-view enhancement method (Figs.3,4

- second columns) is inferior compared to the both
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Figure 3. Multiple-view medio-lateral mammogram enhancement consecutively rightwards - ground truth, pixel difference between registered LMLO
and RMLO, cross-predicted gradient, and cross-prediction probability density. The upper row contains LMLO, bottom row RMLO.

proposed double-view enhancement methods ((12), (13))

which simultaneously exhibit more contrast and increased

details’ visibility. All five proposed enhancement methods

are very fast, they can be computed on the presented

mammograms with a standard PC in a matter of several

seconds.

IV. CONCLUSION

We proposed five novel fast methods for completely

automatic mammogram enhancement which highlight re-

gions of interest, detected as textural abnormalities and

simultaneously decrease the additive measurement noise.

Cancerous areas typically manifest themselves in X-ray

mammography as such textural defects. Thus the enhanced

mammograms can help radiologists to decrease their false

negative evaluation rate. These methods are based on

the underlying two-dimensional adaptive CAR texture

model. Although the algorithms use random field type

model, the model is very fast due to efficient recur-

sive model predictor estimation and therefore is much

faster than the usual alternative Markov chain Monte

Carlo estimation approach. The enhancement can be either

single or double view depending on the data available.

The single-view methods allow significant mammogram

enhancement without the need of paired mammogram

registration. The double-view methods benefit from mu-

tual textural information in the registered bilateral breast

pairs. Contrary to the simple pixel difference values or

cross-correlations, the textural feature comparison brings

increased robustness to registration inaccuracies inevitably

encountered due to the elasticity of the breast. The double-

view methods could alternatively be used for the enhance-

ment of a temporal sequence of mammograms.
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