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ABSTRACT

Automatic texture quality evaluation is important but still un-
solved difficult problem. While several generative mathemat-
ical texture models were developed, their reliable qualitative
evaluation is for now possible only using impractical and ex-
pensive visual psycho-physics which hampers their further
progress. We present the texture fidelity benchmark created to
help the validation of texture fidelity criteria being developed.
The benchmark is a web based service (http://tfa.utia.cas.cz)
designed for performance evaluation, mutual comparison, and
ranking of various texture fidelity measures. The benchmark
supports rapid verification and development of new fidelity
criteria approaches and contains seven color, variable texture
quality, series together with their grey-scale counterparts.

Index Terms— texture, benchmark, fidelity criteria, mea-
sure,

1. INTRODUCTION

Evaluation of how well various texture models conform with
human visual perception is important not only for assessing
the similarities between a model output and the original mea-
sured texture, but also for optimal settings of model param-
eters, for fair comparison of distinct models, etc. Few pub-
lished criteria allow to test selected texture properties such as
the texture regularity [1] others claim to test general texture
quality [2]. Currently the only reliable, but extremely imprac-
tical and expensive option, is to exploit the methods of visual
psycho-physics. The psycho-physical methods [3] require a
lengthy process of experiment design, tightly controlled lab-
oratory condition, and representative panel of human testing
subjects. Such testing obviously cannot be performed on a
daily basis. Thus an automatic texture fidelity verification is
needed for evaluating the quality of texture-generating algo-
rithms, for database texture retrieval, etc. This problem has
not been successfully solved and new measures still emerge.
We present the texture fidelity benchmark for validation of
texture fidelity measures and the results that were obtained.
The point is to show that in most cases neither the general im-
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age quality measures do work, nor the texture quality criteria,
while performing better, are reliable.

2. IMAGE AND TEXTURE QUALITY MEASURES

We have tested several state-of-the-art image quality mea-
sures and several recently published texture criteria that are
concisely described in the following text. All of the criteria
consider only gray-scale images.

Let us define common naming convention. x and y stand
for the target and tested image, µz and σz is a mean value and
standard deviation of z, respectively.

2.1. Mean-Squared Error

The mean-squared error (MSE) [6] multispectral criterion is

MSE(x,y) =
1

MNd

M∑
r1=1

N∑
r2=1

d∑
r3=1

(xr − yr)
2 , (1)

where r = {r1, r2, r3} is a multiindex with the row, col-
umn, and spectral indices, M number of rows, N number of
columns, d number of spectra. MSE is simple, memory-less,
parameter free, and inexpensive to compute, but, it depends
strongly on the image scaling and does not measure well hu-
man perception.

2.2. Visual Signal-to-Noise-Ratio

The visual signal-to-noise-ratio [4] (VSNR) is a two-stage ap-
proach. In the first stage, contrast thresholds for detection of
distortions in the presence of natural images are computed
via wavelet-based models of visual masking and visual sum-
mation in order to determine whether the distortions in the
distorted image are visible. The threshold contrast is used in
the second step to compute contrast detection thresholds.

2.3. Structural Similarity Index

The structural similarity (SSIM) index [5] is based on an as-
sumption, that structural information about an image can be
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described by a function (usually a simple multiplication) of
three terms: luminance l, contrast c and structure s:

SSIM(x,y) = l(x,y)c(x,y)s(x,y) = (2)

=

(
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

)(
σxy + C3

σxσy + C3

)
,

where σxy is the sample cross correlation of x and y after re-
moving their means. C1, C2, C3 are small positive constants
that stabilize each term.

2.4. Complex Wavelet - Structural Similarity Index

The Complex wavelet - structural similarity (CW-SSIM) in-
dex [7] is basically the SSIM index computed in the complex
wavelet domain and it is defined as:

CW-SSIM(cx, cy) =

 2
∣∣∣∑C

i=1 cx,i · c∗y,i
∣∣∣+K∑C

i=1(|cx,i|2 + |cy,i|2) +K

 ,

(3)
where cx represents complex wavelet coefficients and cx,i
is the i-th coefficient from the image x (analogically for the
image y), z∗ stands for complex conjugate, C is the number
of complex wavelet coefficients, and K is a small positive
stability constant.

2.5. Visual Information Fidelity

Visual information fidelity (VIF) methods [8] explicitly incor-
porate statistical models of all the components in the commu-
nication system interpretation of signal fidelity measurement.
VIF is defined as the ratio of the summed mutual information

VIF =
I(C;F |x)
I(C;E|x)

=
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, (4)
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where E and F are models in a wavelet domain for what hu-
man visual system (HVS) captures from original and test im-
ages, respectively, N is the number of subbands, CU is a co-
variance matrix (without considering noise and scale factors)
of E, λj is the j-th eigenvalue of CU , x is a realization of
an original image, and g is an attenuation factor.

2.6. Structural Texture Similarity Measure

STSIM is an extension of CW-SSIM and has three versions,
STSIM-1, STSIM-2 and STSIM-M [2]. STSIM-1 is created
from CW-SSIM by replacing the ’structural’ term with terms
that compare first-order autocorrelations of corresponding
subband coefficients ρmx (0, 1) in the horizontal and ρmx (1, 0)
in the vertical direction. In the equations for a single subband
m, the p is typically set to 1

STSIM-1m(x,y) = (5)
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STSIM-2 adds cross-band correlation coefficient ρm,n
|x| (0, 0)

between subbands m and n
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where Nb is the number of subbands and Nc is the number of
possible crossband correlations.

STSIM-M (STSIM-Mahalanobis) chooses another ap-
proach. Rather than combining aforementioned terms into a
single measure, it uses them to create feature vectors fx and
fy and then calculates the Mahalanobis distance between
the feature vectors:

STSIM-M(x,y) =

√√√√ Np∑
i=1

(fx,i − fy,i)2
σ2
fi

, (7)

where σ2
fi is the standard deviation of the i-th feature across

all feature vectors in the set. Therefore, to compute the
distance between two textures, STSIM-M requires statistics
based on the whole set and the results are relative only to
the set, which is unfavourable for our cause and therefore the
STSIM-M was not included in our tests.

3. BENCHMARK

The development of fidelity evaluation of mathematical tex-
ture models or an optimization of their parameters require an
automatic validation tool, i.e., a reliable and robust texture
quality criterion. To find if some already published criterion



Fig. 1. The benchmark website (http://tfa.utia.cas.cz), home
page (upper left), three modifications of the red carpet texture
(upper right), partial assessment result (bottom left), and a test
screen.

can be used for this purpose, it is necessary to have qual-
ity ranked texture series by human observers, so there is a
ground truth to compare the criteria with. Although, there
are several databases that contain either real world images or
textures, no such benchmark with ground true scores or rank
exists. Thus we develop the benchmark for viable and reliable
way of testing new texture fidelity measures. Texture Bench-
mark (http://tfa.utia.cas.cz) is a simple website programmed
in PHP. The subject can create a user account, log in, nav-
igate through the website (see Fig. 1) to the Test page and
begin to evaluate the textures (see Section 3.2).

Fig. 2. Target color benchmark textures.

3.1. Textural Data

We have chosen six natural and one synthetic color texture to-
gether with their gray scale versions as the target textures (for
the textures see Fig. 2). Synthetic variants of these textures
are ranked by benchmark users and the collected data serve to
create modelling quality ranks. Textures were mathematically
synthesized using various mathematical models and variable
quality constraints. The models used were either random field
type of models, mainly variants of the auto-regressive Markov
random field models [9], or Gaussian mixture models [10].

3.2. Performance Evaluation

The most straightforward way to obtain an ordering is to
present human with all possible pairs (see Fig.3 - left), one at
a time, and let them choose the one that is more similar to the
original. We also measure how long it takes for a user to reach
a decision. The ranks are constructed from these collected
data. This alternative is not very efficient and testers tend
to get a bit frustrated from comparing tenths of image pairs.
The main problem is that the number of comparisons grows
quadratically with the number of synthesized textures, which
already amounts to around a hundred with only a dozen of
images.

Fig. 3. Test variants: comparison of pairs (left), ordering of
textures (right)

Faster and simpler alternative is to show all the textures at
once and let the subject order them by fidelity in a drag-and-
drop manner (see Fig.3 - right). Even though the former ap-
proach is quite exhaustive and lengthy for the user, output data
can be used not only to create a simple rank, but also to calcu-
late quantitative measure of fidelity by taking into account the
number of comparisons where each texture was better ranked
than others. The rank calculation can be quite easily weighted
considering the time factor. Presented results do not use such
’extended’ data, because both measures (see Section 4), i.e.,
the simple and quantitative rank, give similar results on our
data.

Fig. 4. An example of the texture and several of its syntheses.
The top left texture is the original, the remaining textures are
synthetic experiments.



4. COMPARATIVE ANALYSIS

To test the measures, we calculated ranks of the criteria from
Section 2 and then the Spearman’s rank correlation coefficient
(using Matlab implementation) between these ranks and the
human rank (see Tab. 1). In each row the correlations be-
tween both ranks are displayed for all textures. Note, that
MSE normally measures the magnitude of the difference be-
tween the textures (error). For purposes of uniformity of the
results, the rank was reversed, so the meaning of values in the
tables is the same for all the measures.

Measure/Img 1 3 5 7
MSE 0.40(0.06) -0.24(0.83) 0.02(0.49) -0.17(0.72)
VSNR 0.72(0.00) 0.14(0.29) -0.01(0.51) -0.46(0.95)
VIF 0.04(0.43) 0.62(0.01) -0.07(0.58) -0.03(0.55)
SSIM 0.29(0.13) -0.23(0.81) 0.02(0.49) -0.04(0.56)
CW-SSIM 0.37(0.07) 0.20(0.22) -0.01(0.51) 0.00(0.50)
STSIM-1-W 0.32(0.11) 0.87(0.00) 0.44(0.10) 0.44(0.06)
STSIM-1-G 0.48(0.03) 0.86(0.00) 0.64(0.03) 0.42(0.07)
STSIM-2-W 0.83(0.00) 0.85(0.00) 0.44(0.10) -0.03(0.55)
STSIM-2-G -0.54(0.99) 0.57(0.01) 0.37(0.15) 0.17(0.28)
Measure/Img 8 10 12 14
MSE 0.18(0.24) -0.08(0.62) 0.13(0.37) 0.50(0.04)
VSNR 0.43(0.05) 0.24(0.17) 0.12(0.38) 0.39(0.09)
VIF 0.10(0.35) 0.72(0.00) 0.10(0.39) 0.41(0.08)
SSIM 0.15(0.29) -0.05(0.58) 0.08(0.42) 0.39(0.08)
CW-SSIM 0.57(0.01) 0.29(0.13) -0.08(0.59) 0.20(0.25)
STSIM-1-W 0.49(0.02) 0.89(0.00) 0.61(0.03) 0.71(0.00)
STSIM-1-G 0.61(0.01) 0.89(0.00) 0.78(0.01) 0.66(0.01)
STSIM-2-W 0.64(0.00) 0.93(0.00) 0.58(0.04) 0.28(0.16)
STSIM-2-G -0.39(0.94) 0.65(0.00) 0.32(0.18) 0.53(0.03)

Table 1. Spearman’s rank correlation between the human
rank and the criteria results. Textures 1–7 are color images,
the remaining are gray-scale.

The variants of STSIM are described as follows: W or G
denotes whether the measure was computed on the whole tex-
ture (subband) or by the sliding window, where individual re-
sults were averaged. The numbers in parentheses are p-values
for testing the hypothesis of no correlation against the alterna-
tive that there is a positive correlation. In some cases, p-value
is zero even if the correlation is lesser than one. It is caused
by the Matlab implementation and it only means the p-value
is very small and was rounded to zero during the calculation.

These tables illustrate the fact, that the state-of-the-art im-
age quality measures do not work almost at all, but some vari-
ants of STSIM (mainly STSIM-1-G) show good correlation
with the human rank for some textures. Tab. 2 shows scores
of STSIM for the texture number 10 (see Fig. 4), which is
the best case scenario for STSIM. It is the gray-scale texture,
which corresponds with the fact that STSIM does not work
with color images.

Measure/Texture 1 2 3 4
STSIM-1-W 0.732 0.725 0.674 0.757
STSIM-1-G 0.871 0.873 0.834 0.901
STSIM-2-W 0.818 0.798 0.808 0.828
STSIM-2-G 0.918 0.892 0.913 0.930
Measure/Texture 5 6 7 8
STSIM-1-W 0.763 0.783 0.722 0.780
STSIM-1-G 0.881 0.902 0.875 0.922
STSIM-2-W 0.802 0.812 0.815 0.835
STSIM-2-G 0.912 0.926 0.930 0.934
Measure/Texture 9 10 11 12
STSIM-1-W 0.785 0.818 0.776 0.799
STSIM-1-G 0.928 0.937 0.924 0.927
STSIM-2-W 0.838 0.838 0.826 0.837
STSIM-2-G 0.898 0.943 0.919 0.899
Measure/Texture 13 14 15 16
STSIM-1-W 0.792 0.838 0.857 0.871
STSIM-1-G 0.921 0.950 0.966 0.958
STSIM-2-W 0.825 0.845 0.845 0.849
STSIM-2-G 0.910 0.940 0.960 0.952

Table 2. STSIM scores for the texture 10 from the Fig. 4.
Numbers in the header denote synthetic textures.

As we observed, the criteria results have only very small
variance (see Tab. 2). Because the criteria values range
between zero and one, this suggests that the quality of all
the synthetic textures is very similar, which is undoubtedly
wrong. Thus, the question is how reliable these results are
with respect to the small range of result values. Tab. 1 also
illustrates principally wrong color / texture separation (con-
trary to some observations, e.g., [2]) - the rank correlation
with human observers for color textures is lower (with 0.88
probability) than for their gray-scale variant.

5. CONCLUSIONS

The paper presents the benchmark for validation of texture
fidelity criteria. We tested several state-of-the-art image qual-
ity measures and also one texture measure in several variants.
The results demonstrate that the standard image quality cri-
teria (MSE, VSNR, VIF, SSIM, CW-SSIM) cannot be used
for texture quality validation at all. Although, the STSIM tex-
ture criterion has significantly higher correlation with human
ranking, its results are texture dependent and the criterion has
only small variance and therefore this measure is not reliable.
The common problem of all tested criteria is that they are only
monospectral and cannot use multispectral correlations. As a
consequence the rank correlation with human observers for
color textures is lower than for their gray-scale variant. This
means the problem of texture fidelity assessment is still an
open problem and there is a need for more reliable measure.
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