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Abstract Inspired by nonlinear quantile regression, the article introduces, investi-
gates, discusses, and illustrates a new concept of generalized elliptical location quan-
tiles. They may require less stringent moment assumptions, be less sensitive to outliers,
be less rigid, employ more a priori information regarding the location of the distribu-
tion, and have higher potential for various regression generalizations than their com-
mon elliptical predecessor defined in the convex optimization framework by means
of standard linear quantile regression. Furthermore, they still include an equivalent
of their predecessor as a special case and inherit most of its favorable features such
as the probability interpretation, natural equivariance properties, and good behavior
for elliptical and symmetric distributions, which is demonstrated both by theoretical
results and data examples with convincing graphical output. On the other hand, the
new elliptical quantiles need not always be uniquely defined and they require some-
what different approach to their analysis and computation due to their intrinsically
non-convex formulation.
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1 Motivating introduction

Many practitioners investigate multivariate data and their distributions to understand
not only the individual data coordinates but also their mutual relations. For a simple
example of such data sets, let us consider the bivariate sample (y1, y2)

′, i = 1, . . . , n,

consisting of n =1,000 daily stock log-returns of Intel (y1) and General Electric (y2)
from 1996/01/03 to 1999/12/16. It was extracted from the datafile rdj.tab, included in
the copula package for R (see, Hofert et al. 2012; R Core Team 2012), and already
analyzed in Section 5.5 of (McNeil et al. 2005) by means of various copulas. Con-
sequently, our sample can be expected to come from a roughly elliptical distribution
with heavy tails, like many other financial data sets.

We propose a family of (elliptical) quantiles and index its members by their level
τ ∈ (0, 1) and by the function g employed in their definition. They have many good
properties: (B1) they are elliptical, (B2) they behave naturally under affine transfor-
mations, (B3) they are roughly nested for symmetric distributions, (B4) they preserve
the centers and axes of symmetry, (B5) they can easily incorporate many types of a
priori information regarding their shapes and centers, (B6) their levels directly cor-
respond to their probability contents, (B7) their shapes and centers are τ -dependent,
(B8) they can be made very robust and free of any moment assumptions by a suit-
able choice of g, (B9) they can work well even for complicated distributions, (B10)
they are parameterized very naturally by means of their centers, shape matrices and
inflation factors, and (B11) they coincide with the standard elliptical quantiles in the
population case under very mild conditions if the distribution is truly elliptical. In the
sample case, (B12) their border is not bound to contain a dimension-specific number
of observations for most g’s, and (B13) they can be computed even for very large
and/or multidimensional data sets.

These quantiles can be used for investigating unconditional distributions where the
elliptical shapes of all the quantiles seem appropriate. For example, if we compute
them for the data sample described above and plot them in Fig. 1, we can check easily
that the output is in good agreement with B1, B3, B4, B5, B6, and B7. Section 6 further
illustrates their properties with simulated data examples; see e.g., Figs. 4, 3, 5, 2, and
6 for B5, B8, B9, B11, and B13, respectively. In our example, the quantiles identify
rare/suspicious/profitable pairs of returns by linking all the pairs with probability
and thus provide much useful information about them in a very distant future (under
the assumption of stationarity), possibly helpful for trading the stocks together in long
horizons. Then, the nearest history is not known and, therefore, the more sophisticated
conditional models cannot be employed with usual benefits. See Sect. 4 for more details
regarding the links to risk management and portfolio optimization.

Properties B7 and B10 imply that our concept generates quite a few natural
processes indexed by τ and g that seem extremely promising not only for construct-
ing goodness-of-fit tests, but also for testing various hypotheses regarding symmetry,
ellipticity, and location/dispersion, respectively, thanks to B4, B11, and B5; see also
Liu et al. (1999) for a way how they can be used. Not only are elliptical distributions
very popular among practitioners, but also ellipsoids themselves have been already
employed in various statistical contexts, e.g., for finding outliers, handling measure-
ment errors, defining data depth, specifying copulas, discriminating data clusters,
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Fig. 1 Examples illustrating our elliptical quantile family. The plots show our elliptical g-quantile
family in action. Both of them display some elliptical τ -g-quantiles, τ ∈ {0.100, 0.200, . . . , 0.800,

0.850, 0.875, 0.900, 0.925}, computed from n = 1,000 couples (y1, y2) of daily stock returns of Intel
(y1) and General Electric (y2) from 1996/01/03 to 1999/12/16. The left plot contains elliptical g-quantiles
for g(z) = z/(1 + z) that can be viewed as fully robustified elliptical quantiles of (Hlubinka and Šiman
2013), but this time parameterized directly by means of their centers. The right plot contains elliptical
g-quantiles for g(z) = √

z using an a priori information about their centers, namely assuming their first
coordinates as zero

constructing confidence regions, and for estimating scatter or location. This hints that
our elliptical quantiles might once be used in many different statistical applications as
well. Furthermore, possible regression generalizations of these elliptical quantiles will
once be even much more useful than the location quantiles themselves and they will
hopefully make all the time series models of conditional volatility somewhat redun-
dant. Therefore, we consider the theory presented here as a very important cornerstone
that may give rise to various interesting and important future achievements.

We can conclude that the elliptical quantiles presented here may outperform their
predecessor of Hlubinka and Šiman (2013) in terms of B5, B8, B10, B12, and the
possibility of regression generalizations. On the other hand, their interpretation may
be less intuitive and their computation may become rather challenging, though it is still
feasible, e.g., using the algorithms already developed for nonlinear single-response
quantile regression. They are designed as direct competitors to the recent multivari-
ate (regression) quantile concept arising from the directional approach to halfspace
depth presented in Hallin et al. (2010a, b); Paindaveine and Šiman (2011); Kong and
Mizera (2012); Hallin et al. (2014) implemented in Paindaveine and Šiman (2012a)
and Paindaveine and Šiman (2012b), and employed, e.g., in McKeague et al. (2011);
Šiman (2011) or Šiman (2014). They usually win, thanks to B5, B6, B10, and B13 if
the elliptical shape of quantiles is really adequate, but they may lose the comparison
owing to B1 and B3 for some highly asymmetric distributions. In fact, they win over
any other depth-based multivariate quantile concept in the same contexts and for the
same reasons (and sometimes also for B8); see Zuo and Serfling (2000) for a brief
review of the most popular depth notions. This already implies that our concept is more
than competitive because depth-based multivariate quantiles are generally considered
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superior to many others; see Serfling (2002) for this conclusion and a review of various
multivariate quantiles (based on depth, norm minimization or M-estimation, inversion
of mappings, gradients or generalized quantile processes) and their properties.

Consequently, we see as our main competitors the methods working with ellipsoids.
Indeed, our approach seems similar to those based on minimum volume ellipsoids (see
Rousseeuw 1985; Polonik 1997), minimum (weighted) covariance determinants (see
Roelant et al. 2009), or other multivariate L1/S/CM/MM-estimators of location and
scatter (see e.g., Kent and Tyler 1996; Tatsuoka and Tyler 2000; Roelant and Van Aelst
2007; Aelst and Willems 2007). Usually, they cannot also be used for direct quantile
estimation, and when they can, such as in the case of minimum volume ellipsoids,
then they have some unpleasant features including computational issues or slow rate
of convergence of the resulting estimators. Roughly speaking, our method might be
viewed as their quantile modification inspired by quantile regression.

Of course, one could also consider elliptical quantiles as only inflated copies of one
another, defined by the same center and the same shape matrix. Any of the numerous
location and scatter estimators could then be used for their definition and such quantiles
might be desirable for elliptical distributions in the population case. Nevertheless, they
would lead to much less inferential tools and possibilities and they would fail whenever
the quantile shapes and/or centers depended on the quantile level.

Our elliptical g-quantiles are defined by means of non-convex optimization and
therefore, unfortunately, they need not be uniquely defined in general. However, there
is at least one important exception to this rule corresponding to g(z) = z when we
obtain (unique) elliptical quantiles virtually equivalent to those of Hlubinka and Šiman
(2013), but better in terms of B5, B10, and the possibility of regression generalizations.
Furthermore, such problems with ambiguity do not necessarily make a statistical con-
cept useless, which is testified beyond any doubt by the widespread use of notoriously
ambiguous but popular S-estimators or single-response nonlinear regression quantiles;
see e.g., Tatsuoka and Tyler (2000); Koenker (2005) with references therein. In fact,
the ambiguity might even be considered advantageous for some cases of multimodal
distributions that may arise easily as mixtures of only two unimodal ones even in the
univariate case; see Došlá (2009). Before the uniqueness questions are satisfactorily
resolved, we nevertheless suggest to experiment with the choices of g cautiously, to
look for the quantile centers only in the convex hull of the data cloud, to try various ini-
tial values for the computation, and to always use the elliptical quantiles for g(z) = z
as a benchmark.

The text proceeds as follows. Section 2 presents necessary notation and explains
our definition of generalized elliptical quantiles, Sect. 3 studies their properties in
the population case, Sect. 4 reveals their link to risk management, Sect. 5 comments
on their computation in the sample case, Sect. 6 illustrates them with a few demo
examples, and the last Sect. 7 discusses their use and impact on statistical inference.

2 Definitions and notation

Let us consider quite a general multivariate setup where an m-variate vector Y =
(Y (1), . . . , Y (m))′ ∈ R

m has an absolutely continuous distribution and a probability
density function differentiable almost everywhere.
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Standard univariate location quantiles can be defined for any τ ∈ (0, 1) with the
aid of the nonnegative convex real-valued check function ρτ (t) = t (τ − I(t < 0)) =
max{(τ −1)t, τ t} with a unique minimum; see e.g., Koenker (2005). This function was
also used in Hlubinka and Šiman (2013) for defining multivariate location elliptical
quantiles by means of convex optimization. Here, we choose a different approach, sac-
rifice simplicity to flexibility, and do not insist on the convexity of resulting optimiza-
tion problems at any cost, which allows us to introduce a general class of (the whole
processes of) elliptical location quantiles together with related parameters of location
and scatter whose future impact on statistical inference seems hard to overestimate.

Definition 1 For any τ ∈ (0, 1), we define the generalized elliptical τ -quantile (or,
τ -g-quantile) εg,τ (Y) of Y , and corresponding lower and upper τ -g-quantile regions
E−

g,τ (Y) and E+
g,τ (Y) as follows:

εg,τ (Y) = { y ∈ R
m : g

(
( y − s)′Aτ ( y − s)

) − cτ = 0},
E−

g,τ (Y) = { y ∈ R
m : g

(
( y − s)′Aτ ( y − s)

) − cτ < 0},
E+

g,τ (Y) = { y ∈ R
m : g

(
( y − s)′Aτ ( y − s)

) − cτ ≥ 0},

where g(t) : [0,∞) �→ [0,∞) is a suitable strictly increasing smooth function with
g(0) = 0 and Aτ , sτ , and cτ minimize the objective function

�τ (A, s, c) := E ρτ (g
(
(Y − s)′A(Y − s)

) − c) (P1)

subject to det(A) = 1 and A ∈ PSD(m), i.e., A = Am×m must be symmetric positive
semidefinite. These two constraints together imply positive definiteness of A.

We also tacitly assume that the expectation in (P1) is finite and that its partial
derivatives with respect to the parameters A, s, and c are exchangeable with the
expectation sign.

As cτ cannot be negative, any elliptical τ -g-quantile εg,τ may be described by the
equation

( y − sτ )
′
Aτ ( y − sτ ) = g−1(cτ ),

and, therefore, its name is justified. Its definition is quite natural in view of the discus-
sion after Definition 1 of Hlubinka and Šiman (2013). The assumption A ∈ PSD(m) is
necessary for the resulting generalized quantile regions to be really elliptical, the con-
straint on the determinant preserves their good equivariance properties while keeping
them non-degenerate, properly scaled, and identical to those commonly considered
for elliptically distributed Y if no ambiguity occurs, which will be proved below.
This is why we focus on this determinant-based regularity constraint and leave the
other possibilities mentioned in Hlubinka and Šiman (2013) aside. The parameter c
remains unrestricted to guarantee a reasonable probabilistic interpretation of E−

g,τ (Y)

as in Hlubinka and Šiman (2013). Since �τ (A, s, c) is not necessarily convex any
more, there is no urgent need to keep the constraints convex, and we therefore directly
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assume det(A) = 1 contrary to m
√

det(A) ≥ 1 considered in Hlubinka and Šiman
(2013). Other restrictions seem redundant unless we could expect or assume a spe-
cial shape or position of the elliptical quantiles, when some special constraints and
corresponding multipliers might indeed come on stage as is discussed and illustrated
both in Hlubinka and Šiman (2013) and here in Sect. 6, but we will not pursue such a
possibility below.

Clearly, we only get the alternative parameterization of the unique elliptical quan-
tiles of Hlubinka and Šiman (2013) for g(t) = t . Consequently, the elliptical g-
quantiles with g(t) = t are uniquely defined for any τ ∈ (0, 1) if the distribution of Y
has a connected support. They have much in common with the elliptical quantiles of
Hlubinka and Šiman (2013), which is why we primarily focus on different choices of g
hereinafter. Then, the elliptical τ -g-quantile, τ ∈ (0, 1), need not be uniquely defined
as the objective function in (P1) need not be quasiconvex. Hypothetically, it can have
a unique global minimum together with several misleading local minima or it can
attain its global minimum in a few different points. In the latter case, the generalized
elliptical τ -g-quantile would not be uniquely defined. However, while g(t) = t leads
to second-order moment assumptions on Y , g(t) = √

t requires only finite expectation
E Y , and bounded g does not imply any moment restrictions on Y whatsoever, which
probably indicates high robustness of the resulting elliptical g-quantile estimators. The
alternative choices of g(t) 	= t may also lead to quite flexible elliptical τ -g-quantiles
not containing any boundary observation.

3 Population case

Unfortunately, the minimization problem involved in the definition of generalized
elliptical quantiles need not be convex any more. Nevertheless, any optimal solu-
tion Aτ , sτ , and cτ , accompanied with the Lagrange multiplier Lτ corresponding to
the constraint − det(Aτ ) + 1 = 0, still must lead to zero partial derivatives of the
Lagrangian.

Consequently, the optimal solution must meet the following set of necessary con-
ditions:

1 = det(Aτ ), (1)

0 = P(Y ∈ E−
g,τ ) − τ, (2)

0 = 1

1 − τ
E

[
γ Rτ I[Y∈E+

g,τ ]
]

− 1

τ
E

[
γ Rτ I[Y∈E−

g,τ ]
]
, (3)

Lτ

det(Aτ )

τ (1 − τ)
A

−1
τ = 1

1 − τ
E

[
γ Rτ R′

τ I[Y∈E+
g,τ ]

]
− 1

τ
E

[
γ Rτ R′

τ I[Y∈E−
g,τ ]

]
, (4)

where Rτ = Y − sτ , γ = ġ(R′
τ Aτ Rτ ), ġ(t) = ∂g(t)/∂t , and Aτ is assumed sym-

metric positive semidefinite.
If we write • for the Hadamard (elementwise) product and realize that 1′(Aτ •

(A−1
τ ))1 = m det(Aτ ) = m, then we can multiply (2) and (4) elementwise, respec-

tively, by cτ and τ(1 − τ)Aτ , sum up the results, and thus obtain an interesting
expression for the multiplier Lτ :
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Lτ = E ρτ (γ R′
τ Aτ Rτ − cτ )/m (> 0). (5)

In the special case of g(t) = t and γ = 1, the Lagrange multiplier not only measures
the impact of the boundary constraint, but also interprets the optimum value of the
objective function and appears as a useful tool for statistical inference.

What can we say about the simplified gradient conditions (1)–(4) of the Lagrangian?
The first Eq. (1) is easy to interpret as it only scales and regularizes the problem. The
second Eq. (2) ensures that the resulting lower (elliptical) τ -g-quantile region E−

g,τ (Y)

is non-empty, with its overall coverage probability naturally equal to τ . The third con-
dition (3) can be rewritten as an equality of two (outer and inner) conditional weighted
means, E(γ Rτ |Y ∈ E+

g,τ ) = E(γ Rτ |Y ∈ E−
g,τ ). Finally, the fourth condition (4)

makes A
−1
τ proportionate to something like the difference of outer and inner condi-

tional weighted variance matrices if E
√

γ Rτ ∼ 0. The interpretation of the gradient
conditions remains complicated even if we further view γ Rτ or

√
γ Rτ like standard-

ized residuals, which is more natural for some special choices of g such as g(t) = √
t .

Another simplification can be observed for τ → 0 when the conditional moments
appearing in (3) and (4) either vanish or turn to the non-conditional ones.

Nevertheless, the generalized elliptical quantiles do have some welcome properties.

Theorem 1 Let Y ∈ R
m be a random vector with an absolutely continuous distribu-

tion, all required moments finite, and a density f ( y) differentiable almost everywhere.
Then, its elliptical τ -g-quantile parameterized by Aτ , sτ , and cτ has the following
properties for any possible g and any τ ∈ (0, 1):

(1) it behaves naturally under affine transformations of Y
(2) if f ( y) = f (O y) for an orthogonal matrix O = O

−1′
, then there exists an

elliptical τ -g-quantile, parameterized by O
′
Aτ O, Osτ , and cτ

(A) If we further assume that the distribution of Y is elliptically symmetric with density
f ( y) ∝ p

(
( y − s)′A( y − s)

)
where det(A) = 1 and p is a nonnegative real function,

then

(3) if sτ 	= s, then there exist infinitely many τ -g-quantiles for m ≥ 2
(4) if Aτ 	= A, then there exist infinitely many τ -g-quantiles for m ≥ 2
(5) the gradient conditions (1) to (4) are satisfied for sτ = s, Aτ = A, the implied

cτ , and a multiplier Lτ > 0

(B) If we alternatively assume that the elliptical τ -g-quantile is uniquely defined, then

(6) if sτ = (s1, . . . , sm)′, Aτ = (ai j )
m
i, j=1, and f ( y) = f (J y) for a sign-change

matrix J = J
′ = J

−1 = diag( j1, . . . , jm) with diagonal elements ±1, then
si = 0 whenever ji = −1, i ∈ {1, . . . , m}, and ai j = 0 whenever ji j j = −1,
i, j ∈ {1, . . . , m}.

(7) if the distribution of Y is symmetric around a hyperplane, then sτ lies on the
hyperplane

(8) if the distribution of Y is symmetric along an axis, then sτ lies on the axis
(9) if the distribution of Y is centrally symmetric, then sτ coincides with the center

of symmetry
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(10) if the distribution of Y is elliptically symmetric, then its standard τ -quantile
equals the elliptical τ -g-quantile

Proof The proof is inspired by that of Theorem 2 in Hlubinka and Šiman (2013).
Obviously, (1) follows directly from the definition, and both (3) and (4) are implied
by (2) as they can be proved only for centered spherical distributions thanks to (1).
Furthermore, (7), (8), and (9) result directly from (1) and (6). Consequently, we prove
in detail only (2), (5), (6), and (10).

The assumption of (2) leads to

�τ (A, s, c) = �τ (O
′
AO, Os, c)

for any A, s, and c. Consequently, Aτ , sτ , and cτ minimize �τ only when O
′
Aτ O,

Osτ , and cτ do it as well, which completes the proof of (2).
As for (5), we can simply verify the gradient conditions for sτ = 0, Aτ = Im , the

induced cτ , and a centered spherical distribution, because of (1). The claim about Lτ

follows from (5).
Furthermore, we can apply (2)–(6) as J is also an orthogonal matrix. Only the

two parameterizations Aτ , sτ , and cτ and JAτ J, Jsτ , and cτ must now lead to the
same unique elliptical τ -g-quantile by assumption, which implies si = 0 whenever
ji = −1, and ai j = 0 whenever ji j j = −1, i, j ∈ {1, . . . , m}.

Concerning (10), we can safely consider only Y spherically distributed around the
origin thanks to (1). Then, Aτ is diagonal and sτ = 0 owing to (6). If we apply (2)
to all (orthogonal) permutation matrices P and invoke the uniqueness assumption, we
get P

′
Aτ P = Aτ . Therefore, the positive semidefinite Aτ with unit determinant must

be equal to the identity matrix, and the generalized elliptical quantile then coincides
with the standard one because both have the same coverage probability. Note that the
same could be said not only about any spherically symmetric Y , but also about any Y
with a marginally symmetric and exchangeable distribution.

Unfortunately, we have not been able to formulate a sensible criterion ruling out any
ambiguity regarding the generalized elliptical quantiles even in the case of elliptical
distributions. It seems not to be an easy task to unmask the complicated interplay
between g and the density function of Y as the analogous results of Davies (1987) and
Tatsuoka and Tyler (2000) for S-estimators are both quite involved and not directly
applicable to our problem. This is why we put the choice of g and all its consequences
aside for future research.

Finally, we should not forget to point out that the problem of finding our generalized
elliptical quantiles and the auxiliary optimization problem

min
c,s,A∈PSD(m)

− det(A) ≡ max
c,s,A∈PSD(m)

det(A)

subject to

�τ (A, s, c) ≤ �τ (Aτ , sτ , cτ ).
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lead to virtually equivalent sets of gradient conditions, which indicates some remote
similarity between our methodology and S-estimation (see Aelst and Willems 2007;
Roelant et al. 2009). This might be used in further research to transfer some ideas
from one concept to the other.

4 Links to risk management

Our elliptical quantile methodology also seems connected to risk management and
portfolio optimization.

Let us interpret Y ∈ R
m as a vector of asset returns and assume that all their extreme

values are loss making. Then, the elliptical quantile εg,τ (Y) determines the most loss-
making values of Y and, therefore, can be viewed as an extension of the well-known
univariate value-at-risk concept to the multivariate case.

Portfolio risk behavior can be described not only by value-at-risk, but also by means
of other risk measures such as tail conditional expectation TCE or shortfall s that can
be defined for continuous scalar return Y and any τ ∈ (0, 1) by means of the τ -quantile
qτ (Y ) as follows:

TCEτ (Y ) = − E
(
Y |Y < qt (Y )

)
and sτ (Y ) = E(Y ) + TCEτ (Y );

(see e.g., Bertsimas et al. 2004). Interestingly, the shortfall can also be linked to our
elliptical quantile concept.

Let us assume that Y always causes positive loss

Z = Z(Y , A, s) = g
(
(Y − s)′A(Y − s)

)
> 0

for some s ∈ R
m and A ∈ PSD(m), det(A) = 1, and define

�τ = �τ (A, s) = min
c

�τ (A, s, c)

and Cτ = Cτ (A, s) as a τ -quantile of Z so that �τ (A, s) = �τ (A, s, Cτ ), τ ∈ (0, 1).
Note that �τ (A, s, c) is convex in c and that Cτ would be uniquely defined under very
mild additional conditions on the distribution of Y , e.g., if Y were further required to
have a positive density on a connected convex support. Then,

�τ (A, s) = E Z(τ − I(Z < Cτ )) = −(1 − τ)
(
E Z − E(Z |Z ≥ Cτ )

)
> 0,

which implies

�τ (A, s)/(1 − τ) = s1−τ (−Z).

In other words, the elliptical quantiles described by Aτ , bτ , and cτ lead to Z(Aτ , bτ )

with the minimal possible shortfall s1−τ (−Z) under the assumptions on A. This deriva-
tion is analogous to those in Paindaveine and Šiman (2011) and Bertsimas et al. (2004)
and provides a way for transferring the results already obtained for shortfall to�τ (A, s)
or �τ (Aτ , sτ , cτ ), like in Paindaveine and Šiman (2011).
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5 Computation

In the sample case with n observations Y i ’s , i = 1, . . . , n, from the population
distribution assumed above, the sample generalized elliptical quantiles result from the
definition if we take the expectation in (P1) with respect to the empirical probability
distribution.

Unfortunately, the problem of finding sample elliptical τ -g-quantiles is far from triv-
ial as the corresponding sample objective function to be minimized is neither smooth
nor convex. For the time being, we provide its preliminary solution by transforming
it into an unconstrained nonlinear quantile regression task

min
β

n∑

i=1

ρτ

(
zi − h(xi ,β)

)

for n responses zi ’s, i = 1, . . . , n, depending on corresponding regressors xi ’s, i =
1, . . . , n, in a nonlinear way described by a smooth function h and parameterized by
a vector parameter β. That is to say that the task is already a well-established research
problem, see Koenker (2005), whose numerical solution has already been addressed
successfully; see especially the algorithm of Koenker and Park (1996). Its MATLAB
(2013) implementation in ipqr.m, available at http://sites.stat.psu.edu/~dhunter/code/
qrmatlab, was employed, after a little improvement, as the basis for the computation
of all the elliptical g-quantiles presented in the next section, using the transformation
described below.

The constraints det(A) = 1 and A ∈ PSD(m) can be made redundant by
means of the Choleski decomposition. Indeed, any positive definite A can be rep-
resented as C

′
C where C = (ci, j )

m
i, j=1 is an upper triangular matrix. The assump-

tion det(A) = 1 is then equivalent to writing cm,m as 1/(c1,1c2,2 . . . cm−1,m−1).
The change to the unconstrained nonlinear quantile regression then lies in con-
sidering a constant zero vector of responses, treating observations as regressors,
and using −(g((CY i − Cs)′(CY i − Cs)) − c) as the nonlinear regression func-
tion where C = (ci, j )

m
i, j=1 is the upper triangular matrix with the special cm,m

described above. In other words, the metamorphosis lies in setting zi = 0, xi = Y i ,
β = (v′, s′, c)′ where v = vech(C′) without the last cm,m , and then h(xi ,β) =
−(g((CY i − Cs)′(CY i − Cs)) − c).

The algorithm of Koenker and Park (1996) requires some initial parameter estimates
to start. We experimented with those derived from sample means and variance matrices
but their robust counterparts might have led to even better performance. One should
probably obtain the results for several wise choices of initial parameters and then
compare them with one another before choosing the final solution. In any case, if
there is some information about the parameters known or assumed in advance, it may
be employed advantageously in the initial estimates as well.

We readily admit that our computational solution is suboptimal because it makes
employing some a priori information about the non-diagonal elements of Aτ virtually
impossible. Nevertheless, we consider it as an important step forward towards a fully
satisfactory algorithm.
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6 Illustrations

At the end, we present some carefully designed pictures to illustrate the generalized
elliptical g-quantiles and their properties. Their message should not be overemphasized
as they are only included to show that some reasonable sample elliptical g-quantiles
can be obtained at least for some choices of g and some data sets. For the sake of
simplicity, we use only g in the form of g1 to g5 below:

g1(z) = 4
√

z, g2(z) = √
z, g3(z) = z, g4(z) =

√
z

1 + √
z
, and g5(z) = z

1 + z
.

These five functions meet all the conditions of Definition 1 and allow a great deal
of generality as they include both bounded and unbounded representatives, functions
implicating different moment assumptions, and also the identity function g3 leading to
an alternative parameterization of the elliptical quantiles introduced in Hlubinka and
Šiman (2013). We intentionally employ each of the functions to demonstrate that the
family of reasonable elliptical g-quantiles is quite rich, although the optimal choice
of g in specific contexts still remains debatable.

The cardinality of involved data sets ranges between n = 250 and n = 500,000
to show that the number of observations generally does not pose any problem. The
elliptical quantile curves are always plotted for the same five quantile levels τ =
0.1, 0.3, 0.5, 0.7, and 0.9 and always lighten with increasing τ .

Figure 2 demonstrates that elliptical gi -quantiles, i = 1, . . . , 3, computed from
n = 500,000 bivariate normal observations (Y1, Y2)

′ ∼ N (0, 1) × N (0, 4), closely
match the nested standard population quantiles of multivariate normal distribution and
virtually coincide at the same quantile levels.

On the other hand, Fig. 3 reveals that the choice of g matters in general and influ-
ences the robustness of the elliptical g-quantiles that seems improved for bounded

Fig. 2 Elliptical quantiles of a
bivariate normal distribution.
The plot shows elliptical
τ -gi -quantiles, i ∈ {1, 2, 3},
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
from a random sample of n =
500,000 points from the
bivariate normal distribution
N (0, 1) × N (0, 4) where
g1(z) = 4√z, g2(z) = √

z, and
g3(z) = z. The elliptical
gi -quantiles, i = 1, . . . , 3,
overlap and virtually coincide at
the same quantile level. The
quantile curves lighten with
increasing τ
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Fig. 3 Elliptical quantiles of a
contaminated axially symmetric
distribution. The plot displays
elliptical τ -gi -quantiles,
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, for
i = 3 (solid curves) and i = 5
(dashed curves), i.e., for
g3(z) = z and
g5(z) = z/(1 + z), computed
from n = 10,000 observations
driven by the model
0.95U1 + 0.05(U2 − (1.5, 0)′)
where the uniformly distributed
bivariate vectors U1 ∼
U ([−1/2, 1/2] × [−1/2, 1/2])
and U2 ∼ U ([−1/8, 1/8] ×
[−1/8, 1/8]) are independent.
The quantile curves lighten with
increasing τ

Fig. 4 Elliptical quantiles with a priori information. The plots show (dark gray) elliptical τ -gi -quantiles,
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, for i = 3 (solid curves) and i = 5 (dashed curves), i.e., for g3(z) = z and
g5(z) = z/(1 + z), computed from n = 500 observations driven by the model used in Fig. 3 a with s2 = 0,
and b with a12 = 0, where A = (ai j )

2
i, j=1 and s = (s1, s2)′ stand for the quantile parameters. The quantile

curves lighten with increasing τ

g’s. It depicts both elliptical g3-quantiles and g5-quantiles computed from n =
10,000 observations driven by the model 0.95U1 + 0.05(U2 − (1.5, 0)′) where the
uniformly distributed bivariate vectors U1 ∼ U ([−1/2, 1/2] × [−1/2, 1/2]) and
U2 ∼ U ([−1/8, 1/8] × [−1/8, 1/8]) are independent.

Figure 4 involves the same data model and the same functions g3 and g5 in g-
quantiles as Fig. 3, but this time the elliptical g3-quantiles and g5-quantiles are com-
puted only from n = 500 data points and with two types of available a priori informa-
tion regarding A and s: (a) with s2 = 0, and (b) with a12 = 0, where A = (ai j )

2
i, j=1
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Fig. 5 Elliptical quantiles of a complicated elliptical distribution. The plots display (dark gray) ellipti-
cal τ -g4-quantiles with their (gray) center points, g4(z) = √

z/(1 + √
z), τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9},

computed from (light gray) data points (Y1, Y2)′ following the model (Y1, Y2)′ = (2 +
sin3(6πU2))(cos(2πU1), sin(2πU1))′ with independent U1, U2 ∼ U ([0, 1]), namely a from n = 250
observations with quantile parameters A = diag(1, 1) and s = (0, 0)′ known or assumed in advance,
and b from n = 25,000 observations without any a priori information. The quantile curves lighten with
increasing τ

and s = (s1, s2)
′ stand for the quantile parameters. The output confirms that the ellip-

tical g-quantiles easily incorporate a priori information about the symmetry of the
underlying distribution.

Figure 5 shows elliptical g4-quantiles obtained from bivariate observations
(Y1, Y2)

′ = (2 + sin3(6πU2))(cos(2πU1), sin(2πU1))
′ where U1, U2 ∼ U ([0, 1])

are independent, namely (a) from n = 250 observations with both s = (0, 0)′
and A equal to the identity matrix known or assumed in advance, and (b) from
n = 25,000 observations without any a priori information available. This picture
was included to demonstrate the facts that the concept is suitable even for compli-
cated elliptical distributions and that a priori information regarding A and/or s can
be employed easily, which improves the results, reduces the parametric space, and
may be found useful for various statistical inference. In fact, if we set both A and
s before the very computation, then the results answer the simple problem of how
to inflate or deflate a given ellipsoid to cover the portion of observations determined
by τ .

Finally, Fig. 6 confirms that the concept of elliptical g-quantiles is not restricted
to the bivariate case and that it has no problem with affine equivariance. It depicts
3D elliptical g2-quantiles computed from (a) n = 1,000 visible and (b) n = 100,000
invisible normally distributed points (Y1, Y2, Y3)

′ = (1, 1, 1)′ + (N1, N2, N3)V
1/2

with independent N1, N2, N3 ∼ N (0, 1) and the symmetric matrix V with vech(V) =
(1, 1/2, 0, 2, 1/2, 1)′.

All the pictures included in this section testify that our research into elliptical
quantiles proceeds in the right direction and that the concept presented here is worthy
of serious consideration.
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Fig. 6 Elliptical quantiles and equivariance in 3D. The plot shows (dark gray) 3D elliptical τ -g2-quantiles,
g2(z) = √

z, τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, computed from a n = 1,000 visible (light gray) and b n = 100,000
invisible data points (Y1, Y2, Y3)′ following the model (Y1, Y2, Y3)′ = (1, 1, 1)′ + (N1, N2, N3)V1/2 with
independent N1, N2, N3 ∼ N (0, 1) and the symmetric matrix V with vech(V) = (1, 1/2, 0, 2, 1/2, 1)′.
The quantile contours lighten with increasing τ

7 Discussion

We have introduced a class of location elliptical g-quantiles with an impressive collec-
tion of good properties (B1) to (B13) mentioned in the introductory section, including
affine equivariance, preservation of symmetry, natural parameterization and probabil-
ity coverage, location and shape dependence on the quantile level, easy incorporation
of some types of apriori information, and possible resistance to outliers.

These quantiles have been designed (only) for situations when we have some infor-
mation about the symmetry and/or location of the underlying data distribution without
the full knowledge of its parametric family, particularly if we can also expect its heavy
tails or level-dependent shape of its quantiles. Then, our elliptical quantiles excel above
their competitors especially if the data are of medium to large size and of dimension
three to seven or so.

Before uniqueness and asymptotic properties of these quantiles are sufficiently clar-
ified, we suggest to use them mainly for exploratory analysis, to choose g cautiously,
to search for the quantile centers only in the convex hull of the data cloud, to exper-
iment with various initial values for the computation and to always use g(z) = z as
a benchmark as this particular choice of g leads to unique (but non-robust) elliptical
quantiles, consistent in the sample case under very mild conditions.

The associated processes {cτ }, {bτ }, and {Aτ } of quantile parameters, indexed by
the quantile level τ ∈ (0, 1), can also be used for statistical inference by means
of Theorem 1. For example, {bτ } could be useful for testing central, axial, or half-
space symmetry, {Aτ } could be employed for testing ellipticity of centrally symmetric
distributions, and {cτ } could be used for identifying specific elliptical distributions.
Currently, it is possible only heuristically but it will change when further results on
uniqueness and asymptotics become available.

As quantiles belong to the cornerstones of statistics and stand behind many funda-
mental statistical tools, the same could be said about our elliptical quantiles as well.
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They may likewise give rise to various control charts, diagnostic plots, L-statistics,
descriptive functionals, regression generalizations and other useful statistical instru-
ments, in the same way as many other multivariate quantiles. Only the applications of
similarly defined standard univariate (regression) quantiles alone are numerous enough
for quite a few book-length treatments and, as we see it, there is a good chance that
our concept will once reach a similar degree of development and popularity as well,
especially for its simplicity, intuitiveness, good properties, and various regression and
shape extensions that we are currently investigating.
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