
CHAPTER 5

Image Deconvolution in the Moment Domain

Barmak Honarvar Shakibaei and Jan Flusser

We propose a novel algorithm for image deconvolution from the geometric moments
(GMs) of a degraded image by a circular or elliptical Gaussian point-spread function
(PSF). In the proposed scheme, to show the invertibility of the moment equation in a
closed form, we establish a relationship between the moments of the degraded image
and the moments of the original image and the Gaussian PSF. The proposed inverted
formula paves the way to reconstruct the original image using the Stirling numbers of
the �rst kind. We validate the theoretical analysis of the proposed scheme and con�rm
its feasibility through the comparative studies.
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5.1 Introduction

In image analysis, moments are usually connected with automatic object recognition.
Moment invariants, which serve as features for object description, have become an
established discipline in image analysis. Among numerous descriptors used for this
purpose, moments and moment invariants play a very important role and often serve
as a reference state-of-the-art method for performance evaluation (interested readers
can �nd a comprehensive survey of moment invariants in [11]).
In the long history of moment invariants, one can identify a few milestones that

substantially in�uenced further development. The �rst one was in 1962, when Hu
[14] employed the results of the theory of algebraic invariants, which was thoroughly
studied in 19th century by Gordan and Hilbert [12], and derived his seven famous
invariants to rotation of 2D objects. This was the date when moment invariants
were introduced to broader pattern recognition and image processing community. The
second landmark dates in 1991 when Reiss [27] and Flusser and Suk [8] independently
discovered and corrected a mistake in so-called Fundamental Theorem and derived �rst
correct sets of moment invariants to general a�ne transformation. The third turning
point was in 1998 when Flusser and Suk [9] introduced a new class of moment-based
image descriptors which are invariant to convolution of an image with an arbitrary
centrosymmetric kernel, which was later extended to other speci�c symmetries [11].
Since that time, moment invariants have been able to handle not only geometric
distortions of the images as before but also blurring and �ltering in intensity domain.
Moment invariants to convolution have found numerous applications, namely in

image matching and registration of satellite and aerial images [9, 24, 5, 20, 15], in
medical imaging [4, 3, 32, 2], in face recognition on out-of-focus photographs [10], in
normalizing blurred images into canonical forms [34, 36], in blurred digit and character
recognition [21], in robot control [29], in image forgery detection [22, 23], in tra�c
sign recognition [19, 18], in �sh shape-based classi�cation [35], in weed recognition
[26], and in cell recognition [25]. Their popularity follows from the fact that the
convolution model of image formation

g(x, y) = (f ∗ h)(x, y), (5.1)

where g(x, y) is the acquired blurred image of a scene f(x, y) and the kernel h(x, y)
stands for the point-spread function (PSF) of the imaging system, is widely accepted
and frequently used compromise between universality and simplicity. The model
Eq.(5.1) is general enough to describe many practical situations such as out-of-focus
blur of a �at scene, motion blur of a �at scene in case of translational motion, motion
blur of a 3D scene caused by camera rotation around x or y axis, and media turbulence
blur.
In this chapter, we demonstrate yet another application of moments when dealing

with the model Eq.(5.1). If we want to invert Eq.(5.1) and actually want to estimate
the original f(x, y), we face an extremely ill-posed and ill-conditioned problem, even if
the PSF is known. This task is known as image deconvolution and has been studied in
hundreds of papers since the 60's. If the PSF is known, traditional techniques such as
inverse �ltering, Wiener �ltering [1], and constrained deconvolution methods [6] can
be applied. If the PSF is unknown, the task turns to so-called blind deconvolution
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(see [17] and [7] for a basic survey) which is much more challenging and complicated.
One of the possible approaches is to perform the deconvolution in a moment domain.
This idea is relatively recent, it was �rstly proposed in [13] and [16]. The core idea
is to employ the relation between the moments of the blurred image on one side and
the moments of the original and the PSF on the other side. Although this relation
is known for arbitrary PSF (see [11]), its usage is e�cient for PSF some moments of
which are zero. In this chapter we assume the PSF is a Gaussian, either of "circular"
or "elliptic" shape. We show that in this case the moment equation can be inverted
by symbolic computation, i.e. the moments of the original image can be expressed as
functions of the moments of the blurred image and those of the PSF in a closed form.
Having this in hands, we can reconstruct the original image from its moments.

The chapter is organized as follows. In Section 5.2, we show the representation of
blur model in moment domain. We derive a relationship between the original image
moments and the moments of its blurred image if the PSF is a Gaussian. The image
deblurring process by means of moments is shown in Section 5.3. In Section 5.4, the
computational aspects of the proposed algorithm are outlined through experimental
evaluation and comparison with traditional techniques. Finally, Section 5.5 concludes
the chapter.

5.2 Blur Model in the Geometric Moment Domain

In this Section, we show and employ the relationship between the moments of the
blurred image and those of the PSF and the original. We work with geometric moments
(GM) for simplicity but all the following considerations can be re-made for any kind
of orthogonal (OG) moments, too. Using OG moments might bring certain advantage
in numerical computation but from theoretical point of view all kinds of moments are
equivalent.

An image is a real discrete 2D function of the size N ×M . The GM of order (p+q)
of an image f(x, y) is de�ned by

mpq =

N∑
x=1

M∑
y=1

xpyqf(x, y). (5.2)

This discrete-domain de�nition is just an approximation of the traditional continuous-
domain de�nition but it is fully su�cient for our purpose.

Assuming that the image acquisition time is so short that the blurring factors do not
change during the image formation and also assuming that the blurring is of the same
kind for all colors/gray-levels, we modeled the observed blurred image by a convolution
Eq.(5.1). Flusser and Suk [9] obtained a classical relations for the GMs of the blurred
images in terms of the original image and PSF moments as

m(g)
pq =

p∑
k=0

q∑
l=0

(
p

k

)(
q

l

)
m

(h)
kl m

(f)
p−k,q−l, (5.3)
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where m
(g)
pq , m

(h)
pq and m

(f)
pq are the GMs of the degraded image, PSF and the original

image, respectively. Equation 5.3 is valid for any p and q.
Provided that the PSF is a Gaussian, Eq.(5.3) is substantially simpli�ed because

many moments m
(h)
pq are zero and the others can be expressed analytically. We do not

restrict to circularly symmetric Gaussians but we allow arbitrary anisotropic ("ellipti-
cal") Gaussians in an axial position. We denote such PSF as hσ1,σ2(x, y).

hσ1,σ2(x, y) = hσ1(x)hσ2(y), (5.4)

where σ1, σ2 > 0 and hσ1(x), hσ2(y) are 1D Gaussian functions of a traditional form

hσi(x) =
1√
2πσi

e
− x2

2σ2
i . (5.5)

The moments of Gaussian PSF can be expressed explicitly as

m
(hσ1,σ2 )
pq =

{
(p− 1)!!(q − 1)!!σp1σ

q
2 if both pand qare even

0 otherwise.
(5.6)

where !! denotes a double factorial1. Substituting the non-zero values of Eq.(5.6) into
Eq.(5.3) yields

m(g)
pq =

p∑
k=0

k=even

q∑
l=0

l=even

(
p

k

)(
q

l

)
(k − 1)!!(l − 1)!!σk1σ

l
2m

(f)
p−k,q−l. (5.7)

Equation 5.7 is actually a system of linear equations with a triangular matrix of Pas-
cal type. Such matrices used to be ill-conditioned and their numeric inversion may
be unstable. Fortunately, for Gaussian blur the inversion can be done via symbolic
computation which partially overcomes the problem. Doing so, we obtain an inverse
relation

m(f)
pq =

p∑
k=0

k=even

q∑
l=0

l=even

(
p

k

)(
q

l

)
(−1)

k+l
2 (k − 1)!!(l − 1)!!σk1σ

l
2m

(g)
p−k,q−l. (5.8)

Note that the summations in Eq.(5.7) and Eq.(5.8) go over even indexes k and l only.
In principle, this approach can be applied to any PSF the moments of which are

known but the inversion has to be done numerically, which may cause serious problems
with stability.

1 n!! = 1 · 3 · 5 · · · (n− 2)n, de�ned for odd n only.
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5.3 Image Deblurring by Means of Moments

Image deblurring is accomplished in two steps. First, the moments of the original
image are computed and then the original image is reconstructed from its moments.
To perform the second step, traditional reconstruction via Fourier transform can

be used. We prefer the method introduced by Honarvar et al. [13], who proposed
a new and exact image reconstruction algorithms from a complete set of geometric
moments based on the Stirling transform. Comparing with the DFT approach, their
proposed method had the stability criterion when used the complete set of GMs, but
the DFT method requires a large number of moment orders to create the accurate
DFT coe�cients. They utilized a relationship between GMs and Stirling numbers of
the second kind. Then, by using the invertibility of the Stirling transform, the original
image can be reconstructed from its geometric moments. They showed in the 2D
case, for an N ×M pixel spatial pattern f(x, y), reconstruction from a complete set
of GMs can be generalized as follows:

f(x, y) =

N−1∑
p=0

M−1∑
q=0

N−1∑
i=0

M−1∑
j=0

(−1)i+j−x−y

i!j!

(
i

x

)(
j

y

)
×S1(i+ 1, p+ 1)S1(j + 1, q + 1)mpq. (5.9)

where S1(i, p) is the Stirling numbers of the �rst kind [33].
Now, we apply the reconstruction method [13] to reconstruct the original image.

Substituting Eq.(5.8) into Eq.(5.9) leads to

f̃σ1,σ2
(x, y)

∣∣∣
GM

=

N−1∑
p=0

M−1∑
q=0

N−1∑
i=0

M−1∑
j=0

Ap,qi,j (x, y)

p∑
k=0

k=even

q∑
l=0

l=even

Bp,qk,l (σ1, σ2)m
(g)
p−k,q−l(5.10)

where

Ap,qi,j (x, y) =
(−1)i+j−x−y

i!j!

(
i

x

)(
j

y

)
S1(i+ 1, p+ 1)S1(j + 1, q + 1), (5.11)

and

Bp,qk,l (σ1, σ2) =

(
p

k

)(
q

l

)
(−1)

k+l
2 (k − 1)!!(l − 1)!!σk1σ

l
2. (5.12)

5.4 Experimental Studies

In this Section we illustrate the performance of the proposed approach on three kind of
images - a simple computer-generated letter with an arti�cial blur, a real photograph
with arti�cial blur and astronomical image with a real blur by atmospheric turbulence,
see Fig.(5.1).
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(a) (b)

(c)

Figure 5.1: Three images used in the experiments: (a) E letter (32× 32), (b) Woman
(480× 720), (c) Sunspot (512× 512).

A limitation of our method is that in its basic version it requires a complete knowl-
edge of the PSF, which means in case of a Gaussian the knowledge of both σ1 and
σ2. Since this is not realistic in practice, we propose an iterative version which starts
with small σ-values and converges to the true ones. Figure 5.2 shows the �owchart of
the iterative version. The stop condition is based on the quality of the reconstructed
image, which can be measured for instance by the statistical normalization image
reconstruction error (SNIRE) [30]. SNIRE is in fact a normalized mean square error

ε =

∑N−1
x=0

∑M−1
y=0

[
f(x, y)− f̃(x, y)

]2
∑N−1
x=0

∑M−1
y=0 [f(x, y)]

2
. (5.13)

It is suitable only in simulated experiments because it requires the knowledge of the
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Figure 5.2: Image restoration algorithm using full set of GMs for blurred images.

ground-truth original image. Popular non-reference blur measures, such as energy of
image gradient and energy contained in high-pass bands, are not suitable here because
they are a�ected a lot by high-frequency artifacts in the restored image.

5.4.1 Simple Images Restoration

In this Subsection, we test the proposed method on the "E" letter binary image of size
32 × 32 as displayed in Fig.(5.1a). Since the image is small, we can use a complete
set of moments without any numerical problems. As a comparative method we used
standard Wiener deconvolution �lter.
The �rst column of Table 5.1 shows the Gaussian PSFs with di�erent values of σ1

and σ2 used for the blurring. The blurred images are in the second column. The third
and fourth columns of this table refer to Wiener deconvolution algorithm and its error

based on the subtraction of the original and restored images,
∣∣∣f − f̃ ∣∣∣. The last column

is showing the recovered images based on our algorithm using GMs' reconstruction.
Below of each reconstructed image its corresponding SNIRE based on Eq.(5.13) is
expressed.
In this experiment we did not use any iterations because all required parameters

were known. Under these conditions, one can see that our method as well as Wiener
�lter yield very accurate results.

5.4.2 Deblurring of a Photograph With an Arti�cial Blur

In the second experiment, we used the gray-scale image, "Woman" shown in Fig.
5.1(b) of size 480× 720 from LIVE database [28] as a test image. The Gaussian blur
with (σ1 = σ2 = 4) was again introduced arti�cially (Fig. 5.3) but this time we did
not employ the knowledge of the blur parameters and we applied the iterative version
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Table 5.1: Image restoration using Wiener deconvolution and proposed method for
simple binary �Letter E� shown in Fig. (5.1a) with di�erent blur kernels
(below the Gaussian PSF).

Gaussian PSF Blurred Restored image Error Restored image

(σ1, σ2) image (Wiener

deconvolution)

∣∣∣f − f̃
∣∣∣ (proposed method)

σ1 = σ2 = 2 SNIRE=0.01156

σ1 = σ2 = 3 SNIRE=0.01983

σ1 = 0.5, σ2 = 2 SNIRE=0.02016

σ1 = 2, σ2 = 0.5 SNIRE=0.02119

σ1 = 1, σ2 = 3 SNIRE=0.02187

σ1 = 3, σ2 = 1 SNIRE=0.02204
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Figure 5.3: Blurred image of "Woman" using Gaussian kernel with (σ1 = σ2 = 4).

of our algorithm and also an analogical iterative version of Wiener �lter. As a quality
measure we again used SNIRE.
The results are summarized in Table 5.2. The top row of Table 5.2 illustrates the

results of restoration by σ going from 1 to 5 using Wiener �ltering. One can observe
that it yields very good result for σ = 4 but is sensitive to overestimation of σ values.
Even small overestimation results in very disturbing artifacts. As one can expect,
underestimation of σ leads to the result which is still slightly blurred. This is because
Gaussian kernel can be expressed as a convolution of two smaller Gaussian kernels and
if we restore one of them, the other one still blurs the image.
The deconvolution in moment domain yields similar results. We start iterating with

a small sigma. The reconstructed image exhibits a small residual blur. Then the
process converges and stops as σ approaches 4. Comparing to Wiener, both SNIRE
values and visual appearance favor the moment method. The residual blur of the
moment method for σ = 2 and σ = 3 is much less than that of Wiener �ltering. This
is the main advantage of the proposed method. On the other hand, the computational
time of the moment method is signi�cantly higher. The moment method is also more
sensitive than the Wiener to overestimation of σ. If we set σ greater than the ground
true value, the reconstruction collapses completely.

5.4.3 Deblurring of a Real Image

The last test which we have conducted was on real astronomical data obtained in the
observation of the Sun. In the ground-based observations, the short-exposure images
from the telescope are corrupted by the so-called seeing. This degradation leads to
Gaussian-like image blurring, where the actual PSF is a composition of the intrinsic
PSF of the telescope (which is constant over the observation period) and of a random
component describing the perturbations of the wavefronts in the Earth atmosphere
[31].
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Table 5.2: Image restoration using Wiener �ltering and the moment method for arti�cially blurred image
�Woman� shown in Fig. (5.1b).

Wiener Deconvolution

σ1 = σ2 = 1 σ1 = σ2 = 2 σ1 = σ2 = 3 σ1 = σ2 = 4 σ1 = σ2 = 4.4 σ1 = σ2 = 5

SNIRE

0.0677 0.0675 0.0636 0.0526 0.2926 0.5766

Moment-Based Reconstruction

σ1 = σ2 = 0.2 σ1 = σ2 = 1 σ1 = σ2 = 2 σ1 = σ2 = 3 σ1 = σ2 = 4 σ1 = σ2 = 5

SNIRE

0.0609 0.0527 0.0508 0.0401 0.0170 0.5978
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Table 5.3: Image reconstruction using the proposed method for "Sunspot" image shown in Fig. (5.1c) with di�erent estimated σ
(below the reconstructed images) and their corresponding SNIRE.

Blurred image Reconstructed images Original image

σ1 = σ2 0.2 3.2 5.7 8.6 512× 512
SNIRE 0.2435 0.2004 0.1284 0.04257 �
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(a) (b)

Figure 5.4: Image restoration of the "Sunspot" image shown in Fig.(5.1c): (a) using
Wiener �lter and (b) blind deconvolution from two inputs calculated by
the method from [31].

Since the seeing changes rapidly and randomly, we had several images of the same
sunspot of di�erent levels of blurring. The least blurred one we used as the "original",
while the most blurred one we tried to restore. Again, the moment-based restoration
was applied in an iterative manner. The SNIRE measure was calculated w.r.t. the
"original". Even if this is not absolutely correct, it provides a reasonable estimation of
the unknown actual SNIRE.
As can be seen from Table 5.3, the process converges reaching σ = 8.6 and yielding

visually very good result with small SNIRE.
As a comparison with our method, the results of Wiener �ltering and of the multi-

channel blind deconvolution (MBD) from two inputs calculated by the method from
[31] are shown in Fig.(5.4). One can see that the moment-based method yields an
output which is comparable with the "original" as well as with the result of MBD and
is visually slightly better than Wiener. On the other hand, the moment method is by
far the slowest.

5.5 Conclusion

In this chapter, a new approach has been proposed for image restoration from the
GMs of a degraded image by a circular or elliptical Gaussian PSF. The basic step is
to establish a relationship between the moments of the blurred image on one side and
the moments of the original and the PSF on the other side. Although this relation is
known for arbitrary PSF [11], it has not been applied for image restoration purposes.
We showed the moment equation can be inverted in a closed form and then the

original image can be reconstructed using Stirling numbers of the �rst kind. In order
to evaluate the performance of the proposed method based on image reconstruction
from its GMs, simple binary image, real image which is degraded arti�cially and real
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astronomical image have been used to test the accuracy of the proposed method.
We showed that the quality of the moment method is comparable to Wiener �lter
and to multichannel blind deconvolution when su�ciently large number of moments
is involved. Some experiments indicated that an advantage of the moment method is
in its higher tolerance to underestimation of σ. A clear disadvantage however is its
high computing complexity.
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