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Jǐŕı Filip1(B) and Petr Somol1,2

1 Institute of Information Theory and Automation of the CAS,
Prague, Czech Republic
filipj@utia.cas.cz

2 Faculty of Management, Prague University of Economics, Prague, Czech Republic

Abstract. Material recognition applications use typically color texture-
based features; however, the underlying measurements are in several
application fields unavailable or too expensive (e.g., due to a limited
resolution in remote sensing). Therefore, bidirectional reflectance mea-
surements are used, i.e., dependent on both illumination and viewing
directions. But even measurement of such BRDF data is very time- and
resources-demanding. In this paper we use dependency-aware feature
selection method to identify very sparse set of the most discriminative
bidirectional reflectance samples that can reliably distinguish between
three types of materials from BRDF database – fabric, wood, and leather.
We conclude that ten gray-scale samples primarily at high illumination
and viewing elevations are sufficient to identify type of material with
accuracy over 96%. We analyze estimated placement of the bidirectional
samples for discrimination between different types of materials. The sta-
bility of such directional samples is very high as was verified by an addi-
tional leave-one-out classification experiment. We consider this work a
step towards automatic method of material classification based on several
reflectance measurements only.
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1 Introduction

The real-world is made of countless varieties of materials having a wide range
of appearance. Their automatic segmentation and classification is vital in appli-
cations where the task is quick identification of material type, based purely on
its directional reflectance, i.e., without considering its surface texture and color.
An automatic material type detection based purely on several reflectance mea-
surements is relevant research task in many research fields ranging from remote
sensing to paint industry, food inspection, or recycling. Especially in remote
sensing a constrained set of illumination and viewing directions plays important
role in significant increase of recognition accuracy [9].

Although it might seem that using reflectance only, instead of texture, might
solve a data dimensionality problem, we still face a vast number of possible
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combinations of illumination and viewing directions. Therefore, identification
those of them that have the best performance in distinguishing between different
material categories is a challenging research task.

Such a bidirectional reflectance behavior can be formalized by means of Bidi-
rectional Reflectance Distribution Function (BRDF) [7] comprising differential
reflected radiance dL for incident irradiance dE

B(θi, ϕi, θv, ϕv) =
dL(θv, ϕv)
dE(θi, ϕi)

=
dL(θv, ϕv)

L(θi, ϕi) cos θidωi
. (1)

BRDF is a four dimensional function of incoming [θi, ϕi] and outgoing [θv, ϕv]
spherical angles as shown in Fig. 1-left. Helmholtz reciprocity states that illumi-
nation and viewing directions can be swapped without any effect on the BRDF
value.

Fig. 1. A four-dimensional BRDF angular parameterization (left) and its unfolding
into 2D image (right), depicting locations of specular (SHL) and anisotropic (AHL)
highlights. The unfolded 2D image belongs to mean gray-scale BRDF of all tested
materials. Each block (shown in red frame) depicts azimuthally-dependent (ϕi/ϕv)
reflectance behavior for fixed elevation angles θi/θv.

BRDF measurements are typically fitted by analytical models achieving a com-
pact parametric representation, missing directional data interpolation / extrapo-
lation, as well as removal of outliers resulting from the measurement process [4].
However, reliablefittingofBRDFmodels to themeasured reflectancevalues require
sufficient coverage of illumination and viewing directions over the measured mate-
rial. Suchmeasurement is both time- and space-demandingand requires specialized
and often expensive measurement gantry [4].

In this paper we attempt to analyze properties of three material categories
using linear factorization and feature selection. Our goal is to identify an extremely
compact and discriminative set of illumination/view directions combinations, that
can be rapidly and inexpensively measured, and finally used for material type clas-
sification purposes. Therefore, identification of such compact set of bidirectional
features reduces not only data measurement time and costs, but also computa-
tional requirements of training and classification steps of discriminative model.
Therefore, the main contribution of this paper is employing feature selection (FS)



Materials Classification Using Sparse Gray-Scale Bidirectional Reflectance 291

technique to identify sparse directional reflectance samples appropriate for reli-
able material classification. Our method relies on a typical unique behavior of dif-
ferent types of materials, therefore, we run the FS on extensive BRDF database
specifically focusing on distinguishing between three types of materials: fabric,
leather, and wood.

The paper is structured as follows. Section 2 relates our research to prior
work in the field. Section 3 introduces BRDF data used and analyses data within
individual material categories. Section 4 proposes the method of detection of the
most discriminative directional samples. Section 5 outlines the achieved results
while Section 6 concludes the paper.

2 Prior Work

An automatic material type classification based on its reflectance, i.e., without
need of surface texture analysis, is vital in fields of remote sensing, paint industry,
food inspection, material science, recycling etc.

Prior material segmentation/classification approaches in general rely also on
a very limited set of directional measurements constrained by an intended appli-
cation. Known approaches use often spectral illumination, which is distributed
into variable illumination pattern over hemisphere. Common application sce-
nario is also pixel-wise segmentation of real-world object to different materials
[14], [12]. Gu et al. [3] introduced spectral coded illumination by discriminative
patterns, and constructed an color LED-based measurement dome for mate-
rial classification. Method of material classification based on illumination using
variable illumination patterns combined with random forest classifier to identify
optimal illumination is presented in [5]. A recent material classification approach
[15] was based on using extended full bidirectional texture measurements as a
training dataset. The classification task was to recognize a correct material given
a single image of its surface in arbitrary illumination/viewing conditions.

We propose a feature selection method determining an extremely sparse set of
discriminative directional measurement that allows very accurate discrimination
of different types of materials. Contrary to the works above and for the sake
of computational simplicity we do not take into consideration any textural or
spectral information.

Remote sensing applications rely on a constrained set of viewing directions
(airborne or satellite imagery) and illumination directions (directional illumina-
tion of the Sun combined with diffuse atmospheric illumination). The resulted
sparse measurements are typically compensated for atmospheric radiative trans-
fer and fitted by an analytical BRDF model. A typical goal of remote sensing
application is detection of presence or classification of vegetation types [9] or
urban areas [6] based on its spectral and directional reflectance. Qi et al.[8] fit-
ted leaf and vegetation directional measurements using BRDF models. Schaaf
et al. [10] process data from NASAs Terra satellite and the MODerate Resolu-
tion Imaging Spectroradiometer to provide BRDF and albedo of Earth surface.
Several case studies of bidirectional reflectance measurements in remote sensing
applications are reviewed in [11].
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Our results can be extended to application areas where the directional mea-
surements are expensive or constrained as for instance in the case of remote
sensing. Therefore, we use the same BRDF representation and test our method
on a BRDF dataset containing considerable information on the illumination- and
view-dependent behavior of substantial collection of various materials. By ana-
lyzing this entire collection of bidirectional samples using feature selection tech-
niques, we aim to obtain the most discriminative set of bidirectional samples.

3 Test Data Analysis

3.1 Test Dataset

We used UTIA BRDF Database1 [2] containing 150 anisotropic BRDF measure-
ments. To enlarge its descriptive abilities we added another 67 BRDF anisotropic
measurements obtained by averaging of BTFs with rough surface structure. We
use the original resolution of BRDF measurements 81×81 illumination and view-
ing directions resulting in 6561 combination of incoming and outgoing directions.
This number can be due to BRDF reciprocity reduced to 3321 directions. Finally,
we grouped the measured BRDFs into three main categories: fabric (146 mate-
rials), leather (16 materials), and wood (19 materials). The remaining types of
materials were not represented by a sufficient number of instances to capture their
typical behavior reliably (carpet 6, plastic 6, tile 4, paper 3, wallpaper 3, plaster
2, paint 2, etc.). Due to the fact, that some of the materials have many differ-
ent color variants with similar luminance behavior, individual BRDFs were con-
verted to the luminance only, neglecting the spectral information. Moreover, as
anisotropic behavior in measured BRDF depends on initial positioning of the mea-
sured sample, all BRDFs were aligned according a location of their the most inten-
sive anisotropic highlight in azimuthal space [2]. Any reasonable computational
comparison of different anisotropic BRDFs would be impossible without this step
as the anisotropic highlight would be located in the azimuthal space arbitrarily.

3.2 Linear Factorization

First, we analyzed the main visual features of individual types of materials
using principal component analysis (PCA). The BRDFs of each category were
reshaped into column vectors and used to form a matrix that was after normal-
ization decomposed by means of PCA. As a result we obtained principal com-
ponents of the same size as original BRDF image, and principal values denoting
contribution of individual principal components. Fig. 3 shows mean and stan-
dard deviation images as well as the first three principal components (PC) for the
tested categories of materials. Mean standard deviation values as well as energies
of individual components suggests that the highest variability is within categories
fabric and leather. While leather retains the most energy in its first component,
the energy distribution within fabric is more uniform. This is due to a higher
1 http://btf.utia.cas.cz

http://btf.utia.cas.cz
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Fig. 2. BRDFs of three material categories used in our analysis.

variance within this category given by much higher number of recorded materi-
als, and also due to different types of anisotropy presented (as shown in principal
images). Although wood category also exhibits strong anisotropy, the energy is
shifted towards first components. This is caused by a more accurate anisotropic
highlights alignment and similarly shaped highlights across materials in this cat-
egory.

4 Dependency-Aware Feature Selection

The above statistical differences between the three material categories inspired
us as to the possibility there might be certain sparse angular features bear-
ing all information needed for their discrimination. To this end, we employed
a combination of ranking and randomization feature selection method called
Dependency-Aware Feature (DAF) ranking [13],[1]. It evaluates features’ contri-
butions in a sequence of randomly generated feature subsets. The method has
shown promise of selecting features reliably, even in settings where standard fea-
ture techniques fail due to problem’s complexity or over-fitting issues, and where
individual feature ranking results are unsatisfactory.

Denoting F the set of all features F = {f1, f2, . . . , fN} we assume that for
each subset of features S ⊂ F a feature selection criterion J(·) can be used as
a measure of quality of S. We assume the criterion J(·) to be bounded by [0,1].
In our case we will use estimates of classification accuracy which fulfills this
property.

The starting point of dependency-aware feature ranking is a randomly gener-
ated sequence of feature subsets to be denoted probe subsetsS = {S1, S2, . . . , SK},
Sj ⊂ F, j = 1, 2, . . . ,K, where each subset is evaluated by the criterion function
J(·).
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mean img std. img. PC1 PC2 PC3
fabric 83.9 36% 10 % 5 %

leather 92.0 61% 9 % 8 %

wood 45.7 51% 13 % 6 %

Fig. 3. PCA of three tested material categories BRDFs unfolded to 2D images (see
Fig. 1-right). Each row contains mean image, standard deviation image (with mean
std. value), and the first three principal components with their energy contributions.

Given a sufficiently large sequence of feature subsets S, we can utilize the
information contained in the criterion values J(S1), J(S2), . . . , J(SK) to assess
how each feature adds to the criterion value. Therefore, we compare the quality
of probe subsets containing f with the quality of probe subsets not including f .

We compute the mean quality μf of subsets S ∈ S containing the considered
feature

μf =
1

|Sf |
∑

S∈Sf

J(S), Sf = {S ∈ S : f ∈ S} (2)

and the mean quality μ̄f of subsets S ∈ S not containing the considered feature
f :

μ̄f =
1

|S̄f |
∑

S∈S̄f

J(S), S̄f = {S ∈ S : f /∈ S} (3)

with the aim to use the difference of both values as a criterion for ranking the
features:

DAF (f) = μf − μ̄f , f ∈ F. (4)

The DAF evaluates a contribution of each feature to a given discrimination task
by a single weight value. The higher is its value the more important it is. More
details can be found in [13].
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4.1 DAF Configuration Within the Experiment

We used DAF method implemented in the FST3 library2 to compute ranking
of measured directions according to their contribution to material categories
separability. Due to the illumination and viewing directions reciprocity we used
3321 directions instead of the originally measured 6561. Thus our dataset has
3321 features × 146 (fabric), 16 (leather), 19 (wood) samples respectively. The
number of classes was two or three, depending whether we computed features
discriminating between two or all three tested categories. As a criterion function
J() identifying promising bidirectional features we used results of materials clas-
sification using linear SVM with one-level cross-validation. The SVM’s penalty
parameter c was optimized on a validation dataset.

We typically evaluated about 300 000 probes and the computational time
was about 20 hours. Although this analysis is time-demanding it is performed
once during off-line analysis of training data. Any further classification using the
selected sparse features is very fast.

5 Results and Discussion

As a result of feature selection analysis we found out that only around ten bidi-
rectional features (i.e., illumination/view directions) were enough to discriminate
between all combination of classes with accuracy between 96% and 100%. By
the classification accuracy we denote ratio of correctly classified materials to all
materials within the classified classes. Fig. 4 shows weights of the first ten DAF
features illustrating the steepest decline for pairs wood-leather and wood-fabric
that have also slightly better classification accuracy (shown in the graph leg-
end). Therefore, even less features would be sufficient to accurately distinguish
between our material categories.

Fig. 4. Weights of the first ten DAF features (each representing a different combination
of illumination and view directions) obtained for discrimination between individual
categories of materials. The legend includes classification accuracy achieved using these
ten features.

2 http://fst.utia.cas.cz/

http://fst.utia.cas.cz/
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wood – leather categories wood – fabric categories

leather – fabric categories wood–leather–fabric categories

Fig. 5. Importance of individual directions for separability of several material groups.
Each map represents 4D BRDF space unfolded into 2D image (Fig.1-right). Each pixel
represents an unique combination of illumination and viewing directions and corre-
sponding DAF features values are shown with brightness denoting their relative impor-
tance for recognition between the material groups. The ten most important directions
are shown as color dots with color coding of DAF weights values from the highest (yel-
low) to the lowest (red). Right side of the images illustrates relation of corresponding
10 selected illumination (green) and view (blue) directions within hemisphere over a
material. The remaining less important features are shown in gray.

Fig. 5 illustrates placement of DAF features in original 4D angular BRDF
space unfolded to 2D image (see Fig.1-right). Majority of the important features
are located in subspace of highest elevations (i.e., 75o), where typical BRDFs
exhibit the highest contrast. The ten best features are shown in color coding
from the most important (yellow) to less important (red). The right-hand side
of the images show mutual positions of illumination (green) and view (blue)
directions of the selected bidirectional features in the hemisphere viewed from
the top. Color of the hemispheres border correspond to feature importance.

One can observe that classification between woods-fabrics categories relies on
directions that lie directly on a specular highlight, i.e. view always opposite to
illumination |ϕi − ϕv| ≈ π. Note that the directions located near intersection of
specular (SHL) and anisotropic (AHL) highlights (shown in Fig.6) have higher
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Fig. 6. Locations of specular and anisotropic highlights in the BRDF space and their
appearance on a 3D object.

importance. This is due to a different typical behavior between these groups of
materials.

In contrast, for wood-leather categories the selected features correspond to
directions lying on location of main anisotropic highlight. This is intuitive as
leather, in contrast to wood, does not exhibit any significant anisotropic highlight
(including retro-reflection ϕi ≈ ϕv). Again directions near intersections of SHL
and AHL are deemed as more important.

For recognition between leather-fabric and wood-leather-fabric categories are
the most important directions located near SHL and their primary function is
detection of highlight’s width. Therefore, the selected features lie on SHL and
in its surrounding, as well as in retro reflective directions.

5.1 Selected Features Stability Analysis

Finally, we tested stability of the selected best features with regard to train
dataset. We performed a two-level leave-one-out classification using linear SVM
classifier between 17 wood and subset of 19 fabric having the most similar
anisotropic properties as shown in Fig. 7 (BRDF subsets for fixed elevation
angles θi/θv = 75o/75o). In each step, one material was removed from the test
set the DAF features were computed on the remaining materials only.

Surprisingly, the DAF features obtained in each step were always identical.
We have found that even with such a complex dataset, 12 directions (i.e., selected
features) were enough to achieve an accurate classification of 97%. When we
performed the same experiment for wood, leather, and the subset of fabric (19)
with 50 directions we achieved classification accuracy 92% and stability over
98%, i.e., it suggests that about only 2% of directions changed over the cross
validation.

5.2 Limitations and Future Work

Although our test BRDF dataset provides a limited number of materials for each
tested category, our cross validation classification experiment showed a promising
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Fig. 7. Subspaces θi/θv = 75o/75o of 17 wood (first row) and 19 selected fabric (second
row) used in the stability experiment.

performance of our method. We assume that using more materials within each
category would further improve classification accuracy albeit possibly at the
cost of a slightly increased number of selected features describing additional
variability within a class of materials.

Another challenging issue is a computational time needed for the subset
identification. Depending on the compared categories dimensionality, it took
between two and six hours to find optimal discriminative directions using 24
cores (3.3GHz) of Intel Xeon E5-2643. However, once this subset is learned the
speed of material classification using 10 features and linear SVM is negligible and
the main bottleneck becomes acquisition of these ten directional samples for the
unknown material to be classified. Performing FS off-line thus enables faster on-
line performance, depending mainly on a speed of the reflectance measurements
(e.g. photos) and their processing. Furthermore, our experiments revealed that
majority of the selected features belong to the highest illumination and view ele-
vation angles. Therefore, by neglecting low elevation angles we could potentially
limit total number of features and thus effectively decrease computational time.

6 Conclusions

The objective of this paper was identification of very compact set of bidirec-
tional gray-scale reflectance measurements that are capable of reliable classifi-
cation between three different material categories (fabric, leather, wood). The
point is to enable radical reduction of the cost of bidirectional features measure-
ment and subsequent classification. We used dependency-aware feature selection
technique for selection of sparse bidirectional features using BRDF database. We
conclude that ten such gray-scale reflectance features are enough to keep classi-
fication accuracy > 95% on a BRDF database with moderate number of samples
(evaluated by cross-validation). Furthermore, we have found that the stability
of the selected bidirectional samples is very high, i.e., does not depend signifi-
cantly on any particular material in the test dataset. Finally, we identified and
discussed a proper locations of bidirectional samples for discrimination between
our three material categories. Our initial results sufficiently demonstrate that
feature selection helps to improve material classification methods relying on a
very limited set of bidirectional samples.
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