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This paper presents a fast precise unsupervised iris defects detection method based on the underlying mul-

tispectral spatial probabilistic iris textural model and adaptive thresholding applied to demanding high

resolution mobile device measurements. The accurate detection of iris eyelids and reflections is the prereq-

uisite for the accurate iris recognition, both in near-infrared or visible spectrum measurements. The model

adaptively learns its parameters on the iris texture part and subsequently checks for iris reflections using

the recursive prediction analysis. The method is developed for color eye images from unconstrained mobile

devices but it was also successfully tested on the UBIRIS v2 eye database. Our method ranked first from the

97+1 recent Noisy Iris Challenge Evaluation contest alternative methods on this large color iris database

using the exact contest data and methodology.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Biometrics based human identification systems have ever growing

importance in recent trends toward more secure modern information

society. Diverse biometric data can be exploited for numerous practi-

cal applications, such as bank access, airport entry points, or criminal

evidence gathering but also for smart homes, cars control, or hand-

icapped help systems. It can be human voice, fingerprint, eye, face,

gait, veins, handwriting and many more. Various biometric data dif-

fer in ways how to acquire them, their durability, reliability, safety,

and necessary technology for their acquisition and evaluation. In this

work we focus on preprocessing part of the iris recognition—iris de-

fect detection. The possibility for the eye-based human identification

was originally suggested by Alphonse Bertillon [30] and subsequently

pointed out by several others [1], the first method was published and

patented by Daugman [8], and later estimated that the probability of

two similar iris is 1 in 1072 [24]. For recent surveys of the iris recog-

nition results see [3,4,30]. The overview of open iris databases can be

found in [30].

The iris identification is complex task containing several sub-tasks

(see the processing schema on Fig. 1 with iris defect detection elab-

orated part) that have to be solved. The whole process starts with

image acquisition which hardly produces ideal noise-free, focused,

and homogeneously illuminated images, thus the corresponding pre-

processing steps for data normalization, denoising, or geometric
✩ This paper has been recommended for acceptance by Gabriella Sanniti di Baja.
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orrections are inevitable before the iris segmentation can be

erformed. Iris acquisition cameras use either near infrared (NR,

00−900 [nm]) or visible wavelength (VW, 390−700 [nm]) sensors

ach having some advantages and drawbacks. NR can penetrate iris

urface and reveals well dark-colored irides, VW sensors on the other

and are ubiquitous, less hazardous to eye damage [23], and can

e used for long distance observations. The reflectance properties of

oth spectra ranges differ which leads to different iris recognition

ipelines. The rough iris segmentation results are typically coordi-

ates of two circles, inner and outer border of iris. Additionally, a

ormalization step has been introduced to simplify the subsequent

rocessing steps. Normalization is usually done transforming the iris

nto a fixed size rectangle. The selected features are then computed

rom the normalized rectangle and used in a classifier to recognize a

orresponding human.

Unconstrained iris measurements contain numerous occlusion de-

ects such as eyelid, eyelash, and reflections which have to be detected

n the preprocessing step of any iris recognition algorithm. Unde-

ected occlusions would otherwise confuse the recognition method

nd impair its recognition rate. While the unconstrained visible wave-

ength iris image acquisition is cheap and widely available it requires

ore demanding iris processing methods to achieve comparable

ecognition rate with optimal acquisition conditions in the controlled

nvironment.

.1. Iris defects detection

Unconstrained iris measurements inevitably introduce various

ensing imperfections, such as reflections, upper/lower eyelids or

http://dx.doi.org/10.1016/j.patrec.2015.02.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Fig. 1. Iris recognition processing pipeline.
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Fig. 2. Iris detected reflections (rightward—source image, blue channel, detected re-

flections, and their corrections).
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yelashes occlusions, or eyelid shadows. Such undetected defects

ignificantly degrade iris classifiers performance. Thus it is necessary

o remove such areas from the iris texture prior to the classification

rocess what constitutes on of the most challenging problem in the

ris recognition research [24]. Some detection methods are special-

zed to single imperfection category only, while others [5,9,13,16,18–

0,26,31,34,35] can detect several types of imperfections.

Methods focused only on reflections are based on (adaptive)

hresholding (e.g. [32]). Eyelid detectors are mostly based on edge

etection followed with polynomial fitting (e.g. [10,37]). Chen et al.

6] or He et al. [15] proposed methods of eyelash detection based on

imple thresholding, One of the first general imperfection detection

ethods was presented by Proenca and Alexandre [26]. His method

s based on training classifier on manually detected irises and the

ye representation is based on textural GLCM [14] features and the

etector uses a neural network classifier.

The conventional approach for defect detection [7] is to compute

texture features in a local sub-window and to compare them with

he reference values representing a perfect pattern. The method [22]

reprocesses a gray level textile texture with histogram modification

nd median filtering. The image is subsequently thresholded using

he adaptive filter and finally smoothed with another median filter

un. Another approach for detection of gray level textured defects us-

ng linear FIR filters with optimized energy separation was proposed

n [17]. Similarly the defect detection [33] is based on a set of op-

imized filters applied to wavelet sub-bands and tuned for a defect

ype. Method [11] uses translation invariant 2D RI-Spline wavelets

or textile surface inspection. The gray level texture is removed us-

ng the wavelet shrinkage approach and defects are subsequently

etected by simple thresholding. Contrary to above approaches

he presented method uses the visible wavelength multispectral

nformation.

Recent state-of-the-art non-iris occlusions detectors were mostly

ompeting in the 2008 NICE.I (Noisy Iris Challenge Evaluation) fo-

using especially on detection accuracy. Nearly hundred various

ethods from 22 countries were submitted to this challenge and

he best-ranked algorithms were published in [28]. The presented

ethod uses results of these best-ranked algorithms for comparison.
nyhow, contrary to our method none of these NICE methods use true

ultispectral information. The source images (which are in RGB color

pace) are typically either converted to gray-scale before any ana-

ytical steps or only one spectrum channel is used. The 2008 NICE.I

est method by Tan et al. [35] uses clustering for iris localization

ollowed with prediction and curvature models for eyelid and eye-

ash detection. The second best method by Sankowski et al. [31]

onsists of three steps—threshold based reflections detection, iris

oundaries detection based on modified integro-differential opera-

or, and eyelids detection based on parametric modelling. Several

ther NICE.I algorithms—expert system [9], K-means clustering in

he co-occurrence histogram [16] or methods using NICE.I data and

ethodology—Markovian texture model [13], and Zernike feature

ased classification [34], are used to compare the presented method.

The multilayered perceptron neural network based method [23]

ses local mean and standard deviation features computed in hue,

lue, and red chroma color components. Unlike our presented

ethod, it does not use true textural representation, neglects in-

ormation due to spectral correlation, and contains several ad hoc

elected parameters.

The presented paper extends the method [13] with modified

augman operator, polynomial upper eyelid model, blue spectral

hannel reflection detection, separate lower eyelid detection, and it is

pplied for unconstrained high resolution iris images. These changes

imultaneously improved method’s performance on the NICE.I con-

est setup from third position of our previous method [13] to the

resented method leading position.

. Reflection correction

The iris defect detection starts with searching for reflections

Figs. 2(a) and 3(c)) in the blue spectral channel where they are most

isible using an adaptive threshold. The binarization threshold is ob-

ained using the cross-correlation between pixel-centered windows

nd the Gaussian window. The resulting binary mask is firstly slightly

ilated (Fig. 2(c)) to ensure full coverage of reflections and then the

etected reflective regions are corrected (Fig. 2(d)) using the inpaint-

ng algorithm presented in [36].

The corrected multispectral image is subsequently used to detect

ris location in the image.

. Iris localization

The iris defect detection requires to localize the eye region in

he acquired image which is complicated with variable source im-

ge resolution. The accurate eye region is recognized using a two

tep procedure with rough localization using the generalized Hough

ransformation (GHT) subsequently elaborated by a modified integro-

ifferential Daugman operator.
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Fig. 3. Iris region defects from iPhone5 device containing all four (a,b,c,d) occlusion

types.
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Fig. 4. Upper eyelid detection steps in the red spectral channel.
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3.1. Rough iris localization

The generalized Hough transformation [2] is used to detect ap-

proximate eye region on a sub-sampled reflection corrected image.

The rough scale image has the width in the range 200–400 pixels

because the corresponding sub-sampling step is selected to avoid

non-lattice pixel positions interpolation. Down-scaled images speed

up the processing time. A binary eye template for GHT is created as

the intersection of two circles which are parameterized by the length

c of their common chord. It is subsequently rescaled to handle vari-

able image resolution. We assume the ratios of both circular segments

altitudes h1, h2 to this chord to be fixed

k1 = c

h1
= 4.8,

k2 = c

h2
= 15.8.

The corresponding circles radii can be computed from

Ri = c2

8hi

+ hi

2
= c

k2
i

+ 4

8ki

i = 1, 2. (1)

This template (Fig. 5 (second image)) is rotated in the range of ±15◦.

3.2. Refined iris localization

The accurate eye area is found using the integro-differential Daug-

man operator [8] generalized from monospectral into the multi-

spectral formulation (2) to exploit all available information. The

multispectral Daugman operator is

max
ρ,r̃1,r̃2

∣∣∣∣Gσ (ρ)� ∂

∂ρ

∮
ρ,r̃1,r̃2

Yr,•
2πρ

dsdρ

∣∣∣∣ , (2)

where r = {r1, r2}, s = {s1, s2} are multiindices with the row and col-

umn indices, • denotes all corresponding spectral indices, r̃ the radius

center, ρ is the radius, Yr,• is the rth multispectral (color) eye pixel, �
denotes multispectral convolution, and Gσ (ρ)denotes a 3D Gaussian

filter of identical scale σ in all spectral planes. The circle integral is not

taken for full circle but only for degrees from 0◦ to 45◦ and from 135◦

to 360◦. This is to better deal with possible upper eyelid occlusions

in image (which would otherwise obviously obstructed the correct

localization of iris region). The next step is the pupil border detection
n the red spectral channel to separate iris region. The inner circle

epresenting pupil border is found (see Fig. 6, odd columns images) in

similar way as the iris location described above but in its respective

maller area. The pupil is detected using the original (unmodified)

augman operator [8] inside the iris region. Detected iris region is

hen verified by checking the candidate pupil region mean with com-

arison of the closest left and right neighborhood iris regions. This is

o deal with possible mislocalization of iris border.

. Iris occlusions and reflection detection

Once we locate the iris region, this region is then normalized to

ectangular shape [8] and we subsequently search (see Fig. 1 scheme)

or each of the selected defects as it is illustrated in Fig. 3. The rare

ases of completely missing irises (Fig. 3(d)) are solved using a simple

hresholding in the generalized Hough transformation space. Possible

cclusions are searched in the red spectral channel and reflections in

he blue spectral channel, respectively.

.1. Upper eyelid

The upper eyelid (Fig. 3(a)) is detected using vertically swapped

mage so that a potential upper eyelid is completely located in the

enter of image (otherwise it would be split in half at the corners of

ormalized iris image). Subsequently the rays from 0◦ to 180◦ from

he top center point are drawn (Fig. 4(a)). These rays are convolved

ith differential kernel and the maximum is located on each of them

Fig. 4(b)) and lower maxima values are removed as potential outliers

Fig. 4(c)). The third order fitted polynomial then denotes the upper

yelid occlusion region border (Fig. 4(d)).

.2. Lower eyelid

Most iris images are not obstructed with the lower eyelid. The

ccasional lower eyelid occlusions (Fig. 3(middle)) are detected using

ean and standard deviation estimates μle and σle of the top center

egion. Rows are in the range of r1 ∈ 〈0; N
2 〉 and columns r2 ∈ 〈 M

4 ; 3M
4 〉,

here N (M) is number of rows (columns) in the normalized iris

mage. If the standard deviation is larger than 25% of μle, i.e., σle >
μle

4

hen the lower eyelid is detected by simple thresholding with the

hreshold τ = μ + σle
2 . The topmost central region is detected as the

ower eyelid in the resulting binarized image.

.3. Iris reflections

The precise localization of reflections (Fig. 3(right)) in the fine

cale normalized iris is based on fusion of similar (without dilatation)
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Table 1

MICHE iris database.

(Number of images) Distance

Resolution [cm]

iPhone5 (1262)

Front camera 960 × 960, 960 × 1280 ≈ 10

Rear camera 1536 × 2048, 2448 × 2448

2448 × 3264 ≈ 13

Samsung Galaxy S4 (1297)

Front camera 1080 × 1920 ≈ 10

Rear camera 2320 × 4128 ≈ 13

Samsung Galaxy Tab2 (632)

Front camera 640 × 480 ≈ 5
daptive thresholding as in Section 2 and detection based on the

ultispectral Markovian iris texture model.

.3.1. Iris spectral texture model

We assume that the multispectral iris texture can be represented

y an adaptive 3D causal simultaneous auto-regressive model [12]:

r =
∑
s∈Ic

r

AsXr−s + εr, (3)

here εr is a white Gaussian noise vector with zero mean, and

constant but unknown covariance matrix �. The noise vector

s uncorrelated with data from a causal neighborhood Ic
r , and r =

r1, r2}, s = {s1, s2} are multiindices with the row and column indices,

espectively.

s1,s2
=

⎛
⎜⎜⎝

as1,s2

1,1 , . . . , as1,s2

1,d

...,
. . . ,

...
as1,s2

d,1
, . . . , as1,s2

d,d

⎞
⎟⎟⎠ (4)

re d × d parameter matrices where d is the number of spectral bands.

, r − 1, . . . is a chosen direction of movement on the image lattice (e.g.

canning lines rightward and top to down).

All parameters in this model can be analytically estimated using

umerically robust recursive statistics hence it is exceptionally well

uited for possibly real-time recursive iris texture defect detectors.

he model adaptivity is introduced using the exponential forgetting

actor technique in the parameter learning part of the algorithm. The

odel can be alternatively written in the matrix form

r = γ Zr + εr, (5)

here γ = [ A1, . . . , Aη], η = card (Ic
r) is a d × dη parameter matrix

nd Zr is a corresponding vector of Xr−s. To evaluate the conditional

ean values E{Xr | X(r−1)}, where X(r−1) is the past process history, the

ne-step-ahead prediction posterior density p(Xr | X(r−1)) is needed.

f we assume the normal-gamma parameter prior for parameters in

3) this posterior density has the form of Student’s probability density

ith β(r)− dη + 2 degrees of freedom. The predictor in the form of

onditional mean value (10) uses the following notation (6)–(9):

(r) = β(0)+ r − 1, (6)

ˆ T
r−1 = V−1

zz(r−1) Vzx(r−1), (7)

r−1 =
(

Ṽxx(r−1) ṼT
zx(r−1)

Ṽzx(r−1) Ṽzz(r−1)

)
+ I, (8)

˜uw(r−1) =
r−1∑
k=1

UkWT
k , (9)

here β(0) > 1 and U, W in (9) denote either X or Z vector, respec-

ively. If β(r − 1) > η then the conditional mean value is

{Xr|X(r−1)} = γ̂r−1Zr (10)

nd it can be efficiently computed using the following recursion

ˆ T
r = γ̂ T

r−1 + V−1
z(r−1) Zr(Xr − γ̂r−1Zr)T

1 + ZT
r V−1

z(r−1)Zr

. (11)

The selection of an appropriate model support (Ic
r) is important

o obtain good iris representation. If the contextual neighborhood is

oo small it cannot capture all details of the random field iris tex-

ure model. Inclusion of the unnecessary neighbors on the other hand

dds to the computational burden and can potentially degrade the

erformance of the model as an additional source of noise. The opti-

al Bayesian decision rule for minimizing the average probability of

ecision error chooses the maximum posterior probability model, i.e.,

model Mi corresponding to maxj{p(Mj|X(r−1))} can be easily found

nalytically [12].
.3.2. Defect detection

Single multispectral pixels are classified as belonging to the defec-

ive (non-iris) area based on their corresponding prediction errors. If

he prediction error is larger than the adaptive threshold:

Ẽ{Xr | X(r−1)} − Xr| >
α

l

l∑
i=1

|Ẽ{Xr−i | X(r−i−1)} − Xr−i|, (12)

hen the pixel r is classified as a detected defect pixel. The parameter

in (13) is a process history length of the adaptive threshold and the

onstant α = 2.7 was found experimentally.

The one-step-ahead predictor

˜{Xr | X(r−1)} = γ̂s Zr (13)

iffers from the corresponding predictor (10) in using parameters

ˆs which were learned only in the flawless texture area (s < r). The

mall learning flawless texture cutout is found automatically inside

eflection-less iris area. The whole algorithm is extremely fast because

he adaptive threshold is updated recursively:

εr+1| >
α

l

⎡
⎣ l−1∑

i=0

|εr−i|
⎤
⎦, (14)

here εr is the prediction error

r = Ẽ{Xr | X(r−1)} − Xr, (15)

nd γ̂s is the parametric matrix which is not changing. Hence the

lgorithm can be easily applied in real time iris defect detection.

. Experimental results

The presented method was tested on the MICHE [21] and UBIRIS

2 [25] databases.

The MICHE images were captured by three mobile devices iPhone5

1262 images), Samsung Galaxy S4 (1297 images), and Samsung

alaxy Tab2 (632 images). First two devices exploited both available

ameras, i.e. 8 mega-pixel (MPx) iSight camera and 1.2 MPx FaceTime

amera in iPhone5 and Samsung Galaxy S4 13 and 2 Mpx cameras,

hile only the front VGA camera was used in Samsung Galaxy Tab2.

or all 72 subjects were taken between 4 and 8 images per person

n an unconstrained outdoor and indoor environments. Some MICHE

etails are listed in Table 1. Each person has recorded the same eye

left or right) using both (rear-facing as well as front-facing) cameras

ith the 72 dpi resolution together with information about age and

ender. Selected results from the iPhone5 both cameras are illustrated

n Fig. 6. Similar results were achieved on the remaining mobile de-

ices as illustrated on the partial results from Samsung Galaxy S4

Fig. 5). There are not available ground truth data for the MICHE

atabase thus these results can be verified only visually, thus we in-

luded also our method comparison with the results from the Noisy

ris Challenge Evaluation Contest, where such numerical results are

ccessible. The alternative NICE.I methods have no public code thus

e cannot use them for visual comparison on the MICHE database.
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Fig. 5. Detected rough iris region using the generalized Hough transformation (rightward Canny detector, GHT mask, search window, detected iris).

Fig. 6. Selected eye images from the MICHE database and their detected defects.

Table 2

Iris defect detection Noisy Iris Challenge Evaluation Contest [28] top eight

results comparison.

Rank Method Number of parameters Error

1 Presented method 7 0.0124

2 Tan et al. [35] 9 0.0131

3 Sankowski et al. [31] 6 0.0162

4 Haindl and Krupička [13] 2 0.0168

5 Almeida [9] 5 0.0180

6 Tan and Kumar [34] Unknown 0.0190

7 Li et al. [19] 4 0.0224

8 Jeong et al. [16] 3 0.0282

9 Chen et al. [5] 5 0.0297

10 Scotti and Labbati [18] 12 0.0301

11 Luengo-Oroz et al. [20] 7 0.0305
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The presented method was evaluated on the eye UBIRIS v2

database [25] and compared with the best results achieved during

the Noisy Iris Challenge Evaluation contest [28]. Although the UBIRIS

v2 data are different and less challenging than the MICHE data, there

is ground truth available and nearly hundred alternative results from

the NICE contest which can be used for comparison and result rank-

ing. These databases provide eye images with or without different

occlusion types (Fig. 3), and thus are an useful resource for the evalu-

ation iris recognition methods. The UBIRIS.v2 database [29] contains
1,102 images collected from 261 persons. The RGB 400 × 300, 24

it images were captured with the Canon EOS 5D camera and saved

n the TIFF format. The presented method was compared with the

op eight results (from 97 participants) [5,9,16,18–20,31,35] from the

oisy Iris Challenge Evaluation Contest (NICE.I) [28] and results us-

ng the same NICE.I data presented in the paper [34]. All compar-

sons (Table 2) obey the NICE.I contest protocol [27]. The contest was

un on the UBIRIS.v2 database which contains highly noisy eye im-

ges. The participants had 500 training images and a disjoint test

et of 500 images was used to measure the pixel-by-pixel agree-

ent between the binary maps made by each participant (X) and

he ground-truth data (G), manually built by the NICE.I organizers

27]:

rror = 1

nnrnc

n∑
k=1

nr∑
r1=1

nc∑
r2=1

nXr ⊗ nGr, (16)

here ⊗ is the logic XOR operator, nr, nc, n are the number of rows,

olumns, and testing images, respectively.

Fig. 7 indicates several types of defective iris textures. This ex-

mple illustrates correct detection and localization of the most fre-

uented iris occlusion by the presented method.

The presented method ranked first (Table 2) according to the con-

est criterion Error (16) on the contest test set. The Noisy Iris Chal-

enge Evaluation Contest winning algorithm [35] has slightly worse

erformance than the presented method but it is very complex, time

onsuming and suffers with numerous experimentally set control pa-

ameters. Similarly the third ranked method [31] based on the reflec-

ions localization, reflections filling in, iris boundaries localization and

yelids boundaries localization steps, relies on several experimentally

ound parameters.
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Fig. 7. Eye images from the UBIRIS v2 database, ground truth, detected occlusions

masks, and their comparison with the ground truth.
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. Conclusions

The most published iris defect detection methods are monospec-

ral using near-infrared measurements, while our method advanta-

eously exploits both multispectral as well as the spatial information

imultaneously. The method uses the multispectral generalization of

he Daugman operator, polynomial upper eyelid model, and fully mul-

ispectral spatial Markovian texture model. The method is very fast

nd robust in comparison with the top-ranking alternative methods

rom the NICE.I contest. Our method ranked first when evaluated on

he Noisy Iris Challenge Evaluation Contest from the 97 competing

lgorithms and the Tan method.

Visual results demonstrate its promising performance also on the

ery challenging and highly variable Mobile Iris Challenge Evaluation

ata. The presented method can be easily generalized for gradually

hanging (e.g., illumination, color, etc.) iris texture defect detection

y exploiting its adaptive learning capabilities.
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