
Unsupervised Surface Reflectance Field
Multi-segmenter

Michal Haindl1(B), Stanislav Mikeš1, and Mineichi Kudo2
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Abstract. An unsupervised, illumination invariant, multi-spectral,
multi-resolution, multiple-segmenter for textured images with unknown
number of classes is presented. The segmenter is based on a weighted
combination of several unsupervised segmentation results, each in dif-
ferent resolution, using the modified sum rule. Multi-spectral textured
image mosaics are locally represented by eight causal directional multi-
spectral random field models recursively evaluated for each pixel. The
single-resolution segmentation part of the algorithm is based on the
underlying Gaussian mixture model and starts with an over segmented
initial estimation which is adaptively modified until the optimal num-
ber of homogeneous texture segments is reached. The performance of
the presented method is extensively tested on the Prague segmentation
benchmark both on the surface reflectance field textures as well as on
the static colour textures using the commonest segmentation criteria and
compares favourably with several leading alternative image segmentation
methods.

Keywords: Unsupervised image segmentation · Textural features · Illu-
mination invariants · Surface reflectance field · Bidirectional texture
function

1 Introduction

Segmentation is the fundamental process which partitions a data space into
meaningful salient regions. Image segmentation essentially affects the overall
performance of any automated image analysis system thus its quality is of the
utmost importance. Image regions, homogeneous with respect to some usually
textural or colour measure, which result from a segmentation algorithm are anal-
ysed in subsequent interpretation steps. Texture-based image segmentation is
area of intense research activity in recent years and many algorithms were pub-
lished in consequence of all this effort. These methods are usually categorised
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[18] as region-based, boundary-based, or as a hybrid of the two. Different pub-
lished methods are difficult to compare because of lack of a comprehensive anal-
ysis together with accessible experimental data, however available results indi-
cate that the ill-defined texture segmentation problem is still far from being
satisfactorily solved. Spatial interaction models and especially Markov random
fields-based models are increasingly popular for texture representation [4,18],
etc. Several researchers dealt with the difficult problem of unsupervised segmen-
tation using these models see for example [10,15,17] or [5,7,12]. The concept of
decision fusion [14] for high-performance pattern recognition is well known and
widely accepted in the area of supervised classification where (often very diverse)
classification technologies, each providing complementary sources of information
about class membership, can be integrated to provide more accurate, robust and
reliable classification decisions than the single classifier applications.

Similar advantages can be expected and achieved [12] also for the unsuper-
vised segmentation applications. However, a direct unsupervised application of
the supervised classifiers fusion idea is complicated with unknown number of
data hidden classes and consequently a different number of segmented regions in
segmentation results to be fused. This paper exploits above advantages by com-
bining several unsupervised segmenters of the same type but with different fea-
ture sets. It introduces a novel eight-directional generative multispectral texture
representation and invariant features capable to discriminate surface reflectance
field type of textures, i.e., bidirectional texture function (BTF) textures with a
fixed or small range of viewing angle.

2 Combination of Multiple Segmenters

The proposed method (MW3AR8i) combines segmentation results from differ-
ent resolution. We assume to down-sample input image Y into M different
resolutions Y (m) =↓ιm Y with sampling factors ιm m = 1, . . . , M identical in
both horizontal and vertical directions and Y (1) = Y . Local surface reflectance
field texture for each pixel Y

(m)
r in resolution m is represented the 3D simul-

taneous causal autoregressive random field model (CAR) parameter space Θ
(m)
r

(5) and modeled by the Gaussian mixture model (6),(7).

2.1 Single-Resolution Texture Model

Static smooth multi-spectral textures require three dimensional models for ade-
quate representation. We assume that single multi-spectral textures can be
locally modelled using a 3D simultaneous causal autoregressive random field
model (CAR). This model can be expressed as a stationary causal uncorrelated
noise driven 3D autoregressive process [11]:

Yr = γXr + er , (1)

where γ = [A1, . . . , Aη] is the d × dη parameter matrix, Ai∀i ∈ Ic
r are d × d

parametric matrices, d is the number of spectral bands, Ic
r is a causal neigh-

borhood index set with η = card(Ic
r) and er is a white Gaussian noise vector
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with zero mean and a constant but unknown covariance, Xr is a correspond-
ing vector of the contextual neighbours Yr−s where s ∈ Ic

r and r, r − 1, . . .
is a chosen direction of movement on the image index lattice I. The selection
of an appropriate CAR model support (Ic

r ⊂ I) is important to obtain good
texture representation but less important for segmentation. The optimal neigh-
bourhood as well as the Bayesian parameters estimation of a CAR model can
be found analytically under few additional and acceptable assumptions using
the Bayesian approach (see details in [11]). The recursive Bayesian parameter
estimation of the CAR model is [11]:

γ̂T
r−1 = γ̂T

r−2 +
V −1

x(r−2)Xr−1(Yr−1 − γ̂r−2Xr−1)T

(1 + XT
r−1V

−1
x(r−2)Xr−1)

, (2)

where Vx(r−1) =
∑r−1

k=1 XkXT
k +Vx(0). Local texture for each pixel is represented

by eight parametric vectors. Each vector contains local estimations of the CAR
model parameters. These eight models have identical contextual neighbourhood
Ic
r but they differ in their major movement direction (↓, ↑,→,←,↘,↖,↗,↙),

i.e.,
γ̃T

r =
{
γ̂t

r, γ̂
b
r , γ̂

r
r , γ̂l

r, γ̂
d
r , γ̂−d

r , γ̂a
r , γ̂−a

r

}T
. (3)

The parametric space γ̃ (Section 2.2) is subsequently smooth out, rearranged
into a vector and its dimensionality is reduced using the Karhunen-Loeve feature
extraction (γ̄).

2.2 Illumination Invariant Textural Features

We assume that two images Ỹ , Y of the same texture and view position differing
only in illumination can be linearly transformed to each other:

Ỹr = B Yr ,

where Ỹr, Yr are multispectral pixel values at position r and B is some
transformation matrix dependent on an illumination. This linear formula is valid
for changes in brightness and illumination spectrum, with surfaces including both
Lambertian and specular reflectance. We have proven [20] that the following
features are illumination invariant for each CAR model:

1. trace: tr{Aj
m} m = 1, . . . , η, j ∈ {t, b, r, l, d,−d, a,−a} ,

2. Am eigenvalues: νj
m,k k = 1, . . . , C .

The illumination invariant feature vector (3) for every pixel r has the form:

γ̃T
r =

{
tr{At

1}, νt
1,1, . . . , ν

t
1,C , . . . , tr{A−a

η }, . . . , ν−a
η,1 , . . . , ν

−a
η,C

}T

. (4)
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2.3 Mixture Based Segmentation

Multi-spectral texture segmentation is done by clustering in the CAR parameter
space Θ defined on the lattice I where

Θr = [γ̄r, ζr]T (5)

is the modified local parameter vector (3) computed for the lattice location r.
The vector ζr contains both spatial coordinates r1, r2 and local colour values.
We assume that this parametric space can be represented using the Gaussian
mixture model (GM) with diagonal covariance matrices due to the previous
CAR parametric space decorrelation. The Gaussian mixture model for CAR
parametric representation at the m-th resolution (m = 1, . . . , M) is as follows:

p(Θ(m)
r ) =

K(m)
∑

i=1

p
(m)
i p(Θ(m)

r | ν(m)
i , Σ

(m)
i ) , (6)

p(Θ(m)
r | ν(m)

i , Σ
(m)
i ) =

|Σ(m)
i |− 1

2

(2π)
d
2

e − (Θ
(m)
r −ν

(m)
i

)T (Σ
(m)
i

)−1(Θ
(m)
r −ν

(m)
i

)
2 . (7)

The mixture model equations (6),(7) are solved using a modified EM algorithm.

Initialization. The algorithm is initialised using ν
(m)
i , Σ

(m)
i statistics for

each resolution m estimated from the corresponding thematic maps in two
subsequent steps:

1. refining direction
ν
(m−1)
i

(
∀Θ

(m−1)
r : r ∈↑ Ξ

(m)
i

)
, Σ

(m−1)
i

(
∀Θ

(m−1)
r : r ∈↑ Ξ

(m)
i

)

m = M + 1,M, . . . , 2 i = 1, . . . , K(m) ,
2. coarsening direction

ν
(m)
i

(
∀Θ

(m)
r : r ∈↓ Ξ

(m−1)
i

)
, Σ

(m)
i

(
∀Θ

(m)
r : r ∈↓ Ξ

(m−1)
i

)

m = 2, 3, . . . ,M i = 1, . . . , K(m) ,

where Ξ
(m)
i ⊂ I ∀m, i, and the first initialisation thematic map Ξ

(M+1)
i is

approximated by the rectangular subimages obtained by regular division of the
input texture mosaic. All the subsequent refining step are initialised from the
preceding coarser resolution up-sampled thematic maps. The final initialisation
results from the second coarsening direction where the gradually coarsening seg-
mentations are initialised using the preceding down-sampled thematic maps. For
each possible couple of components the Kullback-Leibler divergence

D (p(Θr | νi, Σi) || p(Θr | νj , Σj)) =
∫

Ω

p(Θr | νi, Σi) log
(

p(Θr | νi, Σi)
p(Θr | νj , Σj)

)

dΘr

is evaluated and the most similar components, i.e.,

{i, j} = arg min
k,l

D (p(Θr | νl, Σl) || p(Θr | νk, Σk))
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are merged together in each initialisation step. This initialisation results in Kini

subimages and recomputed statistics νi, Σi . Kini > K where K is the
optimal number of textured segments to be found by the algorithm. Two steps
of the EM algorithm are repeating after initialisation. The components with
smaller weights than a fixed threshold (pj < 0.02

Kini
) are eliminated. For every

pair of components we estimate their Kullback-Leibler divergence. From the
most similar couple, the component with the weight smaller than the threshold
is merged to its stronger partner and all statistics are actualised using the EM
algorithm. The algorithm stops when either the likelihood function has negligible
increase (Lt − Lt−1 < 0.01) or the maximum iteration number threshold is
reached.

2.4 Resulting Mixture Probabilities

Resulting mixture model probabilities are mapped to the original fine resolution
image space for all m = 1, . . . , M mixture sub-models ((6)(7)). The M cooper-
ating segmenters deliver their class response in the form of conditional probabili-
ties. Each segmenter produces a preference list based on the mixture component
probabilities of a particular pixel belonging a particular class, together with a
set of confidence measurement values generated in the original decision-making
process.

Single-Segmenters Correspondence. Single-resolution segmentation results
cannot be combined without knowledge of the mutual correspondence between
regions in all different-resolution segmentation probabilistic mixture component
maps (K1×∑M

m=2 Km combinations). Mutual assignments of two probabilistic
maps are solved by using the Munkre’s assignment algorithm [12] which finds
the minimal cost assignment

g : A → B,
∑

α∈A

f(α, g(α))

between sets A, B, |A| = |B| = n given the cost function f(α, β), α ∈ A, β ∈
B. α corresponds to the fine resolution probabilistic maps, β corresponds to
down-sampled probabilistic maps and f(α, β) is the Kullback-Leibler divergence
between probabilistic maps. The algorithm has polynomial complexity instead
of exponential for the exhaustive search.

Final Parametric Space. The parametric vectors representing texture mosaic
pixels are assigned to the clusters based on our modification of the sum rule
according to the highest component probabilities, i.e., Yr is assigned to the clus-
ter ωj∗ if [9]

πr,j∗ = max
j

∑

s∈Ir

ws

(
M∑

m=1

p2(Θ(m)
r−s | ν(m)

j , Σ
(m)
j )

∑M
i=1 p(Θ(i)

r−s | ν(i)
j , Σ

(i)
j )

)

,
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where ws are fixed distance-based weights, Ir is a rectangular neighbourhood
and πr,j∗ > πthre (otherwise the pixel is unclassified). The area of single cluster
blobs is evaluated in the post-processing thematic map filtration step. Regions
with similar statistics are merged. Thematic map blobs with area smaller than a
given threshold are attached to its neighbour with the highest similarity value.

3 Experimental Results

The algorithm was tested on natural wooden bidirectional texture function
(BTF) mosaics from the Prague Texture Segmentation Data-Generator and
Benchmark (http://mosaic.utia.cas.cz) [6]. The benchmark test mosaics layouts
and each cell texture membership are randomly generated and filled with BTF
textures from the large UTIA BTF database. The BTF wood measurements are
mapped on the randomly generated spline surface. These tested BTFs have 3
spectral bands (d = 3) but the segmenter can handle any number of bands.

The benchmark ranks segmentation algorithms according to a chosen crite-
rion. There are implemented twenty seven most frequented evaluation criteria
categorised into four criteria groups – region-based [6], pixel-wise [6], clustering
comparison criteria, and consistency measures [6]. The region-based [6] perfor-
mance criteria mutually compare ground truth (GT) image regions with the
corresponding machine segmented regions (MS). The pixel-wise criteria group
contains the most frequented classification criteria such as the omission and com-
mission errors, class accuracy, recall, precision, etc. Finally the last two criteria
sets incorporate the global and local consistency errors [6] and three clustering
comparison criteria.

Table 1 compares the overall benchmark performance of the proposed algo-
rithm MW3AR8i with the Voting Representativeness - Priority Multi-Class
Flooding Algorithm (VRA-PMCFA) [8,16], Segmentation by Weighted Aggre-
gation (SWA) [19], Efficient Graph-Based Image Segmentation (EGBIS) [3],
Factorization-based texture SEGmenter (FSEG) [21], HGS [13], Edge Detection
and Image SegmentatiON (EDISON) [1], JSEG [2], Deep Brain Model (DBM)
[8], respectively. The table criteria are averaged over 10 experimental mosaics.

MW3AR8i ranks second (average rank 3.05) over all benchmark criteria,
slightly worse than the overall winner of the ICPR 2014 Unsupervised Image
Segmentation Contest [8] - the VRA-PMCFA method.

These results illustrated in Figs. 1-3 and Table 1 demonstrate very good
pixel-wise, correct region segmentation, missed error, noise error, and underseg-
mentation properties of our method. For most the pixel-wise criteria our method
is among the best ones while. Our oversegmentation value is the second worst
from all the compared methods what offers a large space for further improvement
by better future post-processing.

Figs. 2,3 and show five selected 1024× 1024 experimental benchmark mosaics
created from four to twelve naturalBTF textures.The last four or five rows on these
figures demonstrate comparative results from the eight alternative algorithms.
Three methods (VRA-PMCFA, FSEG, DBM) participated in the ICPR contest.
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Table 1. BTF wood benchmark results for VRA-PMCFA, MW3AR8i, SWA, EGBIS,
FSEG, HGS, EDISON, JSEG, DBM. (Benchmark criteria: CS = correct segmentation; OS =

over-segmentation; US = under-segmentation; ME = missed error; NE = noise error; O = omission

error; C = commission error; CA = class accuracy; CO = recall - correct assignment; CC = precision

- object accuracy; I. = type I error; II. = type II error; EA = mean class accuracy estimate; MS =

mapping score; RM = root mean square proportion estimation error; CI = comparison index; GCE =

Global Consistency Error; LCE = Local Consistency Error; dD = Van Dongen metric; dM = Mirkin

metric; dVI = variation of information; f̄ are the performance curves integrals; F̄ = F–measure

curve; small numbers are the corresponding measure rank over the listed methods.)

VRA-

PMCFA
(2.19)

MW3-

AR8i

(3.05)

SWA

(3.33)

EGBIS

(4.90)

FSEG

(5.14)

HGS

(5.38)

EDISON

(6.14)

JSEG

(7.19)

DBM

(7.67)

↑CS 59.55 1 49.78 2 44.87 4 45.41 3 36.87 6 42.79 5 29.25 7 20.15 8 17 .86 9

↓OS 16.10 2 53.96 8 19.97 5 34.19 7 58 .03 9 11.92 1 19.68 4 17.83 3 23.80 6

↓US 29.22 5 11.58 2 26.60 3 45.90 7 10.31 1 30.01 6 61.32 8 27.53 4 62 .59 9

↓ME 6.00 3 4.51 2 8.76 6 1.13 1 9.36 7 23.62 8 8.20 5 40 .30 9 8.06 4

↓NE 6.33 3 4.90 2 9.15 5 2.81 1 9.52 7 26.06 8 8.10 4 38 .68 9 9.49 6

↓O 16.15 3 12.87 2 12.79 1 35.79 6 26.86 5 23.34 4 49.92 8 47.89 7 70 .86 9

↓C 16.98 1 91.10 6 30.30 2 96.43 8 91.47 7 40.85 3 90.00 4100 .00 9 90.33 5

↑CA 72.28 1 70.07 2 68.01 3 57.47 6 59.75 5 59.83 4 45.29 7 45.08 8 36 .39 9

↑CO 80.25 1 75.02 3 75.61 2 68.06 5 64.74 6 71.29 4 60.40 7 57.99 8 52 .64 9

↑CC 81.30 3 93.72 1 80.28 4 78.42 5 91.07 2 72.97 7 72.74 8 75.16 6 55 .90 9

↓ I. 19.75 1 24.98 3 24.39 2 31.94 5 35.26 6 28.71 4 39.60 7 42.01 8 47 .36 9

↓ II. 2.78 2 3.25 4 3.07 3 8.22 6 1.51 1 6.21 5 15 .38 9 9.28 7 14.99 8

↑EA 78.35 2 78.71 1 75.08 3 63.05 6 71.04 4 69.24 5 51.74 8 55.19 7 44 .70 9

↑MS 73.17 1 70.92 2 66.63 3 54.77 6 60.04 4 59.77 5 41.81 8 42.56 7 32 .19 9

↓RM 6.37 4 4.09 1 5.76 3 6.83 6 4.37 2 7.09 7 8.47 8 6.53 5 11 .83 9

↑CI 79.51 2 80.56 1 76.46 3 66.14 6 74.19 4 70.54 5 54.98 8 59.16 7 47 .92 9

↓GCE 6.27 1 7.20 3 9.50 5 8.46 4 13.41 7 19.74 8 6.77 2 23 .23 9 12.72 6

↓LCE 3.77 4 4.38 5 3.52 3 2.85 2 7.44 6 14 .02 9 1.92 1 12.20 8 7.58 7

↓dD 11.45 1 14.21 3 13.82 2 16.81 4 20.41 6 19.06 5 20.90 7 25.05 8 26 .01 9

↓dM 7.75 1 10.16 3 8.79 2 20.33 6 12.27 4 12.34 5 30.58 8 20.98 7 33 .07 9

↓dVI 14.53 4 16.56 8 14.87 6 13.97 3 18 .29 9 14.85 5 12.66 1 15.51 7 13.57 2

↑CS 57.12 1 46.35 3 49.84 2 44.89 4 32.85 6 37.65 5 29.48 7 22.94 8 16 .37 9

↓OS 13.40 1 48.90 8 20.55 4 36.41 7 51 .65 9 14.32 2 22.22 6 21.11 5 20.33 3

↓US 26.27 6 10.75 2 24.26 4 36.16 7 8.27 1 25.92 5 57 .14 9 23.92 3 53.86 8

↓ME 11.91 2 13.97 5 13.14 4 12.16 3 21.50 6 33.95 8 11.59 1 42 .40 9 22.36 7

↓NE 11.89 2 14.04 5 13.07 3 13.39 4 21.94 6 35.50 8 11.83 1 41 .59 9 24.00 7

↑F 79.19 2 80.11 1 76.07 3 65.22 6 73.28 4 70.17 5 54.34 8 57.95 7 47 .00 9
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VRA-PMCFA

MW3AR8i

SWA

EGBIS

FSEG

HGS

Fig. 1. Performance curves (vertical axis - f(threshold), horizontal axis - threshold,
details in http://mosaic.utia.cas.cz) of correct segmentation, undersegmentation, over-
segmentation, and F-measure, respectively.
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BTF mosaic

ground truth

VRA-PMCFA

MW3-AR8i

SWA

EGBIS

Fig. 2. BTF mosaic, ground truth, and segmentation results, respectively.
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ground truth

FSEG

HGS

EDISON

JSEG

DBM

Fig. 3. Ground truth, and segmentation results, respectively.



Unsupervised Surface Reflectance Field Multi-segmenter 271

The contest used the large size (80 textural mosaics) unsupervised Colour bench-
mark without noise degradation and with linear region borders. The contest crite-
rion was the average rank over all benchmark criteria.

Hard natural BTF textures were chosen rather than synthesised (for exam-
ple using Markov random field models) ones because they are expected to be
more difficult for the underlying segmentation model. The fourth row on Fig. 2
demonstrates solid behaviour of our MW3AR8i algorithm but also infrequent
algorithm failures producing the oversegmented thematic map for some textures.
Such failures can be reduced by a more elaborate post-processing step.

The SWA [19], EGBIS [3], FSEG [21], HGS [13], EDISON [1], JSEG [2],
and DBM algorithms on these data performed mostly worse as can be seen in
their corresponding rows on Figs. 2,3 some areas are undersegmented while other
parts of the mosaics are oversegmented. The best six method’s performance is
illustrated also on Fig. 1.

4 Conclusions

We proposed a significant improvement of our previously published unsupervised
multi-segmenter [9]. The MW3AR8i segmenter is computationally efficient and
robust method for unsupervised textured image segmentation with unknown
number of classes based on the underlying CAR and GM texture models. The
algorithm is reasonably fast, despite of using the random field type data repre-
sentation, due to its efficient recursive parameter estimation of the underlying
models and therefore is much faster than the usual Markov chain Monte Carlo
estimation approach required for the Markovian image representations. Usual
drawback of most segmentation methods is their application dependent param-
eters to be experimentally estimated. Our method requires only a contextual
neighbourhood selection and two additional thresholds. The method’s perfor-
mance is demonstrated on the extensive benchmark tests on both natural texture
mosaics as well as on BTF mosaics. It performs favourably compared with eight
alternative segmentation algorithms. Detailed experimental results are available
in http://mosaic.utia.cas.cz.

Acknowledgments. This research was supported by the Czech Science Foundation
project GAČR 14-10911S.
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