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Abstract—In Part I of the study of the tensor deflation for CAN-
DECOMP/PARAFAC, we have shown that the rank-1 tensor de-
flation is applicable under some conditions. Part II of the study
presents several initialization algorithms suitable for the algorithm
proposed in Part I. In addition, Part II contains an algorithm for
the case when one or more factor matrices in the estimated model
is constrained to be orthogonal. Finally, Part II provides an error
analysis of the tensor deflation algorithm, which shows that there
is a marginal loss of accuracy of the deflation algorithm compared
to the ordinary CP decomposition.
Index Terms—CANDECOMP/PARAFAC, canonical polyadic

decomposition (CPD), Cramér-Rao lower bound, tensor deflation.

I. INTRODUCTION

T ENSOR deflation in this paper and the papers [1]–[3] is
developed for tensors of rank- or approximate rank-

where does not exceed the tensor dimensions, or tensors com-
prising rank-1 tensors and multilinear rank tensors in their block
forms. The major aim of tensor deflation is to extract one rank-1
tensor from a high rank tensor instead of estimating all com-
ponents in the CANDECOMP/PARAFAC (CP) decomposition.
The tensor deflation can be used in a sequential process to ex-
tract several rank-1 tensors. This kind of tensor decomposition
has applications in extraction of one or a few rank-1 tensors
from tensors of high rank, or tracking markers (components) of
interest in an online learning system.
In the Part I of this work, we have presented the Alternating

Subspace Update (ASU) algorithm for rank-1 tensor deflation,
and a sequential process to extract a few rank-1 tensors. The
tensor deflation is related to the rank-1 plus multilinear rank-

block term decomposition (BTD) [4]. Prac-
tical results show that this kind of block term decomposition
and the generalized rank- BTD often get stuck in
false local minima [4], [5]. In order to improve reliability of

Manuscript received September 25, 2014; revised March 26, 2015 and June
16, 2015; accepted July 04, 2015. Date of publication July 20, 2015; date of cur-
rent version October 06, 2015. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Adel Belouchrani.
The work of P. Tichavský was supported by the Czech Science Foundation
through project No. 14–13713S.
A.-H. Phan is with the Lab for Advanced Brain Signal Processing, Brain Sci-

ence Institute, RIKEN, Wako 351-0198, Japan (e-mail: phan@brain.riken.jp).
P. Tichavský is with the Institute of Information Theory and Automation

of the Czech Academy of Sciences, Prague, 182 08, Czech Republic (e-mail:
tichavsk@utia.cas.cz)
A. Cichocki is with the is with the Lab for Advanced Brain Signal Processing,

RIKEN BSI, Wako 351-0198, Japan, and also with the Systems Research Insti-
tute, PAS, Warsaw 00-447, Poland, and SKOLTECH, Moscow 143026, Russia
(e-mail: a.cichocki@riken.jp).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2458789

algorithms, one can perform the decomposition with different
initial points, then chooses the result achieving the lowest ap-
proximation error. So far, multiple random initialization is most
commonly used although this method is not much efficient. In
order to achieve good performance with fast convergence, be-
sides good optimization criteria, good initialization is always
prerequisite. This second part will introduce new initialization
methods for tensor deflation, which can find solutions for the
noise-free case. In addition, the paper simplifies the model to
have one or several orthogonal factor matrices. The orthogo-
nality constraint in factor matrices improves uniqueness of the
CANDECOMP/PARAFAC decomposition (CPD), and avoids
degeneracywhich often occurs in CPD [6]. Last but not least, we
provide Cramér-Rao Lower Bound (CRB) for the tensor defla-
tion. The CRB will serve as an accuracy indicator of the estima-
tion of rank-1 tensor. In comparison with the CRB for CPD [7],
we found that there is no significant loss in accuracy of tensor
deflation using our approach.
Notation used in this paper is similar to that in Part I [1],

[8]. For example, we shall denote tensors by bold calligraphic
letters, e.g., , matrices by bold capital let-
ters, e.g., , and vectors by bold
italic letters, e.g., . The Kronecker product is denoted by .
The mode- matricization of tensor is denoted by . The
mode- multiplication of a tensor by a ma-
trix is denoted by

The rest of the paper is organized as follows. Some properties
of the exact rank-1 tensor extraction are presented in Section II.
Section III presents initialization methods based on the singular
value decomposition (SVD), the joint eigenvalue decomposi-
tion. In Section IV, a variant of the ASU algorithm is developed
for the case when one factor matrix is orthogonal. Cramér-Rao
lower bound for the tensor deflation is derived in Section V.
Simulations in Section VI verify initialization algorithms and
analyze the loss of accuracy of the tensor deflation compared
to the ordinary CP decomposition. Section VII concludes the
paper.

II. EXACT RANK-1 TENSOR EXTRACTION

As in Part I [1], for the rank-1 tensor deflation, we consider
an order- tensor of size , and a tensor
decomposition of this tensor into two tensor blocks of rank-1
and multilinear rank-

(1)
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where are of size , and the core tensor is
of size . If the tensor has
sizes , it should be compressed to the above size using
the Tucker decomposition [9]. The CP decomposition and the
rank-1 tensor extraction procedure are illustrated in [1, Fig. 2 of
Part I].
According to the orthogonal normalization and rotation

(Lemma 1 in [1]), the components and factor matrices
can be assumed to be orthogonal, i.e., ,

and for
.
In this section, we present relation between components and

factor matrices for tensors which admit the model in (1). The
properties will be exploited to derive efficient initialization al-
gorithms in Section III.
As similar to deriving the ASU algorithm in Part I [1], we

express the components through vectors and the first
columns of , that is

(2)

where are orthonormal matrices, i.e.,
. Let

(3)

(4)

We will show that parameters , and can be found in
closed-form through the components for the exact decom-
position.
Lemma 1 (Scaling Coefficient of Rank-1 Tensor): The weight
associated with rank-1 tensor is given by

(5)

Lemma 2 (Closed-Form Expressions for , and ):

(6)

(7)

(8)

Proofs of Lemma 1 and Lemma 2 are in Appendices A and
B, respectively. The Lemmas give recipes, for a given rank-1
tensor , how to compute the other parameters , and

. The last columns of are arbitrarily orthonormal
basis of orthogonal complement to .

III. INITIALIZATION FOR RANK-1 TENSOR EXTRACTION

A. Initialization Using Leading Singular Values
1) Pre-Selection of Components: The simplest initialization

method is that all parameters are initialized by random values.
Unfortunately, this type of initialization method often makes al-
gorithms getting stuck in false local minima, and thus requires a
large number of trials. For tensors which admit the CP decom-
position, the vectors and factor matrices can be ini-
tialized using the Direct Trilinear Decomposition (DTLD) [10]

Algorithm 1: Simple Initialization

Input: Data tensor : , rank

Output: A rank-1 tensor
and

begin
1 Initialize by leading left

singular vectors of
for do

for do
2
3

% Run ASU with a small number of iterations
4
5 Choose the initial point yielding the smallest

approximation error

or the generalized rank annihilation method for (higher order)
CPD [11], or simply but less efficiently using leading singular
vectors of the tensor along modes, i.e., using the Higher Order
SVD (HOSVD) or Higher Order Orthogonal Iteration (HOOI)
algorithm [9].
For deflation of tensors which admit the block component

model, we initialize components of the rank-1 tensor, and
factor matrices of the multilinear rank- tensor, but
do not need to initialize the weight coefficient of the rank-1
tensor and the core tensor of the second block.
If one block is considered to be fixed, then the other block can

be obtained as the best rank-1 or multilinear rank- tensor
of a certain residue tensor. One can also initialize components
using leading singular eigenvectors of mode- matricizations of
as in CPD or other matrix/tensor decompositions. However,

simply choosing the first leading singular vectors for
the factor matrices and one for may not give a good
initial point. Instead, one can choose the components as
one of leading singular eigenvectors of , and the rest

leading singular eigenvectors for so that the ASU
algorithm obtains the smallest approximation error after a small
number of iterations (say 10). There are all possible com-
binations of leading singular eigenvectors in all modes, but we
only consider combinations of singular eigenvectors in the
same order. The procedure is summarized in Algorithm 1. Ba-
sically, complexity of the preselection is the same as that of the
ASU algorithm, i.e., [1]. Together with the selection
one among rank-1 tensors, the computational cost is at most

. We note that since ASU in each run in Step 3 exe-
cutes only a few iterations, the preselection, in general, is still
fast. Experiment results show that the procedure improves the
initial points, and thereby improves the obtained solution.
2) SVD-Based Initialization With Estimation of the Param-

eters : According to the orthogonal normalization, we can
initialize and by orthogonal vectors which are nat-
urally the leading left singular vectors of mode-n matriciza-
tions . For tensors which admit the CP decomposition, the
method works well. However, when the tensors do not fully
admit CPD, the method may be less efficient. Instead, we ini-
tialize with a singular vector and by the rest
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Algorithm 2: SVD Initialization with Estimation of Parameters

Input: Data tensor : , rank
Output: A rank-1 tensor and

begin
1 Initialize by singular eigenvectors of
2 Initialize
3

repeat
for do

4

5

until a stopping criterion is met
6 for do

ones where , , are
the first column vectors of for . Then we
suggest to seek parameters which can minimise
the approximation error

where is substituted by its optimum counterpart
[1], , , and is tensor of

the same size as but has only one entry , and zeros
elsewhere. As similarly to deriving in the ASU algorithm [1],
the optimum weight is given in closed-form as

(9)

where is the first entry of . Parameters
for are sequentially updated as

(10)

where , and

(11)

with . Note that .
Pseudo-code of the SVD-based initialization algorithm

is summarized in Algorithm 2. The initialization in Step 1
computes the left singular vectors of with complexity of

. The tensor computed only once in Step 3 is of size
with a cost of . Small loop (Steps 4 and

5) runs a few iterations, usually less than 4, with a low cost per
iteration of . Therefore, Algorithm 2 has complexity of

which is dominated by computation of the tensor .

Fig. 1. Illustration of the tensor diagonalization as tool for initialization of the
tensor deflation.

B. Initialization Using the Tensor Diagonalization (TEDIA)
An alternative initialization for the ASU algorithm consists

in utilizing the tensor diagonalization TEDIA [5]. TEDIA was
developed so far only for order-3 tensors. The method seeks
factor matrices , and as shown in Fig. 1 which trans-
form the tensor into a block diagonal tensor by minimizing
the sum of squared off-diagonal elements of the tensor

. By inspecting the diagonal and
corresponding off-diagonal coefficients, we can find suitable
components , and for the rank-1 tensor
where , and the rest components of , and for
the second block. Each iteration of the TEDIA algorithm costs

as the same fast ALS algorithm for CPD. In simulations
(see Section IV), the initialization by TEDIA alone looks costly,
but since it typically provides a better initial solution than the
other algorithms, TEDIA +ASU has the complexity comparable
to ASU with other initialization methods.

C. Initialization Based on Joint Eigenvalue Decomposition
In this section, we first introduce rank-1 deflation of two ma-

trices based on the generalized eigenvalue decomposition. The
method is then applied to tensors comprising only two slices,
compressed from the data tensor. For simplicity, the methods
will be derived for order-3 tensors, then extended to higher order
tensors. In addition, the components , and are used in place
of , , .
1) Rank-1 Deflation of Two Matrices:
Theorem 1: Two real-valued full-rank matrices and

of size can be simultaneously decomposed into

(12)
(13)

where and are eigenvectors associated with the same eigen-
value for matrix pencils ( , ) and ( , ),
and are matrices of size and have rank

.
Proof of Theorem 1 is in Appendix C.
2) Multiple Rank-1 Deflations of TwoMatrices: For deflation

of a tensor , one can use the Tucker decomposition to compress
the tensor to order-3 tensors consisting of only two slices,
e.g., 2, or , and apply Theorem 1 to the two
slices to obtain estimates of the components and matrices

. The tensor can be of lower order than . For simplicity,
we consider an order-3 tensor , and compress this tensor along
mode-3 to yield two frontal slices and of size

which share a common rank-1 matrix
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where and are of size , and ,
can be approximated by generalized eigenvectors ,

of matrix pencils and . For
real-valued tensors, there may not be any real-valued eigenvec-
tors. One can convert the complex eigenvalues to real 2-by-2
blocks on the diagonal using Matlab’s routine “cdf2rdf”. Even
when real eigenvalues exist, there may have multiple pairs of
eigenvectors ( , ) which are associated with the same
real eigenvalues. In order to select a good estimate to and , we
perform a further compression of along mode-2 (or mode-3)
and obtain estimates to and as eigenvectors ( , ).
Loading components are chosen such that

is most correlated with , that is .
Alternatively, one can perform three compressions to obtain

pairs of eigenvectors , and
, and select a good estimate to such that

(14)
Matrices , and can be computed as in proof of The-
orem 1, or using the method in Section II. Computational cost
of this initialization method is dominated by the compression of
the tensor of size to ones of two slices. This requires
a cost of order .
3) Joint Eigenvalue Decomposition-Based Initialization

(JEVD): The following initialization works with three com-
pressions of the original tensor , including of size

2, of size and of size 2
. We define matrices , for as

where and are two slices of the tensor .
As stated in Theorem 1, , and can be considered joint eigen-
vectors of matrices and , that is,

with , and , ,
and . It follows that we can find unit-length vectors ,
and as solution to the following minimisation problem

which can be simplified into

where , and
.

While fixing and , is solution to the eigenvalue problem

(15)

where
. That is is the eigenvector associated with the smallest

eigenvalue of the symmetric matrix . Similarly, we can iter-
atively estimate and as eigenvectors of the matrices and

For higher order tensors, are solved similarly as eigenvec-
tors of the matrices

(16)
where and

for .
The algorithm is summarized as Algorithm 3. Components
and matrices can be initialized by eigenvectors in

Section III-C2. The cost to construct the matrices of size
is substantially due to compressions of the tensor to

tensors of two slices for , which are
of order . For order-3 ten-
sors, we only need to construct three tensors , and

. Moreover, it is worth noting that the matrices and
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the terms are computed once before the iter-
ations in Step 2. Since matrices are of size , each iter-
ation to estimate in Step 3 requires an operation of .
Therefore, the total cost of JEVD is at most .

IV. DEFLATION OF TENSOR WITH ORTHOGONAL
FACTOR MATRICES

In this section, we present a special case of the rank-1 de-
flation for tensor decompositions with orthogonality constraints
in one or several factor matrices. In the CP tensor decomposi-
tions, the orthogonality constraints can be imposed onto com-
ponents in order to improve the stability of the decomposition,
and avoid diverging components [6], [12]. In decomposition of
received signals in a direct sequence code division multiple ac-
cess (DS-CDMA) system [13], spreading codes can be orthog-
onal. The constraint has found applications for analyzing EEG
signals [14], [15].
For simplicity, assuming that the decomposition seeks one or-

thonormal factor matrix, which is , i.e., .
From the orthogonal normalization, we have that is
an orthonormal matrix. That means , and thus,

. The weight of the rank-1 tensor and the core tensor
are then given by

(17)

A. Estimation of the Orthogonal Components and
In order to estimate and , the cost function which

minimizes the Frobenius norm between the tensor and its ap-
proximate

can be rewritten as

(18)

where , where . It
follows that is the eigenvector associated with the
smallest eigenvalue of , and is orthogonal
complement to .

B. Estimation of Nonorthogonal Components and
For other factors and with , since

the cost function (18) is simplified into

where . This yields the optimal parameter

(19)

Algorithm 4: ASU with Orthogonality in Mode-1

Input: Data tensor : , rank
Output: A rank-1 tensor and multilinear
rank- tensor
begin
1 Initialize components and

repeat
2

for do
3

4 ,

5
until a stopping criterion is met

6 Select as an orthogonal complement to
for do

7 Select as an orthogonal complement to

8 ,

The results can also be seen from the ASU algorithm after some
manipulations. Once again, we come to that and are so-
lution to the following optimization

(20)

Closed-forms for can be simplified

(21)

and is the eigenvector of the smallest eigenvalue of the ma-
trix .
The whole ASU algorithm for decomposition with one or-

thogonal factor matrix is summarized in Algorithm 4. Similarly
to the ASU algorithm [1], the matrices need not be con-
structed except the first components for .

V. CRAMÉR-RAO LOWER BOUND FOR TENSOR DEFLATION

In this section, we derive the Cramér-Rao Lower Bound
(CRB) for the rank-1 plus multilinear rank-( )
block tensor decomposition. We will assess the loss in accuracy
of the tensor deflation by comparing its CRB with the similar
bound obtained for the ordinary CP decomposition.
We consider the data model

(22)

where the deterministic part is

(23)

and represents an error tensor which has i.i.d. normally dis-
tributed elements with zero mean and variance . In the CP
decomposition, is spatially diagonal and are arbitrary;
in the tensor deflation does not have any structure but
are orthogonal.
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For now, the number of the estimated parameters is too high
and the decomposition is not unique. Therefore, as in deriving
the ASU algorithm, we perform reparameterization

, where are unit-length vectors,
and are orthonormal matrices for . The
tensor will be replaced by its maximum likelihood estimate

(24)

We follow the approach of [16] to derive the CRB from the
so-called concentrated log-likelihood function. Inserting (24)
into (23) we get

(25)

Considering that and ,
the total number of parameters is reduced to .
The parameters are listed as elements of a vector parameter

(26)

The parameter obeys the constraint

...

...

(27)

The constrained Cramér-Rao bound on [17], [18] is given by

(28)

where is an orthonormal complement matrix whose vec-
tors span the null space of the Jacobian matrix of the constraint
functions with respect to , and is the Fisher information
matrix

(29)

where is the Hessian matrix of the error function
with respect to . Expressions of the matrix elements of

are given in Appendix D, whereas derivation of the orthogonal
matrix appearing in (28) is summarized in Appendix E.
Now, CRB on and the Cramér-Rao Induced

Bound (CRIB) on squared angular errors (SAE)1 of can be
computed as [7]

(30)
(31)

1Squared Angular Error between two vectors and is defined as
, and (SAE) in dB.

where represents the Jacobian matrix of the function

. . . . . . . . . . . .

(32)
The CRBs in (28), (30) and (31) derived in this paper not only

serve for assessing performance of the block tensor decomposi-
tion, but also provide error bound for extraction of components
of a rank-1 tensor in the CP decomposition. For the case when
components are orthogonal to , i.e., , the CRB
should be derived with simplified constraint functions. Compar-
ison between the CRBs derived for tensor deflation and CPD
using the method developed in [7] shows that there is no signif-
icant loss in accuracy using our tensor deflation approach.

VI. SIMULATIONS

Example 1 Loss of Accuracy in Tensor Deflation Compared
With CPD: This example compares CRB on extracting a rank-1
tensor in the tensor deflation with the CRB of this rank-1 tensor
in CPD. The loss of accuracy in estimation of components will
be shown as the difference between two similar CRBs for tensor
deflation and the ordinary CPD.
The tensors in this analysis are of size and of

rank where . The weight coefficients are set to
1, whereas collinearity degrees between components and

for all are identical to a specific value , which is
varied in the range , and
for all . Appendix F presents a method to generate the factor
matrices .
The parameter between a component and the rest

columns of is a function of and defined as (see
proof in Appendix G)

(33)

In Fig. 2(a), we compare the Cramér-Rao Induced bound
(CRIB) [7] on the squared angular error (SAE) in dB, i.e.,

, of components , and the CRIB in (31). The
CRBs are shown when the Gaussian noise is at .
The two CRB curves are almost overlapped for all , and

both imply that decomposition becomes difficult, when is
close to 1, i.e., is highly correlated to the other components,
and easier when approaches 0, i.e., components are mutually
orthogonal.
The loss of accuracy in estimation of components using

the tensor deflation is shown in Fig. 2(b) for various ranks .
The loss is small when , but it tends to be high when
is closed to 1, and the rank is small. Nevertheless, the curves
reveal that the differences between two similar CRIBs were less
than 0.1 dB and insignificant. Note that the loss is independent
of the noise level.
Similar curves which compare the squared angular error of

the ASU algorithm and Cramér-Rao bound on this error are
shown in Part I [1].
Example 2 Loss of Accuracy in Tensor Deflation When Com-

ponents are of Different Magnitudes: This example shows an-
other comparison between CRIBs for tensor deflation and CPD
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Fig. 2. Comparison of CRBs for CPD and tensor deflation on squared angular
errors of components . (a) CRBs are illustrated as function of collinearity
degree varying in the range . Tensor size and 20.
(b) Loss of the squared angular error in (dB) as the difference between CRIB
for tensor deflation in (31) and the similar bound for CPD in [7]. (a) SAE vs .
(b) Loss of .

[7]. Similarly to the previous example, components have
identical collinearity degree . However, their
magnitudes are different and take values as for

.
The two CRIBs for CPD and tensor deflation are shown in

Fig. 3 when . Again the bounds are almost iden-
tical. Components of rank-1 tensors with large are easier to
extract than ones with smaller weights. The loss of squared an-
gular error using the tensor deflation does not exceed 0.07 dB.
Example 3 Comparison of the Initialization Algorithms:

This example aims to verify efficiency of various initialization
methods, including the random initialization, the SVD-based
method with seeking parameters and preselection in Algo-
rithm 2, the tensor diagonalization tool (TEDIA) [5], and the
JEVD method in Algorithm 3. For the random initialization,
for each decomposition, we randomly generate 10 sets of initial
points, and select the one achieving the lowest approximation
error after passing through the ASU algorithm with a small
number of iterations (say 10). Simulations were run on a
computer consisted of Intel Xeon 2 processors clocked at 3.33
GHz, 64 GB of main memory.
The simulations are similar to those in Example 1 in Part I

[1]. The tensors of size were randomly generated,

Fig. 3. Comparison of CRBs for CPD and tensor deflation on squared angular
errors of components whose associated weights are .

and corrupted by additive Gaussian noise at specific signal-
to-noise ratios SNR (dB)

(34)

where are matrices of size with orthonormal
columns, is a zero-mean, unit-variance normal measurement
error, and denotes the noise variance. The tensors were nor-
malized to have .
For this example, we used the ASU algorithm [1]. Compar-

ison of performance of algorithms is shown in Part I [1]. The
ASU algorithm ran until differences between consecutive ap-
proximation errors were small enough,
where , or when the number of iterations ex-
ceeded 1000. Performances were assessed through SAE in es-
timation of components . There were 100 independent runs
for each setting of rank and SNR, and

.
Fig. 4 illustrates box-plots of the squared angular errors in

dB of the estimated components . Each box represents the
median (central mark), 25th and 75th percentiles, and outliers.
The average Cramér-Rao induced bounds on the angular errors
over independent runs are shown as horizontal lines in Fig. 4.
The results indicate that when purely initialized by multiple

random points, ASU failed in most test cases even for low noise
levels, e.g., . Similar observation was also re-
ported for the block component decompositions using random
initialization in [4]. Performances of algorithms were much im-
proved when the components were initialized using SVD-based
algorithm, JEVD and TEDIA. Except for the case using the
random method, the SAEs achieved the average Cramér-Rao
bound on the angular error.
Regarding running times, computing leading singular vectors

was very fast, which took less than 0.02 seconds. In companion
with the estimation of parameters and pre-selection using
ASU, the SVD-based initialization method in Algorithm 2 on
average took 0.22, 0.33 and 0.67 seconds when and
30, respectively. The JEVD method was slightly faster. For ex-
ample, this initialization took an average 0.53 seconds when

. A full graphical comparison of running times between
initialization methods can be seen in Fig. 5. The random initial-
ization was always simple and fast, but did not generate good
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Fig. 4. Box-plots of the squared angular error achieved by algorithms using four different initialization methods: 1 – multiple random initial points, 2- leading
singular vectors for plus estimation of parameters , 3-JEVD, 4- TEDIA. Tensors are of size where , 20 and 30. CRIB represents
the Cramér-Rao induced bounds on the squared angular errors (SAE), which were averaged over 100 independent runs. Each box represents the median (central
mark), 25th and 75th percentiles, whereas the outliers are marked with red crosses “ ”. (a) . (b) . (c) .

Fig. 5. Comparison of execution times of the ASU algorithm using different
initialization methods for Example 3. Initialization methods are numbered as:
1- multiple random initial points, 2- leading singular vectors for plus
estimation of parameters , 3-JEVD, 4- TEDIA. (a) . (b) . (c)

.

initial points. Using this initialization, ASU as well as other al-
gorithms often did not converge to the desired solution with in
the prescribed maximum number of iterations (1000). However,
this algorithm converged quickly after approximately 0.02 sec-
onds with other initialization methods.

Fig. 6. Performance of the parallel rank-1 extraction (Par-R1Ext) and sequen-
tial rank-1 extraction (Seq-R1Ext) with orthogonality constrains in one mode
in Example 4. Results for Par-R1Ext are shown for ,
respectively, whereas results for Seq-R1Ext for , respec-
tively. The color intensity indicates the SNR level.

1) Example 4 Rank-One Extraction With Orthogonality Con-
strain in One Mode: In this example, we verify the algorithm
in Section IV for deflation of tensors whose one factor ma-
trix is column-wise orthogonal. Three way tensors of size

were generated from random factor matrices
of size , in which was an orthonormal matrix. The
tensors were then corrupted with additive Gaussian noise of
signal-to-noise ratio , where de-
notes the noise variance, and is the Frobenius norm of
. The decompositions were executed over 100 independent

runs for each tensor rank and each noise
level . Parameters of the defla-
tion were initialized using the Direct Trilinear Decomposition
(DTLD) [10] without preselection. That is, we did not choose
the best rank-1 tensor among rank-1 tensors generated by
DTLD, which yields the smallest approximation error after a
small number of iterations. Instead, each rank-1 tensor was as-
signed to the first block. Thereby, the deflation was proceeded
with different initial values. In Fig. 6, the method is labeled
by “Par-R1Ext”, while Seq-R1Ext denotes the sequential rank-1
deflation. The mean on
estimation of components were compared in Fig. 6. For most
cases, the MSAEs (dB) achieved with Par-R1Ext were only
slightly worse than those by Seq-R1Ext. The results indicate
that we can accurately retrieve all components of the tensors
using different initial points.
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VII. CONCLUSIONS
We have proposed several initialization methods for the

rank-1 tensor deflation, and verified their efficiency and perfor-
mance. The SVD-based initialization method works efficiently
when accompanied by the preselection. Although the computa-
tional cost of this procedure is , this initialization is
still fast because the preselection is performed by running the
ASU within a small number of iterations (e.g., 10). The JEVD
initialization works well, and has relatively low complexity
of order which is dominated by the tensor com-
pressions, while the core implementation requires a cost only

. TEDIA is an alternative to the SVD-based and JEVD
initializations.
Together with good initialization algorithms, we have shown

that there is no significant loss of accuracy in estimating rank-
tensors using our tensor deflation methods compared with the
ordinary CP decomposition. The loss in squared angular error
was at most 0.1 dB for difficult scenarios when components
were highly collinear despite the noise ratio.
Finally, the initialization methods, CRLB as well as the

ASU algorithm for tensor deflation are implemented in the
Matlab package TENSORBOX which is available online at:
http://www.bsp.brain.riken.jp/ phan/tensorbox.php.

APPENDIX A
PROOF OF LEMMA 3

In order to derive expression for in Lemma 1, we introduce
the following results.

Lemma 3: Given a tensor which has an exact CPD or
rank-1 plus multilinear rank- BTD in (1). If a
rank-one tensor of is uniquely identified
then for arbitrary orthogonal matrices that span the row
space of

(35)

where .
Proof: For simplicity, the proof is given for order-3 ten-

sors in block term decomposition. Mode-1 matricization for the
exact decomposition for order-3 tensors in (1) shows that

(36)

where is a full-rank matrix. Since we have assumed
that , and are uniquely identified, and spans the
row space of , there exists a vector such that

(37)

Since , we have
and . Thereby,

(38)

Corollary 1: Assuming that has a full column rank,
then

(39)

Proof: Since is the projection
matrix onto the subspace spanned by the rows of , we

can replace in (35) by , and
rewrite the expression using the new notion to obtain (39).

Proof of Lemma 1: When the rank-1 tensor is
given, are orthonormal basis of column spaces of mode-
matricizations of the tensor or column spaces
of matrices

(40)

with . For the exact case, is selected such that

ranks of the matrices or
are reduced by 1. This implies that is a solution to equations

where are quadratic polynomials given by

(41)

where are matrices of size 2
2, , and

.
According to (39), we have

Thereby, , or

(42)

giving us closed-form expression in (5).

APPENDIX B
PROOF OF LEMMA 2

Proof: Multiplying along mode-1 both sides of
with

(43)

we get
(44)

since . Consider the Frobenius norm of the differ-
ence between the two sides of (44) which achieves zero for the
exact decomposition
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It is straightforward to see that is root of the above
function since and

From (43), we obtain . Since is a
unit-length vector, this vector takes the form

(45)

and can be derived from

(46)

which yields the optimal as in (7). Similarly, the expressions
(6) and (7) hold for other . When given and
, the vectors are computed from (2).

APPENDIX C
PROOF OF THEOREM 1

Proof: Since , and
are similar, and have the same eigenvalues

Hence, and with , are left and right
eigenvectors of the matrix . Let be an orthogonal
complement to , we define a matrix of size

whose inverse is given by

It is obvious that

where is of size
, and has rank- . It follows that

(47)

which indicates that can be split into a rank-1 matrix com-
posed by generalized eigenvectors , and a rank-

term.
Next, and can be chosen arbitrarily as orthonormal basis

vectors of the column and row space of the second term in (47)
or of the matrix . The matrices are then normal-
ized to be orthogonal to and , respectively, i.e.,

, where
and .

APPENDIX D
THE FIM IN (29)

Consider the error function

(48)

The Hessian of the error function with respect to is evaluated
at , i.e., when the tensor-valued function inside the
Frobenius norm in (48) goes to zero. For such case, the Hessian
is given by

(49)

where is the Jacobian of the tensor-valued function
with respect to and evaluated when .
The Hessian of size

is given in block form as

(50)

where is an parti-
tioned matrix of submatrices of size ,

is a partitioned matrix of
of size 2, , are of size 2 2,

is of length ,
and

(51)
where .
The element sub-matrices to construct the Hessian , i.e.,

, are given by
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where , and

where is the first column of , i.e., the fiber of the tensor
along mode- with all other indices , ,

is the slice of along modes and with all other indices
, .

APPENDIX E
JACOBIAN OF THE FUNCTIONAL EQUALITY CONSTRAINTS AND

ITS ORTHONORMAL COMPLEMENT

The Jacobian matrix of the constraint functions in (27)
is given in block form as

(52)

where constructs a block diagonal matrix, and

(53)

We define a matrix of size as

(54)

where takes the last columns of .
It is straightforward to see that forms an orthonormal
matrix of size

Therefore, we can chose the orthogonal basis matrix of
size as follows

(55)

APPENDIX F
GENERATION OF MATRIX WITH SPECIFIC

COLLINEARITY DEGREE

This appendix presents a method to generate a randommatrix
of size with whose collinearity degree between

columns are identical to a specific value , that is

(56)

We define a matrix of size as

. . . . . .
... (57)

where , ,
for . It is obvious to see that

, because

Now with an arbitrary orthogonal matrix of size ,
, the matrix satisfies the condition in

(56).

APPENDIX G
RELATION OF COLLINEARITY DEGREE AND

PARAMETER IN EXAMPLE 1
We consider a matrix of size with
and for . is the first column, and comprises

the last columns of . Since

the first eigenpair ( ) of the matrix ,
is given by

(58)

the rest eigenvalues of are identical

(59)

and can take arbitrary orthonormal
basis of orthogonal complement to , i.e., .
This gives us singular value decomposition of the matrix

(60)

where of size . We denote by a unit-length
vector of orthogonal complement to , i.e., forms an
orthonormal matrix of size . The vector can be always
expressed as linear combination of

(61)

where is a vector of length . Since
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we obtain

(62)

indicating that

(63)

Therefore, for Example 1, the parameter defined for and
the rest columns of is given by

(64)
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