Journal of Environmental Radioactivity 164 (2016) 377—394

Journal of Environmental Radioactivity

journal homepage: www.elsevier.com/locate/jenvrad

Contents lists available at ScienceDirect

Inverse modelling for real-time estimation of radiological
consequences in the early stage of an accidental radioactivity release

Petr Pecha”, Vaclav Smidl

@ CrossMark

Institute of Information Theory and Automation of the Czech Academy of Sciences, v.v.i, Pod Vodarenskou vezi 4, 182 08, Prague 8, Czech Republic

ARTICLE INFO

ABSTRACT

Article history:

Received 8 October 2015
Received in revised form
14 May 2016

Accepted 19 June 2016

Keywords:

Radioactivity release
Assimilation of measurements
Ill-posed inversion problem
Measurement noise

Urgent emergency

A stepwise sequential assimilation algorithm is proposed based on an optimisation approach for
recursive parameter estimation and tracking of radioactive plume propagation in the early stage of a
radiation accident. Predictions of the radiological situation in each time step of the plume propagation
are driven by an existing short-term meteorological forecast and the assimilation procedure manipulates
the model parameters to match the observations incoming concurrently from the terrain. Mathemati-
cally, the task is a typical ill-posed inverse problem of estimating the parameters of the release. The
proposed method is designated as a stepwise re-estimation of the source term release dynamics and an
improvement of several input model parameters. It results in a more precise determination of the
adversely affected areas in the terrain. The nonlinear least-squares regression methodology is applied for
estimation of the unknowns. The fast and adequately accurate segmented Gaussian plume model (SGPM)
is used in the first stage of direct (forward) modelling. The subsequent inverse procedure infers (re-
estimates) the values of important model parameters from the actual observations. Accuracy and
sensitivity of the proposed method for real-time forecasting of the accident propagation is studied. First,
a twin experiment generating noiseless simulated “artificial” observations is studied to verify the min-
imisation algorithm. Second, the impact of the measurement noise on the re-estimated source release
rate is examined. In addition, the presented method can be used as a proposal for more advanced sta-
tistical techniques using, e.g., importance sampling.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Measured and calculated doses/dose rates of external irradia-
tion induced by radioactive cloud propagation are basic inputs to
the objective analysis of the data assimilation (DA) techniques. The
aim of DA is modification of the internal parameters of a dispersion
model in order to obtain a good fit of the model predictions with
observations incoming from the terrain. The task is solved as an
inversion problem when the values of certain model parameters
must be refined inversely from the observed data. The inversion of
the original forward problem is a valuable tool for improvement of
the important model parameters, primarily for the source strength
re-estimation and the parameters controlling the recursive tracking
of the plume progression at small distances from the source. Source
term analysis based on operational conditions can occasionally be
impossible due to the potential blackout of a nuclear power station,
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in which case the inverse modelling based on the radiation moni-
toring becomes a sole solution. The uncertainty in the source term
dominates among all other uncertainties of an accidental release
scenario. Estimated radiological values can differ from the true ones
by a factor of 10 or more. Proper re-estimation can significantly
contribute to more accurate localisation of the most impacted areas
in the terrain. In principle, the assimilation procedures require the
most accurate data possible, to be obtained from measuring devices
(sensors) located on the terrain around the perimeter of a nuclear
facility and an additional network of the measuring devices at outer
distances (fixed stations, apparatus deployed temporarily on
terrain in case of emergency, monitoring vehicles, aerial monitoring
and other possible unmanned aerial vehicles).

We have examined the inversion problem for the category of
parameter estimation where the system characteristics are inferred
from the experimental data. Inverse problems are often mathe-
matically ill-posed (improperly posed) due to an information
deficit (e.g., http://www.waterloo.ca, Kabanikhin, 2008). It is called
an inverse problem because it starts with the effects and then
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calculates the causes. This is the inverse of the original forward
problem, which starts with the causes and then calculates the ef-
fects. The solution of an ill-posed problem is often not unique and
gives rise to instability with respect to measurement errors or small
changes in the data. When sufficiently informative measurements
are available, the inversion step typically provides a unique solu-
tion. However, this is not guaranteed for extreme cases of the
parameter correlations. Only their ratios and not their individual
values can be determined then.

An overview of the assimilation methods capable of solving the
inverse modelling task is given in Chapter 3. Section 3.1 provides a
motivation for simple data assimilation from the perspective of
advanced statistical assimilation techniques. A dispersion model
can provide predictions for multiple (Monte Carlo) runs of the
pollution trajectories. The likelihood of the trial for different
parameterisations of the dispersion models (e.g., source term, wind
velocity vector, potential precipitation, etc.) can be summarised in
the form of the posterior probability distribution. The methods for
nuclear source estimation are summarised, e.g., in (Rao, 2007).
Some specific applications are examined using the inverse model-
ling technique which is widely defined (Rao, 2007) as any tech-
nique used for identifying the source from the corresponding
category of measurements (e.g. dose rates). Targeting of observa-
tions using the inverse modelling technique is presented in (Abida
and Bocquet, 2009) with a design strategy to seek the optimal
location of mobile monitors. A semi-automatic method based on
inverse modelling, proposed in (Winiarek et al., 2011), is designed
for assessment of a newly planned surveillance network covering
large observational errors and analysing outlying situations where
the inversion could fail. The source reconstruction of an accidental
radionuclide release on a continental scale is examined in (Krysta
and Bocquet, 2007) where a generalised classical variational
least-squares assimilation technique is tested on a set of TWIN
experiments. The authors stated that a truly successful three-
dimensional inversion is still far out of reach using existing com-
puter capability.

Several remarkable articles deal with the latest experience with
the Fukushima accident. In (Saunier et al., 2013) the inverse
modelling procedure is combined with an attempt at reconstruc-
tion of the isotopic composition of the discharge. Examination of
the emissions of two isotopes into the atmosphere, the noble gas
133%e and the aerosol-bound *’Cs, was accomplished in (Stohl
et al, 2012). The first guess was subsequently improved by in-
verse modelling, which combined the results of an atmospheric
transport model FLEXPART with measurement data from several
dozen stations in Japan, North America and other regions. An
application to the real nuclear disaster of the Fukushima Daiichi
plant is presented in (Winiarek et al.,, 2012). An efficient inverse
modelling method is proposed there to reconstruct the Fukushima
Daiichi source from the long-range transport data. The max-
imisation of the likelihood of publicly released measurements of
the air activity concentration of radionuclides was applied.
Following these top scientific activities we have obtained experi-
ence in the field. The assimilation subsystem (ASIM (2013)) in
conjunction with the probabilistic version of the segmented
Gaussian dispersion model SGPM has been developed and the first
applications addressing the advanced Particle Filter (PF) were
tested (e.g., Pecha et al., 2009; Smidl et al., 2014). The high
computational cost of the Monte-Carlo techniques can be signifi-
cantly reduced when an optimisation-based first guess is used to
design the proposal function (Smidl and Hofman, 2014). In this
paper, we propose an optimisation approach for the SGPM.

In Section 3.2 of this article, we propose a nonlinear least-
squares regression scheme which optimises the agreement be-
tween the measured values and model prediction. Computational

efficiency of the SGPM enables generation of results in real-time
mode. The use of nonlinear regression analysis for integrating
pollutant concentration measurements with an atmospheric
dispersion model for source term estimation can be found in
(Edwards et al., 1993). The inverse model as a nonlinear least
squared estimation is presented in (Kathirgamanathan et al,
2003a) where an attempt to stabilise the ill-posed minimisation
problem is described. A certain extension of the dimension of the
input parameter vector entering the minimisation approach is
examined in (Kathirgamanathan et al., 2003b). In the paper (Gab-
Bock Lee et al, 2013) the measured air dose rates from the
Fukushima accident are compared with the same values calculated
by the optimised estimation using nonlinear minimisation. An
extension of analysis on the measurement errors is given in Section
4.4.3. An extensive simulation experiment covers 1196 sets of the
randomly perturbed measurements, each set for all 84 sensors on
the terrain, is described in Section 4.4.4.

2. Prediction of random output fields using parametrised
dispersion model SGPM

We have adopted a special modification of the dispersion model
with the acronym SGPM based on the segmented Gaussian plume
model. It can account approximately for dynamics of the released
discharges synchronised with the short-term forecast of the hourly
(half-hourly) changes of meteorological conditions. This model is
able to describe the random nature of the problem and simulate the
uncertainty propagation of the input model parameters. The
distinction between variability and uncertainty of a certain input
parameter is taken into account. Variability reflects changes of a
certain quantity over time, over space or across individuals in
population. Variability represents diversity or heterogeneity in a
well-characterised population. The term “uncertainty” covers sto-
chastic uncertainties, structural uncertainties representing partial
ignorance or incomplete knowledge associated with the lack of
perfect information about poorly-characterised phenomena or
models, uncertain (ill-defined) release scenario or input model
uncertainties. For purposes of the assimilation procedures, the
sampling of fluctuations of input parameters repeatedly entering
the SGPM model is internally driven by the algorithm for optimi-
sation of the corresponding cost function.

In the following text, the upper case symbols are related to the
random variables and lower case symbols stand for the actual
values generated from the corresponding random distributions.
The vector ® of M random input model parameters ®, can be
schematically written as:

0=[01,0,,..0y" (1)

Their specific realisations are generated with a corresponding
sequence of random distributions Dy, Dy, ..., Dy; which are usually
formulated on the basis of consensus among experts (range, type of
distribution, and potential mutual dependencies). The model pa-
rameters usually have a physical meaning, such as the amount of
discharged radioactivity, atmospheric stability characteristics,
dispersion parameters, uncertainties related to dry and wet radio-
activity fallout, wind field components, etc. The input parameters
enter the SGPM model, which generates dispersion outputs sub-
mitted for further processing in the subsequent parts of the envi-
ronmental model. Specifically in our case, the SGPM model is
nested inside the environmental program system HARP (online
access in (HARP, 2013)). The HARP system addresses all resulting
meaningful output entities X;j being subject of interest, which can
be formally collected into the output vector 4 with components X;,
j =1, ..., J. The multidimensional output A(t) related to the time t
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can be expressed according to the scheme:

HARPSPM(@,,0,, ..., Op: t) = A(t)
= [X1(6), X2(0), ... X;(0), ... X; ()] )

Jis the total number of the resulting outputs. Xj(t) can be each of the
conceivable examined entities, such as spatial fields of radioactivity
deposited on the ground for each individual nuclide, doses and
dose rates on the terrain from cloudshine, groundshine and inha-
lation, distribution of various ingestion doses in the later phase of
an accident, etc. The symbol = expresses a nonlinear numerical
procedure of the output generation. The random variable X; is
represented as a discrete field of the respective entity j in each node
i of the polar calculation grid. The computational polar grid around
the potential source of pollution consists of 42 radial distances up
to 100 km and 80 angle sectors. Then the dimension of the field X; is
I, where I = 42 x 80 = 3320 (number of the calculation nodes i of
the polar grid). Due to their stochastic character, the true quantities
of the output vectors

X;(t) = X;(01,0,, ..., Op: ) (3)

are unobservable and can only be estimated using a probabilistic
approach based on Monte-Carlo modelling. The sampling-based
method consists of a successive multiple repetitive modelling of
the output fields Xj, always for each specific sample of the random
input vector (1), specifically:

1. Generation of the particular n-th sample of the input vector 6
=6}, ..., 0%, ..., 0% |¥, where component 6% stands for the n-th
realisation of the m-th input random parameter ©,.

2. Propagation of the sample n through the model. It means sub-
stitution of @ " into (2) and calculation of the corresponding n-th

realisation x]'.' of the random output entity Xj as:

HARPS ™ (67, .., O, ... Oys £) = K01 (£) (4)

The adopted scheme of Monte-Carlo modelling uses the strati-
fied sampling procedure LHS (Latin Hypercube Sampling) for
generating the random samples. Common experience has shown
that 1/3 iterations are typically required to get results equal to or
better than the equivalent amount of crude Monte-Carlo iterations.
Moreover, LHS avoids the extreme values and prevents the intro-
duction of a bias provided the total number of simulation runs
should be a multiple of the number of quantiles. LHS can produce
good estimates of the mean and variance of the output distribution
with significantly fewer simulations than a simple random sam-
pling. The code HARP stands for an interactive subsystem for
generating N LHS samples for various types of random distributions
Dy, of the components @, for the vector of input parameters 0. The
resultant mapping of the pairs of vectors is arranged into the
scheme:

0"} (5)

where x! is a vector representing the particular n-th realisation
(maybe imagined as a trajectory of pollution on the terrain) of the
output entity X; relevant to the n-th realisation of input parameter
vector @ " = [67, ..., 0%, ..., 0% |". The vector xj!‘ has the dimension
I = 3320 corresponding to the extent of the computational polar
grid. Provided that the value of the Monte-Carlo samples N is suf-
ficiently high (~several thousand), the expression (5) provides the
proper bases for:

— Uncertainty analysis (UA) — statistical processing of the pairs (5)
can determine the extent of the uncertainty on predicted con-
sequences and yield various statistics, such as sample mean and
variance, percentiles of the uncertainty distribution on the
quantity given, uncertainty factors, reference uncertainty co-
efficients, etc.

— Sensitivity analysis (SA) — identification of the model inputs that
cause significant uncertainty in the output and/or screening of
the model inputs that have negligible effect on the output with
the aim to determine simplification and reduction of the
computational burden. Various techniques for different mea-
sures of sensitivity are introduced (scatterplots, regression and
correlation analysis, rank transformations, etc.).

— Data assimilation (DA) — provides data (5) for the trajectory
simulations and estimation of the covariance structure of the
model errors. The final goal is extraction of information from
both the observations and prior knowledge to obtain reliable
estimates.

For better understanding, let entity j1 stand for the radioactivity
deposition of a certain radionuclide on terrain at time t. The
discrete spatial distribution x%,(t) can be visualised in 2-D as the
particular n-th trajectory (trace) of the radioactive plume propa-
gation. Similarly, the sum of cloudshine plus groundshine dose
rates from a mixture of all discharged radionuclides (labelled, for
example, as entity j2) forms the particular n-th trajectory XJFZ (t)
which can be directly confronted with the same type of the dose
rate values incoming from the monitoring networks. Our experi-
ence was published in (Pecha et al., 2009).

3. Data assimilation — a way from model to realistic
predictions

The mathematical model remains only a simplification of the
complex physical phenomena, and a significant extent of the un-
certainties involved can degrade credibility of the model pre-
dictions. Our models merely approximate the complicated real
situation during an accidental radioactive release. The simplifica-
tions occur on levels of both conceptual and computational model
selections. Nevertheless, experience accumulated with respect to
physical models of pollution propagation through the living envi-
ronment provides us with valuable prior knowledge. Stochastic
character of the task calls for introduction of assimilation tech-
niques, which ensure improvement of the model towards reality.
From a general view on assimilation, the data assimilation pro-
cedures should accomplish an optimal blending of all information
resources, including prior physical knowledge given by the model,
observations incoming from the terrain, past experience, expert
judgment, and possibly also intuition (Talagrand, 1997; Kalnay,
2006). Merging of all of these contending resources for purposes
of improving our predictions is a principle of the DA. The assimi-
lation to observation algorithm lead to a generalised least-squares
approach minimising a measure (proper cost function) of differ-
ence between the available information and the system state.
Either advanced statistical assimilation procedures or a simpler
optimisation approach described here can be classified such as the
methods for solving the inverse problem.

According to the DA methodology, the general state-space
formulation in the continuous time domain is in practice
substituted by filtering in discrete time. Consequently, we consider
the time evolution of the states as a sequence { Xy}k—1, ... k- The true
unobservable vector X related to the time t = ti is given by (3)
where the index j is, for simplicity, omitted. We assume that the R-
dimensional vector of measurements yy is obtained during the time
interval <ty.;; ty>. The proposed analysis takes into account errors
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of both the model predictions and the real observations from
terrain (Kalnay, 2006; Ristic et al., 2004). Specifically, we treat these
errors as mutually uncorrelated. Let there be R receptor points on
the terrain where the respective output values are measured. The
formulation in the discrete time domain assumes the observation
vector:

v A (6)

where values y', are the measurements at points r in the time
interval < ty.1; ty >. Generally, the number of receptors is much
lower than the number of the calculation nodes I and we encounter
a problem with rare measurements. Positions of the sensors
generally differ from the points of the calculation grid. We shall use
terminology from data assimilation and introduce the observation
operator H, especially its linear observation matrix H. His an R x I
matrix that transforms vectors x; from the model space (having
length I) into the corresponding vector X;, in the observation space
(having length R) according to the matrix notation

}}k :H'Xk (7)

Components X;, of the vector X, represent the model predictions
interpolated at the positions of observationsr = 1, ..., R.

3.1. Advanced statistical formulation of the general assimilation
problem

The problem of data assimilation can be approached by either
variational or sequential algorithms. The variational methods seek
the initial condition such that the forecast best fits the observations.
The advanced representative in the field, the 4D-Var variational
inverse modelling technique, searches for the initial conditions of a
model such as to minimise a scalar quantity, known as the cost or
penalty function. While the variational techniques proceed by the
global fitting of an assimilating model to the available information,
the sequential assimilation (filtering) involves a statistical mini-
mum mean squares error estimation approach. The sequential
methods use a probabilistic framework and give estimates of the
whole system state sequentially by propagating information for-
ward in time.

The analytical form of the posterior density is intractable and
obtaining an exact solution from it is often difficult or impossible.
Instead of solving the Bayesian recursive filter analytically, the
posterior probabilities are substituted by a set of randomly chosen
weighted samples (trajectories). Several alternative modifications
of the Monte-Carlo methods were introduced for sampling from
the posterior distributions of the system state. An overview of the
proper Monte Carlo methods is given in (Andrieu et al., 2010). The
sequential Monte-Carlo (SMC) and Markov-Chain Monte-Carlo
(MCMC) methods proved to be efficient tools for sampling from
high-dimensional probability distributions for non-Gaussian and
nonlinear models. These algorithms facilitate sequential approxi-
mation of posterior probability densities and marginal likelihoods
sequences, thus enabling inference in the state-space models.

The popular particle filtering (PF) - also known as sequential
Monte Carlo - generates samples from the current state trajectory
(“particles”) and uses the re-sampling procedure to prevent the
sample impoverishment problem (e.g., Doucet et al., 2001; Kalnay,
2006; Andrieu et al., 2010; Ristic et al., 2004). This approach has
been used in Smidl et al, 2009a) and Hofman et al., 2009 for
Gaussian puff models. The capability of the segmented Gaussian
plume model SGPM to effectively generate the multiple random
realisations (trajectories) was verified (Pecha et al., 2009, Hofman
and Pecha, 2011). Application of the PF technique to examination

of detection abilities of the monitoring networks using multiple
assessment criteria is treated in (Smidl et al., 2014).

3.2. Nonlinear regression analysis as a tool for integration of
observations with the model predictions

The maximum likelihood approach is often used as a compu-
tationally efficient first approximation of the full Bayesian treat-
ment of the problem (Smidl and Hofman, 2014). The assimilation
techniques can be classified either as a non-parametric approach,
where large spatial fields are processed and adjusted, or as a
parametric access (Winiarek et al., 2011). We follow the parametric
approach and optimise the selected model parameters in order to
reach the best correspondence of the model prediction to the ob-
servations measured in the terrain. The implied maximisation/
minimisation problem is complicated by the fact that the para-
metric segmented Gaussian plume model SGPM (2) is nonlinear.

The model SGPM provides generation of the n-th sample of the
background vector x;, belonging to a certain set of input parameters
67, ..., 6%, ..., 6% according to scheme (4); these parameters are
modified for the discrete time domain k as:

HARPSCPM (g7 6 ... Oy; k) = &] (8)

The probabilistic version of the SGPM algorithm is adapted for
the minimisation procedures. The procedure BCPOL from the IMSL
library is initially tested; in each iterative step p it internally pro-
vides a new set of the minimisation parameters (677, ..., 0, P, ..., Oy
Py, which are passed through the SGPM model to the enumeration
(9). The previous scheme (8) is formally rewritten as:

HARPSCPM (68 . 0b . ... 0% k) =xP 9)

Number M of the input parameters is rather high (up to several
tenths) and for practical purposes only S of them are treated as
random. The rest of them are deemed fixed and represented by
their best estimated values labelled by the index best. The input
parameter vector (1) is then split to:

@E[@],@z,.,.,@5,02?{,...,0bMeSt:|T (10)
In other words, a certain number S of selected problem-
dependent optimisation parameters ®; ©,, ..., Os are then
considered to be uncertain and subject to fluctuations within a
specific range. In the next step, a loss function Fis constructed using
the assumption of the Gaussian-distributed measurement errors as
a sum of squares differences at the measurement points between
the values of model predictions and values observed in terrain:

=R
F(OR, ... 0B:k) = > (Rg (6. .....08) —y})° (11)

r=1

<

X}, r = 1, ...,R are components of the vector of model predictions
transformed by Equation (7) into the observation space. The chosen
minimisation algorithm searches for a minimum of the scalar
function F of S parameters (6, ..., fs) starting at an initial “best
estimate”. At a glance, the test points (63, 6>, ...., fs) of the objective
function F are arranged as an S-dimensional simplex, and the al-
gorithm tries to iteratively replace individual points with an aim of
shrinking the simplex towards the best points. The minimisation
algorithm controls the procedure until the best fit of modified
surface with observation values is reached. The procedure con-
tinues for the next time domain k + 1, ..., K. An important feature of
the method is the preservation of physical knowledge, because the
new set of parameters (; P*1, 6 , P+1 . 05 P+1) evaluated by the
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minimisation algorithm always re-enters the entire nonlinear
environmental model HARPS®™ according to Equation (9).

The commonly used Nelder-Mead (NM) simplex method of
heuristic direct search minimisation was tested for some basic
scenarios of accidental harmful discharges. The objective multidi-
mensional function F of S variables given by (11) subjected to
bounds is minimised starting at the initial best guess
F(62%t, ... 65!). The constraints are put on the lower and upper
bounds of each parameter s, s_1, . s in the form:

00" — bW < f < 02" + biPP (12)

Indices low and upp stand for lower and upper margins for the
allowed values of the parameter ;. The Nelder-Mead method
turned out to be appropriate for analyses of the radioactive plume
propagation when extra high accuracy of the solution is not
required. It is relatively insensitive to the numerical noise and the
results are comparable with other non-derivative minimisation
methods. Slow asymptotic convergence sometimes occurs for the
NM method. A problem of size limitations exists, and the method is
predestined for a small number of parameters — our experience is
summarised in (Pecha and Hofman, 2008). The problem can arise
when evident parameter correlations occur. Only the ratio and not
their individual values can be determined then.

4. Numerical experiment on minimiSation approach
4.1. Setup of TWIN experiment

The following numerical experiments are conducted as a TWIN
experiment. Simulation of the missing real measurements should
be performed due to the lack of proper real data. Several reasonable
methods for the TWIN data generation were adopted. The same
dispersion model is used for generating the TWIN data. In order to
avoid an “identical” experiment, the raw TWIN data can be some-
what perturbed. We shall introduce certain dissimilarities by using
different meteorological forecasts in the TWIN model and the
model predictions. The “artificial” measurements are generated
just at the positions of the sensors in the monitoring network. The
synthetic measurements play the role of a reference plume or trace
on the terrain. The assimilation technique optimises the model
parameters on the basis of optimal blending between the reference
true plume (or trace) and the reconstructed (assimilated) values.
The idea of artificial measurements has its own practical implica-
tion when a wide range of various measurement noise perturba-
tions can be tested (Section 4.4.4).

4.2. Earlier experience: one-stroke optimal blending of model
predictions with measurements

Recent preliminary examinations try to extend the number of
relevant input model parameters entering the minimisation. In
(Kathirgamanathan et al., 2003b) uncertain source height, lateral
eddy diffusivity and source distance from measuring points are also
considered in addition to the source rate. Similar examinations of
the nonlinear Nelder-Mead (NM) minimisation treating a capability
to manage a higher number of relevant input parameters were
discussed in (Pecha and Hofman, 2008). The NM procedure is
applied to a simple radioactive release scenario of an accidental
one-hour hypothetical release of the radionuclide 3'I discharged
from a nuclear facility into the atmosphere. Model predictions of
the radioactivity deposition of I are interpreted as a Gaussian
surface (or a superposition of partial Gaussian extents) over the
terrain. The values of the deposition are related to the time shift
from release beginning T’ up to the time T¢"¢, when the

radioactive cloud has just left the monitoring area. It means we
have examined only one time domain < T¥@% T The mea-
surements are assumed to be related to T, The objective is to take
into account both model predictions related to T¥"¢ and available
rare measurements incoming from the terrain and simply improve
the predictions of the spatial distribution of the deposited radio-
activity. We shall use the term one-stroke corrections (unlike the
stepwise recursive corrections described below in Section 4.4). The
one-stroke iterative process of NM minimisation of the function F
proceeds according to equation (11) for k = K = 1. It iconsists of
consecutive adjustments of the resulting response surface, always
according to the new evaluation of the parameters in the p-th
minimisation step (6; P, 62 P, ...., s P), expressed specifically by the
associated vector of the dimensionless factors [c1,c2, €3,c4]” (see
Table 1). We provide more details online in (Pecha, 2008).

4.3. Prediction of the dose rate propagation in the early stage of a
radiation accident

From a perspective of examining the monitoring network ca-
pabilities, the principal significance belongs to the output entity of
the external irradiation expressed by the ground level dose rates. It
consists of a sum of cloudshine and groundshine fields. The envi-
ronmental code HARP with its dispersion model based on
segmented Gaussian plume model (SGPM) was designed to be fast
enough for its deployment in the sequential DA procedures. More
detailed information is available online (HARP, 2011).

Radioactive substances can be discharged into the atmosphere
with a large nuclide variability and steep time changes. The multi-
segment and multi-nuclide universal algorithm has been devel-
oped to determine the spatial and temporal fields of dose rates. The
real release time dynamics is partitioned into a number of fictitious
one-hour consecutive segments seg, seg = 1, ..., SEG, each with an
equivalent value of the homogenous averaged radioactivity release
source strength qseg [Bg.s~']. The corresponding hourly discharge is
labelled as Qseg [Bg.hour -1, Qseg — Gseg x 3600. The maximum
permissible number of SEG is 72, hence releases with a duration of
up to 3 days can be analysed. Synchronisation with an hourly
forecast of meteorological conditions is performed. The segment
seg is released from the source of pollution just at hour seg from the
beginning identical to that of the accident. Each hourly segment seg
is modelled in its all consecutive hourly meteorological phases met
(more specifically, it is is labelled as met(seg)) relative to the initial
discharge of the segment seg (met = 1, ..., MET(seg)). The value of
MET(seg) is determined dynamically as the final relative hour when
the partial plume seg leaves the monitoring area (100-km vicinity
around the source of pollution). The hourly segment seg of the
release is spread during the first hour as a straight-line Gaussian
plume driven by the meteorological forecast for met(seg) = 1. In the
following hours, the segment seg spreads according to the available
hourly meteorological forecast for the successive relevant meteo-
rological phases met (met = 2, ..., MET(seg)). Here the segment seg is
treated as a “prolonged puff” and its dispersion and depletion (due
to radioactive decay and wet or dry fallout) during the movement is
simulated numerically by means of a large number of elemental
shifts. A more detailed description of the procedure can be found on
the web (HARP, 2011).

The external irradiation from the cloud and from radioactivity
deposited on the terrain is considered. Let us consider propagation
of one-hour homogenous segments seg. The output fields of the
cloudshine and groundshine dose rates RATEJS ,(i; seg, met) and
RATE’;T”;und(i; seg, met) (both in mSv/hour) in discrete computation
nodes i always belong to a single pair (met, seg). Both values are
easily determined from the pre-calculated basic dispersion values.
The location on the terrain is expressed in discrete representations
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Table 1

Choice of NM algorithm bounds for four important input model parameters.
Parameter unit Used inside code NM bounds
01: source release rate [Bqs™'] q=c; x qt ¢ € (0.1; 2.9)
0,: horizontal dispersion oy [m] oy (X) = ¢z x gy (x)Pest c € (0.1; 3.1)
03: wind direction ¢ [rad] ¢ = ¢t + 3 x 27/80 c3 € (-5.0; 5.0)
04: dry depos. velocity vg [ms] Vg = ¢4 x vgPost cs € (0.1; 4.0)

of the nodes i of the computational polar grid. The resulting values
are evaluated using superpositions of relevant sequences for each
result (seg,met), i.e., (seg,met(seg)).

Cloudshine: Distribution of the cloudshine dose rates RATE joud
on the terrain pertaining to the time interval from the beginning of
the release up to the hour T are computed as a superposition of
contributions from all hourly segments (seg, met) that are at the
time T still drifting over the terrain. These relevant segments are
chosen and summed up according to their equality seg + met -
1=T.

seg=SEG
RATEG (i T) = >
seg=1

met=MET (seg)

<D

met=1

{RATE?I%ZCI (i;seg, met) }seg+met71 =T

(13)
The total dose rate from irradiation from the radioactive cloud
from all released nuclides is given by:

RATE5,q(i; T) Z RATE™C (i;T) (14)

clou
(nuc)

Determination of the total cloudshine doses [mSv/T] accumu-
lated at location i during the progression of the one-hour segment
seg in all its meteorological phases met, met = 1,2, ..., MET(seg)
should reflect the irradiation doses from the radioactive cloud
accumulated in the nodes i on the terrain during the whole interval
of the plume propagation < 0; T >. It is computed as a superposition
of contributions from all hourly segments (seg, met) that are now
(and have been) drifting over the terrain during < 0; T >. These
relevant segments are chosen and summed up according to the
inequality seg + met - 1 < T.

seg=SEG
DOSERS ((i:T) = >
seg=1

met=MET (seg)

<D

{RATE 4(i;seg, met) }

cloud seg+met—1<T
met=1
(15)
or alternatively:
DOSE™« (i;T) = ZRATE?,%%C, t) (16)

The total irradiation dose from all nuclides in the cloud is given
by superposition:
DOSEjouq(i; T) = DOSEZC 4(i; T) (17)

clou
(nuc)

Groundshine: The groundshine dose rates and irradiation doses
should be taken as sums of contributions from the deposited
radioactivity during the whole trajectory of the segments. For a

given hour T the specific released segment seg goes through its
meteorological phases met(seg) = {1, ...., T-seg}. We have to account
for the contributions modified by radioactive decay from the
radioactivity deposited in the previous met phases according to:

seg=T [ met(seg)=T—seg
RATEpC ()= " M

eround RATEg1,nq(1;S€8, Met (seg))
met(seg)=1

seg=1

x eXp[— Anuc- (T — seg — met(seg) +1)]-3600

(18)

The values RATE”;‘OCund(l seg,met(seg)) are again determined

from the pre—calculated basic dispersion values, each nuclide has

decay constant Ay [s’1 ]. The total groundshine dose rates from all
released nuclides nuc are given by:

RATEgroung (i T) = > RATERS, (i T) (19)

groun
(nuc)

The doses of irradiation from deposited radioactivity
DOSEgyung(i; T) in [mSv/T], which are accumulated at location i, are
expressed as sums of effects in each hour of the plume propagation:

DOSEgroundU? T) Z Z RATE, <ggocund (i;0); (20)

nuc t=1

External irradiation effect: In the following analysis, we shall
focus on evolution of the distribution of the dose rate values
induced by the external irradiation according to the sum:

D(i;T) = RATE qouq (5 T) + RATEgroundU? T) (21)

It denotes the total dose rate [mSv h™!] at location coordinates i
just at hour T after the release start. These external irradiation rates
interpolated to the positions of measurement points can be directly
compared with observations (6) incoming from the terrain.

Note: The apparent complexity can prevent us from clearly
understanding of the advantage of the presented method of seg-
mentation. Its main benefit is the possibility to effectively simulate
the stepwise evolution of contamination in the early stage of a
radiation accident. It facilitates an implementation of recursive
model parameter re-estimation and radioactive plume tracking.
The trick of our approach lies in the separation of the calculation
into two steps. In the first step, the time-consuming dispersion
calculations of the main four basic radiological quantities are
determined and archived, namely near-ground activity concentra-
tion in air, time integral of near-ground activity concentration in air,
radioactivity deposited on terrain, and time integral of the depos-
ited radioactivity. These quantities are expressed in the above-
described segmented representation as the spatial fields for each
(seg,met(seg)). On the basis of these values, the overall estimation of
the radiological consequences is carried out in the second step.
Practically any kind of potentially possible huge radiological out-
puts (many hundreds, including those denoted by RATEoud,
RATEgound, €tc. above), can easily and quickly be generated with the
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aid of a simple multiplication by the constants comprising the
corresponding dose conversion factors. The processing of the sec-
ond step is facilitated using the effective visualisation subsystem
(HARP, 2013).

4.4. Recursive inverse modelling scheme in the early stage of
accident using an optimisation approach

As mentioned in the beginning of Section 3, the main objective
of the dispersion calculation is description of the time evolution of
the system state in the discrete consecutive time domains k as a
sequence {Xy},_; . Unlike the one-stroke approach described in
Section 4.2, the process is now conducted recursively. In each time
step, the resulting outputs from the previous step k-1 are predicted
forward using expressions (8) and NM minimisation (11) to the
next k, taking into account the observations (6) incoming from the
real Early Warning Network (see Fig. 3). There are many model
parameters that influence the shape of the plume: release source
strength of radioactivity qx [Bq.s~], release height, category of at-
mospheric stability, height of the mixing layer, terrain parameters,
etc. As described in Sec. 4.2, four model parameters have been
selected for one-stroke correction of the radioactive deposition
trace on terrain related to the time when the plume just left the
terrain. In this Section, we are solving a much more complicated
task of the near-field dispersion problem consisting in sequential
stepwise assimilation of the principal model parameters using
observations. A special task of the recursive plume tracking in its
individual consecutive hours of propagation and parameter re-
estimation is handled. In each time step with a one-hour dura-
tion, the corrections of the model with the measurements incoming
during this time step are carried out. The notation from Section 4.2
is retained.

4.4.1. Setup of the numerical experiment

The main three model parameters governing the specific ca-
pacity of the plume radioactivity and transport are selected. Within
the SGPM concept of the release segmentation all three parameters
are assumed to be constant in each one-hour interval k. We
consider the source strength qi [Bq.s~'] of radioactivity discharge,
and furthermore we shall calibrate the wind direction and wind
speed in the particular time steps of one hour in duration using the
additive offset ¢, and multiplicative offset c,10, respectively, ac-
cording to Table 2. All other parameters are given by their best
estimated deterministic values. The regular weather conditions are
supposed to be known from the numerical weather prediction. The
composition of the discharged radionuclides in the release is
assumed to be known including their physical-chemical form
governing the intensity of wet and dry fallout on the terrain.

Recursive stepwise assimilation scheme at near distances from
the source of pollution is applied to one-hour hypothetical release
of radionuclides with the best estimated (nominal) hourly dis-
charges Q°! [Bq.hour '] estimated ad hoc as:

KR88  1.00E17
1131 1.00E15
CS137 1.00E15

(22)

Note: One should exhaust all available additional information in
order to improve the predictions of the radiological consequences
(see the “golden rule” of assimilation in Section 4.4.2). Provided
that there is a certain remaining time in the pre-release phase of an
accident, the emergency management staff can launch fault tree
analysis (deductive failure analysis) in which an undesired state of
the system is analysed using Boolean logic to combine a series of
lower-level events. Time dynamics of the radioactive release epi-
sodes shows a specific behaviour of the particular nuclide groups:
noble gases (Kr, Xe), halogens (Br, I), alkali metals (Rb, Cs), tellurium
group (Se, Sb, Te), alkaline earth (Ba, Sr), noble metals (Ru, Rh, Pd,
Co), lanthanides .... . Known burnup level provides the sufficient
estimation of the actual core inventory and the ad hoc scheme (22)
can now be replaced with a more qualified guess based on the
nuclide group discharges defined by an expert.

After the first hour the release is assumed to stop. The further
propagation of this single cloud is modelled in all consecutive
hours. The meteorological forecast from Sept. 3, 2009 was selected.
A simple forecast for the point of release (format FECZ) is shown in
Table 3. The time stamp of 20090903—23 defines the release start
on Sept. 3, 2009 at 23.00 p.m. The file is used for generating the
TWIN set of artificial measurements. The associated more detailed
meteorological data (format HIRL) on the grid 200 x 200 km
around the source of pollution also enters the calculation. Specif-
ically, the gridded meteorological data HIRL with a time stamp of
20090903—2300.txt controls the progression of the radioactivity
transport whenever the dispersion model is called. The TWIN
model is constructed with help of selected fixed quantities. Spe-
cifically, for the release rate in the first hour k = 1, the fixed chosen
value (/"IN — 7.77 is substituted into q]"N = cIWIN. g4, In order to
avoid an identical experiment, two different meteorological models
are simultaneously used. The TWIN model uses simple meteoro-
logical forecast FECZ for each hour in the point of release (Table 3)
which is applied at once in the whole analysed region (time-
dependant,spatially-constant). On the other hand, during multiple
calls of the minimisation procedure, the model predictions (8) take
out gridded meteorological forecast HIRL (time-dependant,
spatially-dependant mode). Detailed instructions how to create the
TWIN experiment are provided in (ASIM, 2013) for those users who
have no better alternative to obtain more realistic observations.

The numerical computational procedure for calculation of the
effective dose rate quantities from the external irradiation is
formulated in Section 4.3. Within the time step k the sum (21) of
quantities RATEgoud + RATEground is assumed to be homogenous
according to expressions (13) to (20). The 2-D trajectories of the
dose rate just at the moment after 3 and 8 h from the release
beginning are illustrated in Fig. 1. The visualisation belongs to the
best estimated values Q¢!, given (22). The gridded HIRL forecast

Table 2
Parameter decomposition and bounds for the near-field recursive tracking of the plume.
Parameter unit Representation inside code NM bounds
01: source release rate q [Bqs] q=cqx ghestb ¢q € (0.1; 10.0)
0: wind direction ¢ [rad] 0 ="t 1, ¢, € (—90.0°; +90.0°)?
05: wind velocity at 10 m height u;o [ms] 1o = Cy1o x UGS curo0 € (0.1; 4.0)

3 Degrees from ¢”®t;+/—: clockwise/counter clockwise.
b ¢, is the same for all nuclides nuc in discharge, more precise discrimination ¢

is not so far practicable.
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Table 3
Hourly weather forecast in format FECZ for the point of release at 20090903—2300.

Hour of release Wind direct. (deg)?

Wind speed (m/s)

Pasquill categ. of stability Precipitation (mm/h)

1 270.00 2.30
2 238.00 2.70
3 230.00 2.10
4 224.00 1.50
5 225.00 1.10
6 195.00 1.10
7 185.00 1.50
8 188.00 2.50
9 184.00 2.70

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.57
0.89

ogogogogggogom

2 wherefrom blows: degees from north, clockwise.

provides the values ¢?®!(x,y:k), ul§® (xy;k), (k =1, ..., 8 h).

The TWIN trajectories are supposed to be driven by the point
meteorological data in format FECZ shown in Table 3 according to
the chosen fixed TWIN values ¢ ™Nix = 0y = 0;k), uzg ™WN
(x =0y =0;k), k=1, ..., 8 h. Concurrently, the radioactivity release
lasts only within the first hour k = 1, QYN — Q4est, cIWIN (see next).
The trajectories just after 3 and 8 h of the plume propagation are
depicted in Fig. 2. Both formats HIRL and FECZ are mutually con-
jugated through a given identical time stamp. This fact could still
introduce a demonstrable resemblance between the results
generated with the aid of HIRL and FECZ. In order to avoid the
“identical” experiment, the additional raw TWIN data modifica-
tions are introduced. Whilst the model starts the calculations with
gridded meteorological data at 20090903 4—2300, the TWIN cal-
culations using FECZ format starts one hour forward (hence the first
row in Table 3 is skipped). As mentioned above the fixed value
ctWIN — 7.77 is substituted into g]"N = "IN g%, The recursive
forcing of the model predictions towards the measurements rep-
resented by the TWIN model will be demonstrated. We shall
examine the source term's ability of re-estimation expressed by

convergence ¢2™ = cIWIN when the initial guess for the first

Model: Best Estimate - Effective external dose rate just after k=3 hours
from the release start [mSv-h]

1.00E-03

distance [km]

+{1.00E-04 =

1.00E-05

1.00E-06

distance [km]

iteration p of the NM minimisation is given by substitution of the
best estimated model parameter values into the environmental
model (4).

The details of the simulation experiment are given in Appendix
A. The index p stands for p-th iteration of the non-linear mini-
misation of the Nelder-Mead (NM) algorithm, Ppax(k) denotes the
index when the convergence in the time step k was reached. Spe-
cifically, the resulted assimilated parameters:

cBSim (ke = 1), %M k), 25 (k) (23)

in each individual recursive time steps (hours) k are expected to
converge to the chosen fixed TWIN values:

cIWIN(k = 1), cTWIN (k), TN (k) (24)

in the course of Pmpa(k) iterations of the NM algorithm. The
convergence is driven through the evaluation of the scalar function
F from Equation (11). For the final stage at 8 h after the release start,
the “best” trajectory after the blending with incoming observations
is step by step inclined to the TWIN shape and magnitudes.

Model: Best Estimate - Effective external dose rate just after k=8 hours
from the release start [mSv-h’]

1.00E-01
20 Ff~
E‘ - [ 1.00E-02 ¢
8 offt 2
g B 1.00E-03
2
-
i
20 g 1.00E-04

distance [km]

Fig. 1. Model predictions with the best estimated values of the input model parameters. The plume propagation is driven by the fine-gridded meteorological forecast in the format

HIRL.
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Model: TWIN Estimate - Effective external dose rate just after k=3 hours

from the release start [mSv-h"]

Model: TWIN Estimate - Effective external dose rate just after k=8 hours
from the release start [mSv-h”]
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[mSv-h!]
I 1.00E-+01
1.00E+00

1.00E- 01

b i 1.00E- 02

distance [km]

1.00E- 03

1.00E-04

1.00E-05 <.

>< >
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7 i i ! S4h o
"1 ¥ 1.00E+00 & By X

F 1.00E- 01
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distance [km]
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distance [km] distance [km]
Fig. 2. TWIN trajectories (chosen fixed value c,T,W’” = 7.77) driven by weather forecast FECZ for a single point of release according to Table 3 where the first row is skipped (shift one

hour forward).

4.4.2. Progression of the plume recursive tracking in the successive
time steps

The recursive process in the first three hours will be illustrated
in Figures below. The plume travels over the area of the emergency
planning zone (~16 km), where is more or less sufficient coverage
by sensors of the real EWN (Early Warning Network) of NPP
Temelin. The EWN can be exploited for purposes of the following
data assimilation procedure.

Within the assimilation procedure the model predictions are
step by step forced to the TWIN shape and magnitudes. No prob-
lems with convergence of the NM minimisation algorithm have
been encountered for this basic scenario. Robustness and some-
what inflexible general approach of the basic direct search NM al-
gorithm are mentioned in Appendix B. The method has been
proven to have very good applicability in the case of sensitivity
analysis to noisy measurements presented in Section 4.4.3, which
follows. So far, no extra effort has been given to analysis of outlying
situations where the inversion could fail: for example, because of
too poor observability.

Two specific features for the segment in the first hour of its
propagation should be pointed out:

— The main part of EWN is a teledosimetric system (TDS) con-
sisting of two circles. The inner circle is positioned on the NPP-
fence (see Fig. 3) and consists of 24 stations 2.5m above ground.
The outer Il circle incorporates 52 measurement positions
located at larger distances, mainly in the emergency zone or its
near vicinity. This net is additionally supplemented by several
mobile stations appropriately located in medium distances. A
relatively dense net of teledosimetric sensors in the TDS ring
enables us to sufficiently estimate the multiplicative factor ¢, for
the source strength re-estimation.

— The source strength and mean advection velocity of the plume
incorporate strong mutual dependency when calculating the
dose rate values. For this reason we shall follow the “golden
rule” of assimilation: “All available information resources should
be taken into account”. Up to now we have omitted the available

real onsite meteorological measurements for the time of release.
Now we are reassigning the best estimated value uf§ (when
calculating the model prediction using HIRL meteo format) by
the measured value u{3"®" from onsite meteorological tower
measurement which is assumed to be fixed and constant during
all minimisation iterations for the first hour (see “Constraints” in

Scheme in Appendix A).

Some results produced within the course of the assimilation
procedure in the first hour of propagation k = 1 are illustrated in
Fig. 4. Its left part stands for the initial guess trajectory of the NM
algorithm which belongs to the best estimate of all input parame-
ters with the exception of the wind direction and velocity, which
are reassigned by measurements from meteorological tower in the
release point. The real measurements u{3**" (k= 1) =2.7m-s" ' and
averaged ¢ ""e'(k = 1) = 285.8° were found and substituted in the
original gridded prediction set. The initial guess enters the direct
search algorithm which step by step inclines to the selected TWIN
"measurements” represented by options ¢; = 7.77 (test for the
source term re-estimation); ¢, = —46.90° (from the 2nd row in
Table 3); cyj0 = 1.00. The NM minimisation starts from the best
estimate trajectory (Fig. 4, left) with constraints in each iteration
step p (see Appendix A). As follows from the above discussion, a
very tight constraint should be imposed on ujg (k = 1). The
convergence was reached after 124 iterations and the relevant
assimilated trajectory (Fig. 4, right) is very close to the prescribed
TWIN "measurements” for k = 1.

The superposition of the second hour variations on the previous
fixed assimilated trajectory for the first hour is shown in Fig. 5. The
left-hand part stands for the first guess in the second hour, which
means the assimilated trajectory from the previous first hour k = 1
(Fig. 4, Right) plus the best estimate of the segment in the 2nd hour
(constructed from the parameters cge“ (k =2), cbs%(k = 2) given by
the meteorological format HIRL for the centre of the nominal plume
segment in the second phase).

The following Fig. 6 presents the minimisation cycle for the third
hour. The first guess (Fig. 6, left) consists of the previous, already
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Fig. 3. TDS on fence of NPP Temelin — 24 detectors. Additional 52 measurement positions are located at larger distances.

Effective external dose rate just after k=1 hour from the release start [mSv-h"]
The first guess to NM algorithm (best estimate of parameters. meteo HIRL)

distance [km]

1.00E-03
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Fig. 4. Assimilation in the first hour: Left: The first guess of NM algorithm in the first hour = best estimate c¢; = 1.00, fixed uo(k = 1)

Effective external dose rate after k= 1hour from the release start [mSv-h"]
Assimilated model predictions after the 1-st hour usin TWIN trajectory k=1

S 4 i

distance [km]

distance [km]

best __

= ub%t = ul%"e"; Right: Assimilated trajectory

just after 1 h: convergence reached after 124 iterations: p = 124, ¢, = 7.768 (successful source term re-estimation); ¢, = —47.96°; c,70 = 0.999.

assimilated, fixed part of the trajectory for the first and second
hours of propagation plus the best estimate of the plume segment
in the 3rd hour (constructed from the parameters cg"“ (k = 3),
chestk = 3) given by the meteorological format HIRL for the centre
of the nominal plume segment for k 3). More details are
described in Appendix A. The assimilated trace on Fig. 6, right, is
very close to the TWIN surface for the third hour given by sum
D = RATE(jouq + RATEgoung from expressions (21) which is illus-
trated on previous Fig. 2, left.

These procedures of recursive tracking should continue for all
successive hours until the radioactive cloud leaves the considered
limit 100 km from the release point. We are using the existing EWN

around nuclear facility as mentioned above. In remote distances,
the number of sensors is insufficient. For testing purposes we have
extended “artificially” (and subjectively) the number of measuring
positions (from original 79 to 86) and assigned their corresponding
TWIN values. A proper behaviour of the NM algorithm was suc-
cessfully proved in the extended time span up to 8 h from the
release start. The assimilated trajectory just after 8 h comes very
close to the prescribed TWIN trajectory just after 8 h (see Fig. 2,
Right).

4.4.3. Sensitivity study of measurement noise
Due to few available measurement sites, the measurement
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Effective external dose rate just after k=2 hour from the release start [mSv-h"]
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Fig. 5. Assimilation in the second hour: Left: The first guess for the 2nd hour: Trajectory of dose rate in the beginning of the minimisation procedure (1st iteration p = 1). Right: The
convergence is reached after 95 iterations - the assimilated trajectory ~ p = 95, ¢; = 7.760; ¢, = —4.803° cy;0 = 0.724.
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Fig. 6. Assimilation in the third hour: Left: The first guess: Trajectory of dose rate in the beginning of the minimisation procedure for k = 3. Right: The convergence is reached after
84 iterations — the assimilated trajectory corresponds to parameters for the third hour of the plume drifting: ¢, = 7.768; ¢, = —1.238°; cy10 = 0.583.

errors may have significant impact on the results of parameter
estimation. The impact of outliers, systematic errors and stochastic
uncertainties in the sensor measurements on the inverse estima-
tion should be examined. Some assumptions on the measurement
error modelling have been introduced (Abida and Bocquet, 2009;
Edwards et al., 1993), more detailed observation error analysis is
performed in (Edwards et al., 1993; Winiarek et al., 2011). Gaussian
and non-Gaussian errors are distinguished there and a more pro-
found analysis is provided. Common assumption is that the
observation errors are not correlated and error variances are the
same for the same observation type. Observation matrix C (obser-
vation error covariance matrix) can be now written as:

1 0 0
0 1 0

C=do | . (25)
0 0 1

We shall accept independency of the noise between measure-
ment points r. In a particular test on correlated measurements, the
identity matrix I in (25) was replaced by the actual correlation
matrix for the total dependency. Expected acceleration of the
minimisation NM algorithm has been achieved (the value of Ppax(k)
(see (23)) was roughly about half of that valid for the case of un-
correlated measurements).
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We shall perform a Monte-Carlo study of different realisation of
the noise added to the simulated measurements from the TWIN
experiment (Section 4.1). For each perturbed observational vector
Yk given (6) the optimisation (11) takes place and re-estimated
parameters are produced. Specifically, the first time domain k = 1
is assumed (the first hour of release). We shall check the impact of
the measurement noise of the dose rate on the re-estimated model
parameters q = ¢+ q°°, ¢ = o"*t + ¢, U19 = cy10 - USE specified in
Table 2.

In the first step the vector y,_; (with components y',_;, r = 1,

,R) of the original simulated noiseless measurements (6) of the
dose rate incoming from the terrain within an hour k = 1 is
calculated by the dispersion model. The chosen fixed TWIN values
(24) are substituted into the HARP model in eq. (8). The corre-
sponding vector of the model predictions i(kTZVlIN in the observation
space is determined using transformation (7). The noiseless mea-
surements yi—; are then put equal to the XkTivl'N . The second step
follows when components of the vector y,—; of noiseless mea-
surements are replaced by their perturbed measurements?,r(:]. The
hat over a symbol denotes the perturbation operation.

In the absence of specific measurement campaigns, certain as-
sumptions must be made on errors (Abida and Bocquet, 2009). We
are not able to obtain a realistic measurement set which will be
considered as the truth. We have tentatively introduced the test of
two types of synthetic measurements: the measurement errors of
the additive character and a multiplicative approach.

The additive Gaussian type is formed according to

Vet = Yiq + 0 fsig (26a)

w is a random number from the standard normal distribution
N(0; 1), factor fsig has a meaning of the standard deviation adjusted
properly to the newly transformed normal distribution. Conse-
quently, the loss function F from Equation (11) is rewritten as:

r=R 2
F(CZ,C” k= 1) = (xi 1<cg,cp Cﬁlo) - yﬂzl)
r=1
(26b)
The values X}_; (¢§, ¢}, C}}1o) for r = 1,....,R are components of the

perturbed vector of the dose rate model predictions transformed by
Equation (7) into the observation space. Subsequent searching for
the minimum of the scalar function F from (26b) starts from the
initial best estimate c3®{(k = 1), 5%t (k = 1), cbS&(k = 1) with the aim
to re-estimate this parameter (see Appendix A). The minimisation
algorithm using the loss function (26b) searches inversely the new
set of perturbed parameters cg cp cu10 The successive consider-
ations will be focused on estlmatmg the source release rate g
modelled by q = ¢4+ g (see Table 2). Noiseless TWIN measure-
ments are represented by the values cq IWIN The perturbed values
ECTIW]N are labelled by hats over the symbols and result from mini-
misation (26b) as a function of the perturbed dose rate meas-
urements?izl given by (26a).

The multiplicative error type is formed as an alternative choice
to the additive option. Multiplicative lognormal prior option is
introduced for the inversion tests when the error standard de-
viations are fractional with respect to those of the measurements.
Concurrently, we now simply assume that the dose rate measure-
ment errors follow a lognormal law. An observation yj_; is
generated from the basic noiseless datay]_, multiplicatively per-
turbed by lognormal law:

~T
Yi=1
—_
yk:]

In this case, the cost function should be rewritten as:

= wr;welognormal, 3.0 — ¢ truncated (27a)

F(cg, b k= 1)

Il
=

r

=3 (in(%ea (& .Ehno)) - In(3)’
. (27b)

Following Section 4.4.3, the real vector y;_; of noiseless mea-
surements is replaced by that of the perturbed measurements y;_1.
The minimisation algorithm using loss function (27b) searches
inversely for a new set of perturbed parameters ¢p,ch.ch, .
Convergence is reached after Ppax iterations - see (23).

Both additive and multiplicative alternative priors have rather
methodical purpose to demonstrate the computational feasibility
and robustness. Any recommendation related to the error type

option is not offered here.

—_

4.4.4. Simulation experiment with noisy measurements

The measurement net consists of R = 84 sensors located on the
terrain around the source of a potential radioactivity release (Fig. 3).
It means that 84 independent values of the perturbation factor w,
according to (26a resp. 27a) are generated at each sensor position
and the simulation is started. The procedure is repeated 1196 times,
always for a new set of perturbed measurements. The radiological
consequences are estimated and processed statistically. The results
are demonstrated in the form of histograms representing absolute
frequencies of observations occurring in certain ranges of values.
From measurement noise yj_;, we have extracted information
enabling us to infer on statistical properties of the random pa-
rameters represented by ¢f, ¢, ch,o. The values are elementarily
assumed to be the same for all nuclides nuc in the initial radioac-
tivity emission (see notice in Table 2).

The efficiency of the data assimilation system is tested via sta-
tistical indicators, which introduce performance measures for
comparison of the model predictions and observations. Several
statistical performance measures can be used in order to compare
the reference (true) plume with the reconstructed (assimilated)
plume. The set of values Age“ (itest = 1, ..., 1196) provides various
measures of conformance. We shall mention the statistics RMSE
and factor of two FAC2 and factor of five FAC5. The root mean
square error (RMSE) indicator compares the source term reference
with the estimated source at some time domain k:

RMSE =

R Z (Xk (C < Cﬁm) - %:1)2 (28)

The dimensionless factors of two FAC2 resp. five FAC5 reflect the
fraction /R of data where r at a given time t satisfies:

% (cP. e P % (cP, P P
05< M <20 resp. 02< M
Yk:1 Yi=1
<50
(29)

FACn are the most robust measures, because they are not overly
influenced by high and low outliers. The index p = Pmpax is
substituted into (28) and (29).
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Fig. 7. Histogram for absolute frequencies of occurrence of random values Egm

extracted from the measurement noise (Gaussian additive, CASE 1). The value 7.77
represents the noiseless chosen TWIN value VN = 7.77 from (24) (reference fixed
value — see Section 4.4.1).

As noted above, the noise of measurements having additive or

)
1204 & NORMAL
=
E (z=6.097E+1;0 =1.448E+1)
100,0
measur. samples
80,0

itest =1, ...,1196

60,0

40,0

20,0

40,0 60,0 80,0
RMSE [mSvh]

100,0

Fig. 8. Distribution of RMSE for time domain k = 1: Absolute frequencies of occurrence
of RMSE (Gaussian additive measurement noise, CASE 1).

Table 4
Some statistical indicators for CASE 1 and CASE 2.

alternatively multiplicative character has been examined. Some
results follow.

4.4.4.1. Additive Gaussian type of the measurements noise. We shall
distinguish between two cases of noise generation in the sensor
positions:

CASE 1 Only those positions that have originally positive “artificial”
noiseless measurements XkT!/]W > 0 are assumed. If yj_; <
0 is generated from (26a), then zero is substituted.

CASE 2 All sensor positions (R = 84 in total) are assumed regardless
of their initial X,Z/{N values. The noise is superimposed
according to (26a) and zero is substituted here if ?,2:1 <0.
This case is rather speculative and somehow simulates (in
the authors' opinion) “overall noise background”. Rather
than practical results, it brings additional evidence to the
computational robustness and stability.

Some results of numerical experiments on the source term
reconstruction for CASE 1 just after the first hour of release prop-
agation (time domain k = 1) are shown by the histogram in Fig. 7.
Distribution of the sample RMSE for the first hour of release k = 1 is
given by the histogram in Fig. 8.

Identical analysis was performed for the CASE 2. Some selected
statistical indicators are summarised in Table 4 including interval
estimation of the indicators (95% confidence intervals are pre-
sented - it says that interval <LOW; HIG> covers the unknown
population mean value with probability 0.95).

4.4.4.2. Multiplicative type of measurement noise. In the absence of
specific expert analysis of the measurement errors, an examination
of alternative prior statistics on the measurements noise can bring
useful information and additional verification of the algorithm. The
Gaussian additive assumption is stated in the beginning of this
Section. Alternatively, we have tested the lognormal prior option
(27a) when the minimisation algorithm using loss function (27b)
inversely searches for a new set of perturbed parame-
tersch, ¢h, €. The ratio o from (27a) has a lognormal distribution
w ~exp (N(0,64)) shown in Fig. 9 (median = 1.0, 3-0-c truncated, the
standard deviation is constructed from the given absolute quantiles
Q (prob = 0.05) = 0.5; Q (prob = 0.95) = 2.0).

Some graphical results of the numerical experiments are given
in Figs. 10 and 11. Interval estimates of the indicators are given in
Table 5 where the 95% confidence intervals are presented. The in-
terval <LOW; HIG> covers the unknown population mean value
with probability 0.95.

5. Conclusions

A sequential minimisation scheme for recursive parameter
estimation is presented here as an inverse modelling technique
applied to a hypothetical accidental release of radioactivity into the
atmosphere. The simulations carried out for an elementary release

CASE 1

CASE 2

X(Sample mean) o - Sample stand. dev. LOW conf. interval HIGH conf. interval X(Sample mean) o - Sample stand. dev. LOW conf. interval HIG conf. interval

Cq 7.77E+00 1.59E+00 7.68E+00 7.86E+00
RMSE 6.10E+01 1.45E+01 6.01E+01 6.11E401
FA2  3.21E-01 1.11E-01 3.15E-01 3.27E-01
FA5  4.92E-01 1.06E-01 4.86E-01 4.98E-01

7.92E+00 1.50E+00 7.83E+00 8.01E+00
6.38E+401 8.36E+00 6.33E+01 6.39E+01
1.07E-01 6.64E-02 1.03E-01 1.11E-01
1.61E-01 6.41E-02 1.57E-01 1.65E-01
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Fig. 9. Histogram for absolute frequencies of occurrence of random value o , driven by
(27a) sampled from lognormal distribution (3.0-c truncated).
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Fig. 10. Histogram for absolute frequencies of occurrence of random values Egm

(resulted assimilation values (23)) extracted inversely from the measurement noise
(lognormal multiplicative perturbations of measurements driven by (27a)). The value
7.77 represents the noiseless chosen TWIN value given by (24).

Table 5

4
6-

1504 g measurement samples
&’ itest =1, ..., 1196

1204 ) .

" =104F -1

90,01

60,01

30,01

101 201 301 401 501 60,1
RMSE [mSv-h?]

Fig. 11. Distribution of RMSE for time domain k = 1 (absolute frequencies of occur-
rence of RMSE), lognormal multiplicative perturbations of measurements given by
(27a).

proved to be a tool useful for the improvement of the important
model parameters resulting in the source strength re-estimation
and recursive tracking of the radioactive plume progression. It
can sufficiently contribute to the fast real-time approximation of
the most impacted areas. Recursive extraction of information from
the measurements allows stepwise estimation of the release dy-
namics. Influence of noisy measurements on the parameter esti-
mation is examined in Sections 4.4.3 and 4.4.4. Surprising positive
findings have been revealed in the optimisation using noisy mea-
surements where the source term re-estimation is carried out
simultaneously with the other wind parameters. It consists of the
potential additional correction of the angular shift of the assimi-
lated trajectory Xj_,(ch max,?gmax ey from (26b) or (27b)
emerging from a partlcular set of the measurement noise (a
possibly asymmetrical random shift cPmax — ¢Pmax

Our innovative contribution 1ncludes the capablllty of the fast
model parameter estimation for the cases of complicated multi-
segment and multi-nuclide hypothetical release scenarios which
can now be managed in the real-time mode. The original results lie
in introducing an effective algorithm for the fast estimation of the
cloudshine doses/dose rates from radioactive cloud both in its
approaching and crossing phases over the sensors (Pecha and
Pechova, 2014). This technique enables well-timed detection of

95% confidence intervals for some statistical indicators — multiplicative measurement noise (27a, 27b).

X(Sample mean)

o - Sample stand. dev.

LOW conf. interval HIGH conf. interval

Cq 7.790E+-00 7.849E-01
RMSE 1.585E+01 1.003E+01
FA2 2.069E-01 1.577E-02
FA5 2.378E-01 4.126E-03

7.746E+4-00 7.835E+00
1.528E+01 1.589E+01
2.060E-01 2.078E-01
2.376E-01 2.381E-01
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the approaching radioactive plume from larger distances. Impor-
tant utilisation of minimisation techniques can be found in the
phase of initiation of operation of the authentic assimilation
methods. Heavy computational cost of the advanced statistical
techniques is caused by both enormous repetitive calling of the
dispersion model and difficult setting of the proper initial
approximation of the sophisticated algorithms. The improved
dispersion model SGPM can provide both calculation acceleration
and also delivery of a suitable guess of the intelligent initial con-
ditions. The presented algorithm can be considered as a proper tool
for verification of observability of monitoring networks.

The numerical experiment has been proven to have good
computational feasibility. The minimisation procedure is fast and a
real-time assimilation is fairly realisable. For multi-segment and
multi-nuclide release the task is somewhat complicated but the
new algorithm proposed in Section 4.3 is fully universal and prac-
ticable. The minimisation procedure BCPOL from Visual FORTRAN
IMSL library proved fast convergence even for low prescribed
relative error. An examination of the outlying situations has only
been touched upon within the measurement noise analysis pro-
vided in Sections 4.4.3 and 4.4.4.

The presented method is based on some speculative assump-
tions. Sufficient temporal and spatial coverage with measuring
devices is inevitable. Finer time segmentation of the release dy-
namics and simultaneous reduction of the recursion time step in-
terval from one hour to 1/2 h is now being taken into consideration.
An implementation of the regularisation technique for specifying
constraints on the flexibility of a model can be beneficial by
reducing uncertainty in the estimated parameter values (Tikho-
nov's regularisation: Kathirgamanathan, 2004; Winiarek et al.,
2011). An unresolved problem still remains in determination of
the isotopic composition of the release. The proportional repre-
sentation of the particular radionuclides in the mixture could be
roughly estimated from the anticipated leaking fractions of radio-
nuclides from the core inventory. The discrimination according to a
given (pre-estimated) guess can represent an alternative to the
rough ad hoc choice from Scheme (22). Some partial approach for
reconstruction of the isotopic composition has already been pub-
lished (e.g., Saunier et al., 2013) based on analysis of the slope in the
dose rate signals and peaks. However, isotopic ratios cannot be
treated reasonably without spectral sensors.
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Appendix A. Stepwise recursive sequential assimilation
scheme

(simplified one release segment with duration 1 h, stepwise
recursion up to 8 h forward).

Initialisation phase

e Simulation of artificial “measurements” based on TWIN model
using scheme (11). The TWIN data for each time step k is pre-
pared in advance for all intended recursive time steps k = JTWIN,
JTWIN = 1, ..., MAXTW.

e Setup of the best estimate values of dispersion model
parameters

e Selection of the most important model parameter subset to be
optimised (Table 2):

release source strength (Bq/h)

wind direction (deg) — angle between North and

wind direction (wherefrom blows, clockwise)

[A DT wind velocity (at 10 m height) (m/s)

Parameterisation of the optimisation task

Choice of vector 6 from the model parameters [cq C, cuto]”
defined as follows (Table 2):

e Cg is an unknown multiplicative factor affecting the initial best
estimate source strength value g?¢:

Q1 =Q1%%t x 4.

e C, is an unknown additive factor affecting the nominal (fore-
casted) wind direction value:

o= wbest +C,

e Cyi0 is a multiplicative unknown factor affecting the nominal
(forecasted) wind speed value at 10 m:

best
Ui = Ujg X Cy10

Notation

_____ K ---- time evolution of the system state in discrete
time domains k; outputs from the previous step k-1 are pre-
dicted forward using expressions (9) and NM (Nelder-Mead)
simplex method minimising (11) to the next k, taking into ac-
count the incoming observations (6).

e JTWIN: number of the current recursive time step being pro-
cessed (the previous k time steps, k = 1, ..., JTWIN-1, are assumed
to be assimilated); new JTWIN-th set of measurements y;_wy
just arrived.

. cgs“" (k), ci“’" (k), ¢ %7 (k) are already assimilated values of the
parameters in each previous recursive time steps k, k = 1, ...,
JTWIN-1

o Ximy  {eg™ (k). ¢g™™ (), ¢ B8 ()l ... kyrwin-1 }: assimi-
lated 2-D plume trajectory from the same release beginning up
to the JTWIN-1 hour. The trajectories Xfﬁ%\/q are interpreted as
42 x 80 matrix in the computational polar nodes (42 radial
distances up to 100 km from the source of pollution, 80 angular
sectors).

. ﬁﬁm{[casim (k). g™ (K), ¢ G (k) i, .. kgrwan-1; €6 JTWIN),

BUESS (JTWIN), ¢ §46*° (JTWIN) }: the first guess trajectory in the
next JTWIN-th step, which is originated during propagation of
xj’f"']‘}},\,f] forward into the JTWIN-th step with the initial guess
&' (JTWIN), ¢8'*° (JTWIN), c £16°° JTWIN) (the guess is usually
chosen as the best estimate of the parameters at the new time
domain k = JTWIN).
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Assimilation phase
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e JTWIN=0
LAB: JTWIN=JTWIN+I

Action: Preparation for running model for successive hour JTWIN, read “simulated measurements” TWIN for

the hour JTWIN from the external file prepared in advance
e IF (JTWIN>1)THEN
Setup initial guess trajectory xfi;ijN for starting the assimilation process in the next JTWIN
ELSE

Guess for the first time domain TWIN=1 from:
HARPSGPM (9117@1’.“’ Hm best s gMbext; k:1) - x}lgislt

guess _ best
Xirwin=1=~ Xk

ENDIF

e IF(JTWIN=1) THEN
Action: Setup CONSTRAINTS for minimisation for the first time domain JTWIN=1:
¢, €<0.1,10>, ¢, € <-90°,4+90° >, ¢, 19 € <0.99, 1.01 >
where 11" = u,™ , ;" is onsite meteorological tower measurement of the wind speed
at the time of release
ELSE
Action: Setup CONSTRAINS for minimisation hours > 1:
¢g € <0999, 1.001 >, ¢, € <-90°,+90° >, ¢,jp € <0.5,2.5>
note: ¢, assumed already assimilated in the first step JTWIN=1
ENDIF

e Action: RUN optimization routine BCPOL with the evaluation function F from expression (11):

The function F(6; ,6,, ... ,0s) from (11) has now a specific form F(c, ,cy, c,0) and minimisation algorithm
handles with 3-dimensional simplex. The initial simplex for p=1/ is assembled using the best estimate

values of the vector [¢, ,cq, Curo]Tbest =[1.0,0.0 , 1.01".

» BCPOL initialisation, p=1/ : the first iteration p of the NM minimization algorithm = best

estimate [c, ,cy, Cut0] Tbest -
L1:
> p=p+l

> NM algorithm generates the new values ( ¢/, ¢/, ¢ ;) in the simplex vertices using JTWIN

measurement set for the JTWIN-th hour

> Generation of transient trajectory X7,y ( ¢/, ¢4, ¢ud’) for p-th iteration inside the JTWIN-th

time domain

» Transformation of the X%,y ( ¢/, ¢/, ¢ uf) trajectory to the observation space using

observation operator - similarly to eq. (11).
» setting logical CONV: NM algorithm itself assesses the convergence criterion
IF (.NOT. CONV ) GOTO L1
» Puux(JTWIN) =p

o Assimilated parameters successfuly found after the P,...(JTWIN)-th iteration:

asim asim asim Pmax(JTWIN) Pmax(JTWIN) Pmax(JTWIN)
<Cq (k)9 Cq) (k)7 ul0 ( )>k=ITW1N q ’ C{p > Culo

o Setup for the next recursion time step JTWIN+1 :
IF JTWIN £ MAXTW) GOTO LAB
RETURN
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Appendix B. Visualisation of the Nelder-Mead (NM) algorithm — see Section 4.2) that significant improvement is achieved in the

— assimilation in the 3rd hour first few iterations. On the other side only negligible convergence or

even oscillation can occur when prescribed convergence criterion is

Heuristic direct search Nelder-Mead algorithm of nonlinear very tight and number of parameters being optimised is high. The

optimisation technique represents a robust method for obtaining algorithm always follows blindly the criterion of prescribed fixed

good results in many cases where a highly accurate solution is not lower and upper bounds on parameters. Some more sophisticated
necessary. It was shown (namely for higher number of parameters minimisation algorithm should bring benefit.

Time domain k=3:
p=1: 1-stiteration (p=1: Initial guess) of NM algorithm
®, . .

p=3: 3-rd iteration of NM algorithm
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B {
“1< [mSv-h1] f
P 1.00E+ 01 bf

10| z
E = E
g o 88
gk g
ia 47 é
10} e
9
2
) distance [km]
p=84, assimilated trajectory after 3-rd hour: convergence
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Fig. 12. Effective external dose rate [mSv h~']: Several first iterations p for assimilation in the 3rd hour. Upper left is the first guess (identical with Fig. 6, left), lower right is the
assimilated trajectory after p = 84 iterations (identical with Fig. 6, right).
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